
Gene Therapy of Inherited Retinal Degenerations:
Prospects and Challenges

Ivana Trapani,1 Sandro Banfi,1,2 Francesca Simonelli,3 Enrico M. Surace,1,4 and Alberto Auricchio1,4

Abstract

Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of
translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of
inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the
first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the
safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also
generated new questions and posed challenges that need to be addressed to further expand the applicability of
gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs
as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and
patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently
being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.

Clinical Trials of Gene Therapy for IRDs:
Success and Challenges Ahead

Inherited retinal degenerations (IRDs), a major
cause of severe vision impairment, affect more than 2

million people worldwide.1 IRDs are a group of diseases with
high genetic heterogeneity and differences in inheritance
patterns, age of onset, and severity of visual dysfunction.2,3

Mutations in more than 200 genes mainly expressed in
photoreceptors (PR) (Fig. 1B), and to a lesser extent in the
retinal pigment epithelium (RPE) (Fig. 1B), cause IRDs.4,5

Sight-restoring therapy for many IRDs is still a major unmet
medical need. However, in the last decades, the identification
of many IRD-causing genes has paved the way for the de-
velopment of gene-based therapies.

The eye has been at the forefront of translational gene
therapy because of its small, enclosed structure, immune
privilege, and easy accessibility. In addition, the availability
of various animal models, along with in vivo imaging
techniques, allows for noninvasive and consistent monitor-
ing of the effects of gene delivery; outcomes may be com-
pared with disease progression in the contralateral control
eye.6,7 Leber congenital amaurosis type 2 (LCA2) is the first
IRD to have been treated with retinal gene therapy in phase
I/II clinical trials, the results of which represent the most

successful example of ocular gene therapy, to date. LCA2,
an autosomal recessive IRD, is caused by mutations in
RPE65, an essential gene in the retinal pathway. RPE65
encodes an isomerase protein expressed in the RPE that
promotes visual chromophore recycling. LCA2 is an ideal
candidate disease for gene therapy because RPE65 defi-
ciency causes defective visual cycle and poor visual func-
tion early in life8,9; LCA2 retinal structure is left fairly intact
until the second to third decade of life, the period in
which progressive PR degeneration becomes evident.8,10

After subretinal administration of a gene therapy vector
based on adeno-associated virus (AAV) type 2 (AAV2/2)
was shown to induce therapeutic effects in small and large
LCA2 animal models, three independent clinical trials were
launched (NCT00516477; NCT00643747; NCT00481546).
The longest comprehensive follow-up of treated patients
reported to date is 3 years.11,12

Although it is difficult to directly compare the results
of the three studies because of their several variables, data
gathered from these clinical trials collectively indicate that
gene therapy is both safe and effective.11,13–19 Patients from
all trials exhibited improved retinal and visual function,
though to different extents, and reactivation of the visual
cortex has been described in one trial.20 Maximal effi-
cacy was obtained in the youngest LCA2 patients, who
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presumably had better retinal preservation and function to
begin with.17 Importantly, injection of the vector in the
contralateral eyes of three LCA2 patients who had been
previously treated with the same vector was shown to be
safe and effective.21 This implies that subretinal read-
ministration of AAV2/2 is feasible, even in the case of
preexisting immunity to the vector, a criterion that has been
used to exclude patients from gene therapy trials involving
systemic vector administrations.22,23

The biotechnology company Spark Therapeutics is now
testing AAV2/2-RPE65 gene therapy for LCA2 in an ad-
vanced phase III clinical trial, a study including patients as
young as 3 years of age (NCT00999609). The objective of the
study is to file for regulatory approval in the United States as
early as 2016.24 An alternative gene therapy approach for
LCA2 treatment is now under evaluation in a clinical trial
that uses the RPE65 promoter in combination with AAV2/4
(NCT01496040) that targets transgene expression specifically
to the RPE. This may increase the specificity and efficacy of
the therapy.25 Importantly, successful LCA2 clinical trials
have encouraged broader application of gene therapy to IRDs
due to mutations in genes expressed in various retinal layers,
such as MERTK, expressed in the RPE and mutated in reti-
nitis pigmentosa type 38 (RP38; NCT01482195)26; ABCA4,
expressed in PR and whose deficiency leads to Stargardt
disease (STGD1; NCT01367444)27,28; MYO7A, expressed in
both RPE and PR and found mutated in individuals with
Usher syndrome type 1B (USH1B; NCT01505062)29; ND4,
expressed in retinal ganglion cells and mutated in Leber he-
reditary optic neuropathy (NCT01267422, NCT02064569)30,31;
and CHM1, expressed in multiple retinal cell types and mu-
tated in choroideremia (CHM, NCT01461213).32 The initial
results of the phase I/II CHM clinical trial have been recently
published and have confirmed that subretinal administration
of AAV2/2 is well tolerated in humans.32 In addition, recovery
of visual acuity and improvement in maximal retinal sensitivity
in treated eyes were observed despite retinal detachment.

