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Abstract

The prevalence of obesity has increased remarkably in the past four decades. Because obesity can 

promote the development of type 2 diabetes and cardiovascular disease, understanding the 

mechanisms that engender weight gain and discovering safe anti-obesity therapies are of critical 

importance. In particular, the gaseous signaling molecule, nitric oxide (NO), appears to be a 

central factor regulating adiposity and systemic metabolism. Obese and diabetic states are 

characterized by a deficit in bioavailable NO, with such decreases commonly attributed to 

downregulation of endothelial NO synthase (eNOS), loss of eNOS activity, or quenching of NO 

by its reaction with oxygen radicals. Gain-of-function studies, in which vascular-derived NO has 

been increased pharmacologically or genetically, reveal remarkable actions of NO on body 

composition and systemic metabolism. This review addresses the metabolic actions of eNOS and 

the potential therapeutic utility of harnessing its anti-obesogenic effects.
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Introduction

The rising prevalence of obesity is a principal health challenge in the United States and 

abroad. As of 2008, 10% of adults were obese, and approximately 1.5 billion were 

overweight (Ahima). In the United States, recent estimates indicate that greater than one-

third of adults and 17% of children are obese (Ogden, Carroll, Kit, & Flegal). This is 

associated with an increase in pre-diabetic states, with >30% of the US population meeting 

the criteria for pre-diabetes (Ervin; Roger et al.). Furthermore, obesity is associated with 

multiple other co-morbidities including cardiovascular disease and cancer (Calle, Thun, 

Petrelli, Rodriguez, & Heath, 1999). The current high prevalence of obesity has also equated 
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to a substantial economic burden of nearly $150 billion per year in health care costs 

(Zamosky).

While lifestyle changes and lack of exercise are undeniable risk factors for weight gain (Hu, 

Li, Colditz, Willett, & Manson; Robinson; Roger et al.; Smith et al.; Williamson et al.), an 

excess consumption of foods appears to be one of the key factors in the epidemic of obesity. 

In the US, the average human consumption of calories has increased by at least 200 kcal/d 

per person in the past three decades, and this is partly attributable to an increase in the intake 

of high-energy-density foods (Briefel & Johnson; Duffey & Popkin; Kant & Graubard; 

Nielsen & Popkin; Popkin et al.; Y. C. Wang, Bleich, & Gortmaker). Such dietary habits 

negatively affect a broad range of cardiovascular functions and promote the onset of T2D 

(Roger et al.).

Insulin resistance is a cardinal feature of T2D and has been identified in multiple 

prospective studies as the initial defect promoting development of disease (Reaven & Chen). 

It is typically defined as a decrease in sensitivity to the metabolic actions of insulin. Insulin 

maintains glucose homeostasis by promoting glucose uptake in skeletal muscle and by 

suppressing glucose production from the liver (Muniyappa, Montagnani, Koh, & Quon). 

Loss of insulin signaling therefore leads to hyperinsulinemia, hyperglycemia, and T2D. 

Hence, any treatment strategy to prevent diabetes must necessarily target insulin resistance.

Nitric oxide (NO) has emerged as a critical regulator of both adiposity and insulin 

sensitivity. In obese and diabetic states, the bioavailability of NO is decreased in both 

animal models (Bender, Herrick, Lott, & Klabunde, 2007; Kim et al., 2008) and adult and 

adolescent humans (Gruber et al., 2008; Higashi et al., 2001). Because the availability of NO 

is dependent upon its generation and degradation, lower levels observed in obese states may 

be due to downregulation of NOS, diminished NOS activity, or by reaction of NO with 

reactive oxygen species such as superoxide. In particular, eNOS abundance and activity is 

reported to decrease remarkably in obese and diabetic states and, as discussed below, is 

likely a central feature regulating body composition.

eNOS is important for regulating vascular and metabolic function

The nitric oxide synthase (NOS) family of enzymes catalyze NADPH- and O2-dependent 

oxidation of L-arginine to L-citrulline, producing NO in the process (Alderton, Cooper, & 

