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Social status has been associated with health consequences, although

the mechanisms by which status affects health are relatively unknown.

At the physiological level, many studies have investigated the potential

relationship between social behaviour/rank and physiological stress, with a

particular focus on glucocorticoid (GC) production. GCs are of interest because

of their experimentally established influence on health-related processes such

as metabolism and immune function. Studies in a variety of species, in both nat-

uralistic and laboratory settings, have led to complex outcomes. This paper

reviews findings from primates and rodents and proposes a psychologically

and physiologically relevant framework in which to study the relationship

between social status and GC function. We (i) compare status-specific GC

production between male and female primates, (ii) review the functional sig-

nificance of different temporal patterns of GC production, (iii) propose ways

to assess these temporal dynamics, and (iv) present novel hypotheses about

the relationship between social status and GC temporal dynamics, and poten-

tial fitness and health implications. To understand whether GC production

mediates social status-related fitness disparities, we must consider social

contest conditions and the temporal dynamics of GC production. This frame-

work will provide greater insights into the relationship between social status,

physiological stress and health.
1. Introduction
Individuals living in groups often develop social hierarchies [1,2]. The associ-

ations between social status and developmental, physiological, behavioural

and health processes have been documented in a variety of species and settings

(e.g. [3–8]). However, the proximate mechanisms by which social status has

any causal influence on development, physiology, behaviour and/or health

are not clear. In this paper, we examine the relationship between social status

and one aspect of physiological stress, production of glucocorticoid (GC) hor-

mones, which can have a significant influence on health, ageing, behaviour

and development. We focus this review on free-ranging primates because of

the abundance of studies on social status and GC production in this taxon.

Studies that have investigated the relationship between social status and

health and/or stress physiology have led to complex findings. We show that

these findings can be clarified by comparing primate male- and female-typical

social competition and by adopting a nuanced understanding of hypothala-

mic–pituitary–adrenal (HPA) axis regulation and the functional significance

of GC production temporal dynamics. To provide insights into the functional

significance of GC temporal dynamics, we examine results from studies with

laboratory rodents and humans. By understanding GC temporal patterns in

high- and low-ranking individuals, we will achieve a better understanding of

how GC production may mediate the relationship between social status and

long-term health outcomes.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0103&domain=pdf&date_stamp=2015-04-13
mailto:sac34@psu.edu
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Figure 1. Stylized examples of two different circulating GC temporal profiles
that would produce similar mean GC levels.
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In this review, we investigate the relationship between

social status and GC production by considering two important

functional observations: (i) the sexes often differ in hierarchy

formation processes [9] and (ii) long- versus short-term

elevations in GC production have different influences on physi-

ology and health [10,11]. We review these two phenomena, and

then provide specific predictions of how social status in dif-

ferent societies could differentially relate to GC temporal

dynamics to provide insights into proximate costs and benefits

of maintaining specific social rank in different social systems.

Males and females regularly form dominance hierarchies

across a variety of primate species. However, the social behav-

iour and associated costs involved in acquiring and maintaining

rank can differ between sexes. Males typically engage in more

intense and frequent aggressive interactions than females,

whereas females tend to engage in more complex affiliative

interactions [12–14], with some exceptions [9]. Male rank is

often achieved by violent turnovers of an existing hierarchy

and competition is over access to mates, whereas female rank

is typically determined by more subtle aggressive and affiliative

interactions and competition is often over access to quality food

resources ([12–15], cf. [9]). In addition, the immediate costs of

aggressive interactions are usually greater for males than

females (e.g. wounding) [16,17] given increased male weaponry

(teeth, claws, body size) [18–20].

Given broad differences in social and reproductive strat-

egies between males and females, the challenges involved in

attaining and maintaining social status differ between sexes.