Although preliminary data from these first clinical trials
are extremely promising and bode well for further devel-
opment of retinal gene therapy, some issues have been

raised. Subretinal administration of the vector-containing
solution which causes transient retinal detachment13,16,18 in
the LCA2 parafoveal region, in some cases has resulted in
permanent retinal damage.11,18 This raises concerns about
using this surgical procedure in retinal tissues diminished
by degenerative processes. In addition, in one trial, despite
observed visual improvement, the rate of progression of ret-
inal degeneration in the vector-treated retina was reported
to be similar to that in the contralateral untreated eye,33

raising concerns about the longevity of the effects. Finally,
unlike what was observed in LCA2 dogs,25,34–36 no improve-
ment in the full-field electroretinogram has thus far been re-
ported in LCA2 patients treated with AAV. Interspecies
differences in either levels of RPE65 expression or AAV ret-
inal transduction efficiency may explain this and suggest that
there is room for improvement in LCA2 retinal gene therapy.

Some of the challenges that the retinal gene therapy field
is facing after these trials are discussed below along with
strategies undertaken to overcome them.

Safe and Effective Delivery of Vectors to the Outer
Retina: Are We There Yet?

Subretinal injections, which release the vector into the
subretinal space (Fig. 1A), transduce PR and RPE, the two
cell types in which the majority of genes mutated in IRD are
expressed,37 most effectively thus far. However, subretinal
injections are technically challenging, and concerns about
their invasiveness, especially in patients with diseased reti-
nas, have been raised in some of the LCA2 clinical trials in
which foveal thinning, macular holes, choroidal effusions,
and ocular hypo- and hypertension have been reported.11,18

Indeed, the interaction between foveal PR and the under-
lying RPE in the primate retina is very strong; processes
emerging from the apical surface of the RPE form a mul-
tilaminar sheath that wraps around the outer segment tips.38

This may explain why foveal reattachment is more complex
than extrafoveal reattachment. In fact, subretinal injections
in extrafoveal regions exhibiting greater outer nuclear layer
thickness than the fovea are being considered in light of the

FIG. 1. Schematic repre-
sentation of intraocular in-
jection routes (A) and retinal
layers (B).

194 TRAPANI ET AL.



generation of new ‘‘pseudofoveas’’ resulting from vector
transduction15,32,39 (see below). Alternative, less invasive
administration, such as intravitreal injection (Fig. 1A),
would broadly distribute the vector throughout the retina
without causing risky retinal detachment. However, when
injected intravitreally, most viral vectors, including the ma-
jority of AAV serotypes, do not transduce the retina with the
exception of AAV2/2, and to some extent AAV2/6 and
AAV2/8, whose transduction is, however, mainly restricted
to retinal ganglion and Müller cells in the inner retina.6,40

The failure of vectors delivered intravitreally to transduce
PR and RPE in the outer retina appears to be caused by the
presence of physical barriers, such as the inner limiting
membrane, which is particularly thick in large animals, as
well as the relative abundance of AAV receptors that cap-
ture vectors after intravitreal administration.41 Indeed, if
retinal architecture is altered by a degenerative process42–44

or by enzymatic digestion,41 the diffusion of AAV viral
particles to the outer retina from the vitreous side increases.

Recent efforts have been focused on engineering the
AAV capsid to favor its diffusion from the vitreous side.
Quadruple and pentuple tyrosine mutant AAV2/2 vectors
provided the first proof of concept of the feasibility of outer
retina transduction from the vitreous in mice.45,46 More re-
cently, Dalkara and co-workers used an in vivo directed
evolution approach to select an AAV2/2 variant (7m8) that
was able to transduce mouse PR and RPE following in-
travitreal injection.47 However, intravitreal injection of both
tyrosine and 7m8 AAV2/2 mutants in larger animal models
failed to reproduce the outer retina transduction levels ob-
served in mice, presumably because of more pronounced
physical barriers in larger animals than in mice.47,48 Further
understanding of retinal barriers inhibiting transduction as
well as in vivo directed evolution performed directly in large
animals may lead in future to more efficient ways to target
the primate retina via diffusion from the vitreous. However,
until this is the case, subretinal delivery remains the most
efficient administration route to target RPE and PR.