Knowles, 2001; Hill, Dranka, Bailey, Lancaster, & Darley-Usmar). NO synthesis depends 

also on the availability of several cofactors, including flavin adenine dinucleotide (FAD), 

flavin mononucleotide (FMN), tetrahydrobiopterin (BH4), as well as the prosthetic group, 

heme (H. Li & Poulos, 2005). Endothelial NOS (eNOS), the primary subject of this review, 

is expressed in the vascular endothelium, but has also been identified in neurons, epithelial 

cells, and cardiomyocytes (Dudzinski & Michel, 2007). Its activity is controlled by Ca2+ and 

calmodulin, post-translational modifications (Oess, Icking, Fulton, Govers, & Muller-Esterl, 

2006; Sessa, 2004), and shear stress (Balligand, Feron, & Dessy, 2009; Kone, Kuncewicz, 

Zhang, & Yu, 2003). Other isoforms of NOS, i.e., neuronal NOS (nNOS) and inducible 

NOS (iNOS), are commonly expressed in different tissues and cells, and, in general produce 

higher quantities of NO (Hill et al.).
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While NO is well known to have diverse biological actions (including regulation of learning 

and memory, platelet aggregation, leukocyte-endothelial interactions, immune function, and 

angiogenesis/arteriogenesis (Forstermann & Sessa)), it is most renowned for its vascular 

actions. The discovery that endothelial cells control acetylcholine-induced relaxation of 

smooth muscle (Furchgott & Zawadzki) was one of several impetuses responsible for the 

designation of NO as endothelial-derived relaxing factor (EDRF). Following Furchgott's 

findings, a series of studies showed that NO synthesized by eNOS in endothelial cells 

diffuses into the tunica media where it activates soluble guanylate cyclase (sGC), generating 

cyclic GMP (cGMP) and eliciting vessel relaxation (Forstermann, Mulsch, Bohme, & 

Busse; Gryglewski, Moncada, & Palmer; Moncada, Palmer, & Gryglewski; Palmer, Ferrige, 

& Moncada; Rajfer, Aronson, Bush, Dorey, & Ignarro; Rapoport, Draznin, & Murad; 

Rapoport & Murad).

Although NO's most-celebrated role is a result of its reaction with the metalloprotein sGC, 

NO and its oxidation species have the ability to react with other biomolecules as well. NO 

primarily reacts with ferrous iron and other radical species, with the highest affinity 

interactions being with the iron-containing proteins sGC, cytochrome c oxidase, and 

hemoglobin. The presence of other radical species such as superoxide (O2
−) (Beckman, 

2009; Pacher, Beckman, & Liaudet, 2007; Szabo, Ischiropoulos, & Radi, 2007; Trujillo, 

Ferrer-Sueta, & Radi, 2008) can result in the formation of products such as peroxynitrite 

(Beckman, 2009; Pacher et al., 2007; Szabo et al., 2007), which has different biomolecular 

targets and causes nitration of tyrosine residues (Hill et al.). NO can react also with O2 to 

form oxidized species such as N2O3, which can S-nitrosate or promote the S-oxidization of 

protein side chains (Hill & Bhatnagar; West, Hill, Xuan, & Bhatnagar). Also, NO reacts 

with thiyl radicals to form S-nitrosated proteins. Cysteinyl thiols of glutathione and proteins 

are commonly targets of NO and its oxidized species and become not only S-nitrosated or S-

oxidized (SO2/3), but S-glutathiolated as well (Hill & Bhatnagar; West et al.). These 

modifications frequently modulate enzyme activity (Hill & Bhatnagar).

In addition to its vasodilatory actions, NO modulates oxygen delivery to cells and tissues by 

regulating oxygen binding and release from hemoglobin. It regulates oxygen consumption as 

well by binding and inhibiting cytochrome c oxidase, with such binding dependent on both 

mitochondrial activity and the O2 level (Cooper & Giulivi, 2007; Shiva et al., 2005). Hence, 

it can extend O2 gradients in tissues by regulating hemoglobin action and by inhibiting O2 

consumption in mitochondria (Thomas, Liu, Kantrow, & Lancaster, 2001). Exposure of cells 

to relatively high concentrations of NO promotes mitochondrial biogenesis (Kelly & 

Scarpulla, 2004; Nisoli et al., 2003; Nisoli et al., 2004), thereby increasing overall 

respiratory capacity.