In a ‘typical’ species, in which males are large with significant

weaponry, male dominance requires good physical condition

and can be dangerous and costly to acquire during discrete

periods. In a similar species where females use coalitionary

and affiliative strategies, dominance may be less energetically

costly and subordinate exclusion from quality resources may

be more costly over longer periods. These two methods of

attaining and maintaining dominance should lead to different

GC production dynamics: acute elevations in typical dominant

males versus chronic elevations in typical subordinate females.

In addition to considering broad differences in male

versus female sociality, we consider temporal dynamics and

costs/benefits of elevated GC production. GC production is

a dynamic process that involves complex feedforward and

feedback regulatory processes [10]. This complex regulation

allows for a range of GC production temporal patterns,

with differences in peak and trough amplitudes, rates of

recovery to basal production and frequency of elevated pro-

duction (figure 1). In laboratory studies, these differences in

temporal dynamics have been associated with differences in

behaviour, environment, age and genetics (reviewed below)

[21–28].

Differences in GC temporal dynamics are particularly

important because they may confer different health conse-

quences. Short- versus long-term elevations in circulating GC

levels may have seemingly opposite influences on metabolic,

cardiovascular and immune processes. For example, short-

term elevations in circulating GC levels can increase certain

aspects of cellular immunity, have a negligible influence on

cardiovascular function and lead to temporary weight loss;

whereas long-term elevations can cause decreased cellular

immune responses, increased arterial blood pressure and

heart rate and increased weight gain [29–32]. These bidirec-

tional influences of GC production are important to consider

in terms of fitness consequences. If GC production mediates
differential health outcomes among social ranks, then it is

important to study status-specific GC production temporal

patterns. To predict fitness-related outcomes, we need infor-

mation on timing and duration of elevated and dampened

GC production.
2. Sex differences in social status and
glucocorticoid production

A decade ago, several reviews were published on social status

and GC production [33–36]. These concluded that GCs are

elevated in group-living individuals that have heightened

metabolic demands, and that these demands are greatest

during periods of social instability. The ‘stress of subordina-

tion’ and ‘stress of dominance’ hypotheses were coined,

based on the realization that both high- and low-rank are

associated with specific challenges [33–35,37]. Importantly,

challenges associated with subordination and dominance can

trigger increased GC production that fuels specific behavioural

and physiological responses. These reviews, and the refine-

ment of non-invasive faecal steroid methods, stimulated

further investigation of social status and GC production in a

variety of free-ranging species, particularly primates.

Primates are a useful biological system in which to investi-

gate these questions because many species maintain relatively

large and complex social groups, where quantification of social

interactions is relatively easy. We focus on studies of free-ran-

ging primates, which provide a good basis to assess the

relationship between physiological stress and social status

and the selection pressures associated with systematic covaria-

tion of social behaviour and physiology. We compare results

according to the sex of study subjects and methods of rank

attainment/maintenance (whether rank is inherited or not).

Given prior results ([36,38,39], cf. [40]), we focus on studies

conducted during social instability when rank acquisition or

maintenance is presumably most costly (for both subordinate

and dominant individuals; table 1).

The majority of primate studies indicate that dominant

males produce levels of GCs that are more than or equal to

subordinate males, whereas only one study has found that

subordinate males excrete more GCs than dominant males

(table 1—see ‘MALES—not inherited’) [40,48,56–70]. The

opposite pattern emerges for females, where subordinate

females often have greater GC production than dominant

individuals, particularly when rank is not inherited
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(table 1—see ‘FEMALES—inherited’ and ‘FEMALES—not

inherited’) ([24,35,41–52), cf. [53,54,55]). Given the role of

GCs in metabolism, these findings support the hypothesis

that male attainment and maintenance of high rank are

associated with increased metabolic costs relative to subordi-

nates, but that subordinate status in females is associated

with greater metabolic costs relative to dominants.