Overcoming the Challenge of Delivering Large Genes
to the Retina

Despite the popularity gained by AAV vectors, one of the
main obstacles to their widespread application is their
packaging capacity of *5 kb, precluding them from being
used to treat IRDs like STGD and USH1B, which are caused
by mutations in genes whose coding sequence exceeds 5 kb.
Thus, several investigators are exploring alternative vectors
with larger cloning capacities than AAV, such as adenoviral
(Ad) and lentiviral (LV) vectors, as well as DNA nano-
particles (NP). Ad were the first viral vectors to be tested
successfully in the retina.49 However, Ad vectors efficiently
transduce the RPE but less robustly adult mouse PR.6,50,51

Similarly, LV vectors have been successfully used to trans-
duce PR in newborn rat and mouse retinas and thus, to ef-
fectively improve the phenotype of animal models of
IRDs.27,29,52–56 Although recent reports suggest that LV
vectors transduce adult nonhuman primate PR,28,29 RPE
transduction has been primarily observed in adult ani-
mals.51,52,57–60 The thicker and more developed physical
barriers, which are found in adult as opposed to newborn
mouse retina, have been hypothesized to limit adult PR

transduction by large particles such as Ad and LV.61–63 In-
deed, the efficiency of PR transduction in adult animals can
be improved by enzymatic disruption of the inter-PR matrix
or by advanced retinal degeneration.61–63 Despite the draw-
backs of LV for PR transduction, two recent phase I/II clin-
ical trials in STGD1 and USHIB patients (NCT01367444 and
NCT01505062, respectively) may provide alternative plat-
forms for gene therapy of IRDs caused by mutations in large
genes. Nonviral vectors with large cargo capacity, such as
polyethylene glycol-substituted 30-mer lysine peptides
(CK30-PEG)-compacted DNA NP, have been shown to
safely deliver genes, including those exceeding 5 kb in size,
to PR and RPE.64–67 Thus, compacted DNA NP are a po-
tentially viable option for delivery of large genes to PR.
However, limited experience with these vectors, along with
the need to clarify their transduction characteristics in large
animal models, including nonhuman primates, prompts fur-
ther testing before compacted DNA NP can be used to deliver
large genes to human PR.

As an alternative platform has yet to convincingly match
the PR transduction ability of AAV, considerable interest
has been directed toward expanding AAV cargo capacity.
Efforts at packaging large genes into single AAV particles
have resulted in the generation of oversized AAV vectors
that, although able to transduce large genes in PR,68,69

contain genomes highly heterogenous in size,70–74 poten-
tially posing a major safety concern for their further clinical
development. Alternatively, the inherent ability of AAV
genomes to concatemerize75 has been exploited to generate
dual AAV vectors, each containing one of two halves of a
large gene expression cassette. Different dual AAV strate-
gies (referred to as trans-splicing,76 overlapping,77 and hy-
brid dual-vector strategies78) have been used to efficiently
deliver large genes to various tissues, including the reti-
na.76,78–88 Various groups have independently reported that
dual AAV trans-splicing and hybrid vectors efficiently re-
constitute large genes in mouse81,82,89,90 and pig PR.82,83

Although the levels of PR transduction achieved with dual
AAV vectors are lower than those achieved with a single
AAV vector (*4% in mice and 40% in pigs82,83), subretinal
administration of dual AAV vectors has been shown to
significantly improve the phenotype of mouse models of
STGD1 and USH1B.81,82 Current efforts aim at improving
the levels of transgene expression from dual AAV while
reducing those of shorter proteins produced from either the
5¢ and 3¢ half vector of dual AAV.82,90 Considering the low
levels of PR transduction achieved by vectors with high
cargo capacity and the improved cargo capacity offered by
dual AAV vectors in the retina, they may be the preferred
platform for delivery of large genes to PR in IRDs.

Suppressing and Replacing Rhodopsin:
Easier Said than Done

One-third of IRD patients with a recognizable pattern of
inheritance are affected by dominant forms of the disease.2

Many cases are because of mutations resulting in toxic gain-
of-function effects.3 In these cases, reducing the toxic
product rather than adding a correct copy of the gene is
required to provide significant benefits. Given that more
than 150 different mutations associated with dominant ret-
initis pigmentosa have been described in the rhodopsin
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(RHO) gene alone, most of the gene therapy efforts to date
have been directed to silence RHO mutations. Allele-
specific catalytic RNAs, including ribozymes91,92 and short
hairpin RNA,93 have been explored with variable degrees of
efficacy. However, the most efficient silencing has been
obtained by targeting both the wild-type and mutant RHO
alleles.94–100 As doing so results in robust RHO suppression,
the simultaneous addition of a RHO copy resistant to si-
lencing is required as part of the so-called suppression and
replacement therapeutic approach to dominant IRD. Alter-
natively, zinc-finger transcriptional repressors have been
designed to silence RHO at the level of its locus,101 a
strategy that may theoretically overcome the challenge of
silencing this very abundant protein that accounts for
> 70% of the total rod PR outer segments protein con-
tent.102 New-generation customized DNA-binding mod-
ules, including TALE and CRISPR-inactive CAS9,103

provide new tools to design effective RHO transcriptional
repressors. While RHO expression has been successfully
suppressed to therapeutically relevant levels in animal
models by several groups,94,97,98,101 its replacement to
sufficient levels (at least 50% of endogenous) appears
challenging given RHO’s high expression levels in PR.
However, this is necessary to avoid converting an of-
ten mild dominant disease into a more severe recessive
condition.