NO bioavailability is decreased in obese and diabetic states

Several studies link a decrease in eNOS-derived NO to diabetes. A T(-786)C variant of the 

eNOS gene is associated with insulin resistance (Ohtoshi et al.; Vecoli et al.; Yoshimura et 

al.), along with several other genetic variants in the eNOS locus, which are associated with 

T2D (Monti et al.). eNOS variants also appear to increase susceptibility for insulin 
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resistance, hypertriglyceridemia, and low HDL (Gonzalez-Sanchez et al.), and worsen 

endothelial function in individuals prone to T2D (Rittig et al.).

Beyond eNOS polymorphisms, a primary mechanism by which NO is decreased in obesity 

is through diminished expression of eNOS. A decrease in eNOS abundance occurs in both 

adipose tissue and skeletal muscle of obese humans and rodents (Georgescu et al.; Kraus et 

al.; Perez-Matute, Neville, Tan, Frayn, & Karpe; Brian E. Sansbury et al.; Valerio et al.). In 

particular, it appears that the cytokine tumor necrosis factor-α (TNFα), which is implicated 

in the initiation of insulin resistance (Hotamisligil, Shargill, & Spiegelman), downregulates 

eNOS abundance (Anderson, Rahmutula, & Gardner; Lai, Mohamed, Monge, & Stewart; T. 

Michel & Lamas; Neumann, Gertzberg, & Johnson; Valerio et al.) by decreasing the 

stability of eNOS mRNA (Alonso, Sanchez de Miguel, Monton, Casado, & Lopez-Farre; 

Sanchez de Miguel et al.), thereby shortening its half-life (Yoshizumi, Perrella, Burnett, & 

Lee, 1993). Destabilization of Enos may be due, at least in part, to upregulation of 

elongation factor 1-α1 (Yan, You, Chen, Liao, & Sun).

The NO-producing activity of eNOS is also diminished in metabolic disease. Conditions 

related with nutrient excess were shown to upregulate caveolin-1, a negative regulator of 

eNOS (Ju, Zou, Venema, & Venema; J. B. Michel, Feron, Sacks, & Michel), in the aorta of 

obese rats (Yang et al.). Furthermore, ceramide,(which increases in abundance in obese 

states (Bikman & Summers)) decreases eNOS activity by disrupting the eNOS-Akt complex 

from HSP90 (Q. J. Zhang et al.).

Critical changes in eNOS phosphorylation occur in obesity as well. The eNOS enzyme can 

be phosphorylated at several sites, including: tyrosine (Y) resides—Y81 and Y567; serine 

(S) residues—S114, S615, S633, and S1177; and threonine (T) residues—T495 [for review, 

see (Kolluru, Siamwala, & Chatterjee; Rafikov et al.)]. In particular, the eNOS 

phosphorylation site—serine 1177 (Ser1176 in mice), the phosphorylation of which 

increases NO output from the enzyme (McCabe, Fulton, Roman, & Sessa)—is diminished 

by nutrient excess (Elrod et al.; Q. Li et al.; Taguchi, Kobayashi, Matsumoto, & Kamata; 

Zhong et al.) or high fat feeding (Kim et al.; Kim et al.; Brian E. Sansbury et al.; Symons et 

al.) in mice, and is similarly decreased in obese rats (Naruse et al.; Park et al.; Zecchin et al.) 

and pigs (Low Wang et al.). This eNOS phosphorylation site is regulated by Akt (Dimmeler 

et al.), which is stimulated by insulin (Hermann, Assmus, Urbich, Zeiher, & Dimmeler). 

Insulin receptor signaling stimulates the Akt-eNOS pathway, which is known to regulate 

post-prandial blood flow and nutrient disposition to peripheral tissues. Consequently, 

endothelial insulin resistance is sufficient to decrease NO bioavailability and promote 

endothelial dysfunction (Duncan et al.), and diminished eNOS phosphorylation due to 

insulin resistance appears to be responsible for diminished glucose uptake in skeletal muscle 

of high fat-fed mice (Kubota et al.).

Loss of eNOS phosphorylation under conditions of nutrient excess may be due to several 

factors, one of which is fatty acids, which can promote insulin resistance (Kim et al., 2008). 

Elevated free fatty acids (FFAs; e.g., palmitic acid) decrease NO production or availability 

in humans (Steinberg et al., 2000; Steinberg et al., 1997), animal models (X. Du et al., 

2006), isolated arteries, and cultured cells (Kim et al., 2005) (Edirisinghe, McCormick 
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Hallam, & Kappagoda, 2006). Insulin resistance due to FFAs is likely caused, at least in 

part, by activation of Toll-like receptor 2 (TLR2) (Jang, Kim, Hwang, Quon, & Kim) or 

Toll-like receptor 4 (TLR4) and NF-κB (Kim et al.; Kim et al.). In addition, hyperglycemia 

was suggested increase O-linked N-acetylglucosamine (OGlcNAc) modification of eNOS, 

which diminishes its activity (X. L. Du et al.). A PKCβII-mediated diminishment in Akt and 

eNOS responsiveness to insulin has also been reported (Naruse et al.; Park et al.), and an 

apparently Akt-independent impairment of eNOS phosphorylation may occur (Symons et 

al.). It is unclear whether or how each of these signaling pathways integrates to modulate 

NO production in obese and diabetic states.

eNOS activity and NO generation are dependent on proper enzyme coupling, which is 

regulated by cofactors, dimerization (Rodriguez-Crespo, Gerber, & Ortiz de Montellano; 

Rodriguez-Crespo & Ortiz de Montellano), and post-translational modifications (Alp & 

Channon; Forstermann & Sessa; H. Li & Forstermann; Zweier, Chen, & Druhan). The 

cofactor BH4 is critical for optimal eNOS activity, and it is depleted by excessive levels of 

reactive oxygen or nitrogen species (Channon). Obese and diabetic states are associated with 

decreased BH4 and increased levels of its oxidized form, BH2 (Cai, Khoo, & Channon; 

Chander et al.; Ding & Triggle; Pannirselvam, Verma, Anderson, & Triggle; Shinozaki et 

al.). This is important because deficiency in BH4 or elevations in BH2 uncouple NOS, 

resulting in superoxide production and peroxynitrite generation (Alp & Channon). Indeed, 

decreases in the BH4 to BH2 ratio are responsible for glucose-induced eNOS uncoupling 

(Crabtree, Smith, Lam, Goligorsky, & Gross) and replenishment of BH4 pools is an 

effective treatment in multiple pathologies (e.g., (Alp & Channon; Crabtree & Channon; 

Forstermann & Li; Kietadisorn, Juni, & Moens; H. Li & Forstermann)).

Commonly, 3-nitrotyrosine (3-NT) modifications are found at sites of eNOS uncoupling, 

and 3-NT-modified proteins are observed in abundance in tissues from obese and diabetic 

animals (Brodsky et al.; Chander et al.; Molnar et al.; Brian E. Sansbury et al.). In line with 

a potential role of peroxynitrite in regulating eNOS function, diabetic patients showed 

elevated levels 3-NT protein adducts, which localized with caveolae; these patients 

demonstrated diminished flow-mediated dilation of coronary arterioles (Cassuto et al.), 

which was rescued by the BH4 supplement, sepiapterin (Cassuto et al.). Numerous 

additional studies also demonstrate a role for reactive species such as peroxynitrite and 

superoxide to promote eNOS uncoupling (Bitar et al.; Dikalova et al.; Landmesser et al.; 

Satoh et al.; Xu, Xie, Reece, Pimental, & Zou). Nonetheless, the contribution of damaging 

reactive species to endothelial function remains unclear, as other studies suggest that, rather 

than uncoupling eNOS, superoxide activates the enzyme (Q. Zhang et al.), leaving open the 

possibility that loss of NO bioavailability could be due to quenching of NO and not to 

uncoupling of the enzyme. However, multiple other factors, such as asymmetric dimethyl 

arginine (ADMA), insufficient L-arginine levels or glutathio(ny)lation of the eNOS enzyme, 

can promote eNOS uncoupling and endothelial dysfunction also (Chen et al.; Forstermann & 

Sessa; Lei, Luo, Qin, & Xia; Risbano & Gladwin; Toutouzas, Riga, Stefanadi, & 

Stefanadis), suggesting the uncoupling of the enzyme is a contributor to decreases in NO 

production.