The Importance of Selecting the Right Disease
and Patients

Optimal vectors and delivery routes do not guarantee the
success of gene therapy. As gene transfer efficacy relies on
viable target cells, identifying patients early enough in the
course of their condition is crucial to reap the benefits of
gene therapy. Conditions like LCA2, LCA1,104 or achro-
matopsia105 exhibit preserved retinal structure for decades
after the diagnosis despite severe visual impairment. These
forms could be considered as ideal candidates for gene
therapy, not only from a therapeutic perspective, but also
from a clinical development standpoint, as the rescue of the
functional component of the disease can be tested in a rea-
sonable time frame in the context of clinical trials. Instead,
many forms of retinitis pigmentosa show mild phenotypes
because of a slowly progressive retinal degeneration. While
from a therapeutic perspective these are also good targets for
gene therapy, given the wide window of time for therapeutic
intervention, clinical development of novel therapies for such
conditions appears challenging because preventing degener-
ation becomes the main endpoint of clinical trials; this re-
quires long-term observation and a detailed knowledge of the
natural history of the disease. For many conditions that ex-
hibit quick degeneration in combination with a functional
defect (i.e., STGD1 in which transport of retinal is im-
paired,106 or LCA4 in which key enzymes in the photo-
transduction cascade are destabilized107), early gene therapy
may be predicted to both prevent retinal degeneration and
restore visual function in transduced PR, which could be
addressed in a reasonable time frame in the context of clinical
trials. Incidental findings in LCA2 and CHM clinical trials
that perimacular areas transduced by viral vectors are con-
verted into functional ‘‘pseudofoveas’’15,32,39 are a promising
sign that gene therapy can be effectively applied to conditions

with advanced stage degeneration should areas with spared
PR still be available. In summary, timely intervention, which
requires early clinical and molecular diagnosis in combina-
tion with a well-characterized natural history of the disease,
will be required to maximize efficacy of gene therapy for
IRDs. Ultimately, retinal gene therapy is more likely to reach
the final stages of clinical development for those conditions
deriving from a functional defect that can be reverted by gene
delivery than for purely degenerative diseases in which effi-
cacy of gene delivery is predominantly determined by the
extent of prevention of further degeneration.

Future Considerations

Recent advancements in high-throughput genotyping
techniques for accurate noninvasive in vivo monitoring of
retinal and visual function and development of safer and more
efficient vectors for retinal gene therapy are factors improving
our ability to treat genetic blindness. With these approaches
we are able to (1) diagnose conditions with the highest genetic
heterogeneity in humans at the molecular level, (2) provide an
early and accurate picture of the retinal statuses of these
patients, which can be followed up over time, and (3) use
gene transfer tools with maximal therapeutic efficacy and
minimal local toxicity. The next challenge for the wide-
spread application of gene therapy to many IRD is one that
involves funding and infrastructure for clinical translation.
Research funding is always a challenge, especially for rare
diseases. While preclinical studies can generally be funded
through traditional avenues, clinical translation needs more
substantial investments for clinical-grade vector pro-
duction, nonclinical safety testing, regulatory filing, and
clinical studies. U.S. and E.U. funding agencies are in-
creasing available funding allocated to support the devel-
opment of new therapies for rare diseases. Growing
budgets are prompting the establishment of collaborations
between academic centers, where initial preclinical proof-
of-concept studies are performed, and industries, which
nurture clinical development by providing the appropriate
infrastructures that are required for market approval. On
the other hand, biotechs and pharmaceutical companies are
beginning to look at rare diseases and gene therapy with
more interest than ever before, as the latter has reached the
first clinical successes and market approval, and the for-
mer are ideal targets to test the safety and efficacy of novel
therapeutic platforms. Yet, to develop and test a gene-
based treatment for each and every one of the hundreds of
different genes involved in IRDs would not be feasible,
especially for those rarely mutated in patients. Standar-
dizing production and reagents for those vectors most
commonly used in clinical trials has been proposed as a
first step in improving the efficiency of translational re-
search.108 In parallel, data sharing (including cross-reference
of Investigational New Drug application/Investigational
Medicinal Product Dossier) from pharm/tox studies and
long-term follow-up in large animal models may promote
more efficient development of new approaches.108 In con-
clusion, translating retinal gene therapy from animal re-
search into clinical trials is still a lengthy process, but the
field is actively working on defining the missing points that
will allow translation of many promising approaches from
bench to bedside.
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