Sansbury and Hill Page 5

Vitam Horm. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



So, does obesity itself decrease NO availability? Obesity in humans is associated with 

decreased blood flow in response to shear stress (Arcaro et al.), bradykinin (Laine et al.; Van 

Guilder, Stauffer, Greiner, & Desouza), methacholine (Steinberg et al.), substance P and 

acetylcholine (Van Guilder et al.), and insulin (Tack, Ong, Lutterman, & Smits; 

Westerbacka et al.), which would appear to suggest that obesity is causally linked with 

decreased vascular NO bioavailability. Other studies support this hypothesis as well 

(Andersson et al.; Bhattacharjee, Alotaibi, Kheirandish-Gozal, Capdevila, & Gozal; 

Bhattacharjee et al.; Georgescu et al.; Grassi et al.; Gupta et al.; Han, Patel, Lteif, Chisholm, 

& Mather; Lambert et al.; Mahmud, Hill, Cuerden, & Clarson; Miadi-Messaoud et al.; 

Parikh et al.; Sturm et al.; Weil et al.). Nevertheless, the question remains: Does increased 

adiposity somehow decrease eNOS-derived NO and availability, or are losses in vascular 

NO due only to conditions associated with obesity? Several studies suggest that the state of 

being corpulent is not causative in decreasing vascular NO bioavailability. For example, 

morbidly obese humans appear to have endothelial dysfunction only when insulin resistance 

is present (El Assar et al.), and, severely obese humans, in the absence of insulin resistance, 

have better flow-mediated dilation compared with both normal and obese insulin-sensitive 

subjects (Biasucci et al.). Moreover, in overweight (insulin-sensitive) individuals, capillary 

recruitment may actually be higher compared with lean controls (Czernichow et al.). Hence, 

it appears that either insulin resistance or conditions directly linked with the insulin resistant 

phenotype are to blame for loss of NO bioavailability in obesity.

Regulation of obesity and insulin resistance by eNOS

Does eNOS-derived NO affect insulin resistance and obesity? This question has been 

addressed by multiple pharmacological studies and genetic studies, which, collectively, have 

helped clarify critical roles for eNOS-derived NO in regulating obesity and insulin 

resistance. Human studies show that L-arginine supplementation has favorable effects on 

adiposity and insulin sensitivity (Alizadeh et al.; Bogdanski et al.; Bogdanski et al.; Lucotti 

et al.; Monti et al.; Suliburska, Bogdanski, Szulinska, Pupek-Musialik, & Jablecka; Wascher 

et al.). Results from animal studies also show that L-arginine decreases fat mass, increases 

muscle mass, and improves insulin sensitivity (Clemmensen, Madsen, Smajilovic, Holst, & 

Brauner-Osborne). Dietary L-arginine supplementation in rats increases brown fat and 

skeletal muscle mass and reduces serum concentrations of triglycerides, glucose, 

homocysteine, free fatty acids, dimethylarginines, and leptin (Fu et al.; Jobgen et al.). L-

arginine has a similar effect on pigs (Tan et al.).

Interestingly, sildenafil—which prevents the degradation of cGMP and is used to treat 

erectile dysfunction in humans—increases insulin sensitivity and prevents obesity in high 

fat-fed mice (Ayala et al.), potentially by promoting “browning” of white adipose tissue 

(Mitschke et al.). Sildenafil increases mitochondrial biogenesis in human adipose tissue ex 

vivo as well (De Toni et al.). Other compounds that activate the NO pathway also support a 

role for NO in improving insulin sensitivity. Beraprost (a stable prostaglandin analog), when 

given to endothelial-specific insulin receptor substrate 2 (Irs2) knockout mice, restored 

eNOS phosphorylation, capillary recruitment, and insulin and glucose delivery to skeletal 

muscle (Kubota et al.). Additionally, S-nitrosation in response to L-arginine, insulin, or 

sodium nitroprusside was shown to be important for regulating vascular endothelial insulin 
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uptake and transendothelial transport (H. Wang, Wang, Aylor, & Barrett). Thus, it appears 

that NO may regulate obesity and insulin resistance by both cGMP-dependent and –

independent pathways.

Although chronic treatment with NOS inhibitors causes weight loss and promotes insulin 

sensitivity in animals (Morley & Flood; Stricker-Krongrad, Beck, & Burlet; Tsuchiya et al.), 

their acute application causes systemic insulin resistance (Baron et al.), in part by promoting 

metabolic changes in the liver (Meshkani & Adeli). Furthermore, BH4, which is oxidized to 

BH2 in the diabetic state (Meininger et al.; Meininger et al.; Xu et al.), administered to STZ-

treated mice lowered blood glucose levels in an eNOS-dependent manner. Increasing BH4 

was shown to also improve glucose tolerance and insulin sensitivity in ob/ob mice 

(Abudukadier et al.). This was suggested to be due to eNOS-mediated activation of AMPK 

in the liver (Abudukadier et al.), which suppresses hepatic glucose production (Viollet et 

al.). Therefore, eNOS uncoupling in liver appears to negatively regulate systemic glucose 

metabolism in obese, diabetic states.

Genetic models in which eNOS has been deleted or overexpressed have helped to further 

elucidate the mechanisms by which NO regulates obesity and insulin resistance. Deletion of 

eNOS causes insulin resistance, hyperlipidemia, and hypertension (Duplain et al., 2001), and 

partial deletion of the gene can exaggerate insulin resistance, glucose intolerance, and 

hypertension under conditions of nutrient excess (Cook et al.; Cook et al.). Mice in which 

both eNOS and nNOS are absent show similar results, with deletion of eNOS appearing 

responsible for insulin resistance in both skeletal muscle and liver (Shankar, Wu, Shen, Zhu, 

& Baron). Similarly, mice lacking eNOS, nNOS, and iNOS (i.e., triple knockout mice), 

show increased visceral obesity, hypertension, hypertriglyceridemia, and impaired glucose 

tolerance (Nakata et al.).

The metabolic phenotype caused by eNOS deletion or otherwise low endothelial derived NO 

appears to relate directly to changes in substrate metabolism in liver, skeletal muscle and 

adipose tissue. In skeletal muscle, eNOS KO mice have lower mitochondrial content and 

fatty acid oxidation than WT mice, and they demonstrate markedly lower energy 

expenditure (Le Gouill et al., 2007). Supplementation of eNOS KO mice with nitrate, which 

can be reduced to nitrite and NO in the body, decreased not only blood pressure, but visceral 

adipose tissue and triglycerides as well (Carlstrom et al.).

Our studies in mice overexpressing eNOS suggest a remarkable ability of eNOS to regulate 

metabolism and body composition. Mice overexpressing eNOS in the vasculature show an 

anti-obesogenic phenotype characterized by resistance to accumulation of white adipose 

tissue in response to a high fat diet, a higher metabolic rate, resistance to diet-induced 

hyperinsulinemia, and remarkably lower plasma levels of free fatty acids and triglycerides 

(B. E. Sansbury et al., 2012). As shown in Figure 1, overexpression of eNOS resulted in 

decreased weight gain on a high fat diet, which was due to diminished expansion of the 

adipose tissue.

An eNOS phosphomimetic point mutant mouse model (Atochin & Huang; Kashiwagi et al.) 

showed a very similar phenotype: mutation of eNOS ser1176 to an aspartic acid increased 
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endothelial NO production as well as promoted resistance to diet-induced weight gain and 

hyperinsulinemia, whereas mutation of this residue to an alanine promoted insulin resistance 

and permitted the development of an obese state (Huang; Kashiwagi et al.).

That eNOS KO mice have elevated plasma levels of triglycerides and free fatty acids 

compared with WT mice (Cook et al.; Duplain et al.), while eNOS transgenic mice show 

diminished abundance of the lipids (Brian E. Sansbury et al.) suggests that eNOS regulates 

lipid oxidation or synthesis. Indeed, eNOS KO mice show diminished fat oxidation capacity 

in skeletal muscle (Le Gouill et al.). Furthermore, administration of a NOS inhibitor to rats 

increases serum triglycerides and diminishes fatty acid oxidation in the liver (Khedara, 

Kawai, Kayashita, & Kato), potentially by decreasing carnitine palmitoyl transferase activity 

(Khedara, Goto, Morishima, Kayashita, & Kato). NOS inhibitor-dependent decreases in 

fatty acid oxidation occur in heart as well (Recchia et al.). In hepatocytes, NO donors 

increase β-oxidation in a cGMP-dependent manner by inhibiting acetyl CoA carboxylase, 

thereby stimulating the activity of carnitine palmitoyl transferase (Garcia-Villafranca, 

Guillen, & Castro). NO also diminishes fatty acid synthesis in hepatocytes (Garcia-

Villafranca et al.), which is consistent with studies showing that inhibitors of NOS (Goto et 

al.) or deletion of eNOS increases lipid synthesis in liver (Schild et al.). Similarly, in skeletal 

muscle, loss of eNOS increases neolipogenic gene expression while decreasing those genes 

that promote fatty acid oxidation (Le Gouill et al.). These data suggest that eNOS may 

regulate peroxisome proliferator activated receptor (PPAR)-α, which is well known to 

regulate lipid metabolism (Lefebvre, Chinetti, Fruchart, & Staels). Indeed, our studies show 

that overexpression of eNOS increases PPARα expression in adipose tissue (Brian E. 

Sansbury et al.), suggesting that endothelial-derived NO increases the molecular machinery 

required to program cells to burn fat. However, it is possible that NO primes fat oxidation in 

other ways as well. For example, recent studies demonstrate S-nitrosation of multiple 

enzymes involved in metabolism. In particular, very long chain acyl-coA dehydrogenase 

(VLCAD), a liver enzyme important in β-oxidation, was shown to be nitrosated at Cys238, 

which increases the catalytic efficiency of the enzyme. This modification was dependent on 

eNOS activity, as nitrosation of the enzyme was absent in eNOS KO mice (Gould, Doulias, 

Tenopoulou, Raju, & Ischiropoulos). Lastly, it is possible that NO-induced increases in 

mitochondrial mass (Nisoli et al.; Nisoli et al.; Piantadosi & Suliman) could be sufficient to 

increase metabolic rate and prevent obesity. This would be consistent with studies showing 

that cGMP-dependent increases in mitochondrial biogenesis prevent obesity (Miyashita et 

al.) as well as several other studies demonstrating a link between augmented mitochondrial 

mass and resistance to diet-induced weight gain [e.g., (Fang et al.; Hwang et al.; Yadav et 

al.; Yamamoto et al.)].

Synopsis

Collectively, these studies suggest that eNOS-derived NO has powerful anti-obesity and 

insulin-sensitizing effects. It is likely that the enzyme increases fat oxidation and lipid 

synthesis in tissues such as liver, skeletal muscle, and fat. The relatively low levels of 

adiposity and plasma free fatty acids and triglycerides in models in which eNOS is 

overexpressed or permanently activated is consistent with this mechanism (Kashiwagi et al.; 

Brian E. Sansbury et al.). The favorable effects of eNOS on glucose metabolism and insulin 
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sensitivity appear to be due to its ability to stimulate the transport of insulin and glucose to 

key peripheral tissues such as skeletal muscle and to regulate gluconeogenesis. In addition, 

eNOS overexpression or activation prevents diet-induced hyperinsulinemia (Kashiwagi et 

al.; Brian E. Sansbury et al.) suggesting that it could impact glucose metabolism by 

regulating insulin secretion. Exploiting the beneficial metabolic actions of eNOS is a 

promising prospect for anti-obesity therapies.
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Figure 1. Overexpression of eNOS prevents obesity
(A) Immunoblot analysis: eNOS expression in aorta, skeletal muscle, and adipose tissue of 

wild-type (WT) and eNOS transgenic (eNOS-TG) mice. (B) Change in body weight during 

high fat feeding: mice were fed a high fat diet (HFD) for up to 12 weeks, and the change in 

body weight was measured. (C) Representative Dexascan images of WT and eNOS-TG 

mice fed a low fat diet (LFD) or HFD for 6 weeks. (D and E) Dexascan analysis of body fat 

and lean mass percentage. Figure adapted with permission from (Brian E. Sansbury et al.).
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