Exceptions to these sex-specific patterns of GC production

occur in male Assamese macaques (Macaca assamensis) where

dominant males have lower mean GC levels than subordinates

[64], and in female ring-tailed lemurs (Lemur catta) where high-

ranking females have greater mean GC levels than subordinates

[53,55]. In both cases, the social structure does not follow ‘sex-

typical’ patterns described above. Male Assamese macaques

attain high rank through male–male coalitionary support

and high rank does not necessarily confer exclusive access to

reproductive females [64,71]. Female ring-tailed lemurs are

dominant to males, they have significant weaponry, and they

are relatively aggressive within and between social groups

[72,73]. These two exceptions may prove the rule that high

rates of within-sex aggression for high-rank attainment predict

short-term costs and GC elevations in dominant individuals,

whereas in social systems with low rates of within-sex aggres-

sion, subordinate exclusion from key resources predicts longer

term costs and GC elevations in subordinates.

The above summary supports the hypothesis that during

periods of social instability, dominant male primates produce

more GCs than subordinate males, and that the reverse is true

for females. However, there are a several caveats: (i) plenty of

studies indicate no relationship between GC production and

dominance status, (ii) several studies indicate a nonlinear

relationship between dominance rank and GC production and

(iii) current studies tell us little about GC production dynamics

(e.g. peak versus trough, basal versus reactivity levels) as they

relate to dominance rank. In the following section, we expand

on the functional significance of basal and reactive HPA activity

and delve into the hypothesis that dominance status may be

more closely related to the temporal dynamics of GC production

than to mean production over time (as assessed by non-invasive

urine and faecal sampling methods).
3. Temporal dynamics of glucocorticoid
production

(a) Basic neuroendocrine-stress physiology
GCs are produced by the adrenal cortex and released into

peripheral circulation in response to endocrine signalling

from the anterior pituitary (adrenocorticotrophin, ACTH),

mediated by hypothalamic corticotropin-releasing hormone

(CRH). Stimulation of this HPA axis occurs in response to

external stimulation, physical exertion, cognitive/emotional

processes and circadian rhythms. Once in circulation, GCs

alter the function of multiple organs simultaneously and in

a sustained manner by binding receptors in brain, peripheral

organs and immune cells [11,74–77]. Bound intracellular

receptors stimulate slow, long-term alterations in cell function

through transcriptional and epigenetic processes [78–81],

and GC binding to putative membrane receptors also influ-

ences HPA axis sensitivity through non-genomic signalling

[82,83]. A fine-tuned balance of receptor expression in the

central nervous system moderates HPA axis responses to
stress and stress coping strategies [84,85]. Based on these

complex and long-lasting organism-level changes, the endo-

crine system may be particularly well-suited to support

subtle and sustained responses to social status-related

challenges and subsequent health-related outcomes.

Intermediate signalling hormones in the HPA axis have

significant effects on cellular function; CRH and ACTH

directly alter brain and peripheral cell function in ways that

could affect health beyond the influence of GCs (e.g. [86]);

these influences are discussed in depth elsewhere [87–93].

Sympathetic activation is also closely related to social behav-

iour, status and health consequences [94,95], but fewer social

behaviour studies have focused on this metabolically relevant

system, particularly in free-ranging animals.
(b) Cues that alter glucocorticoid production
Based on laboratory studies with rodents, diverse physical

and social stimuli cause significant short-term elevations

in circulating GC levels [28]. In these controlled situations,

standardized social stressors cause twice as much GC pro-

duction as physical stressors. In free-ranging animals (reptiles,

amphibians, birds and mammals), rapid elevations in GC

production have been documented following capture, severe

weather conditions and aggressive male immigration, and

long-lasting GC alterations have been documented during

periods of low food supply and across seasons [58,96–100].

The time course of GC responses to environmental and

internal cues is modified by stressor qualities (intensity,

frequency, duration, degree of novelty, etc.), organism charac-

teristics (age, genetics, etc.) and time of day or season. For

example, in laboratory rodents and primates, repeat exposure

to the same stressor leads to habituation and faster return to

basal levels [101,102], and different stressor types or intensities

lead to different recovery durations [24,25]. Rodent and primate

genetic background further influences the duration and inten-

sity of GC production, which are not necessarily linked to

behavioural differences [23,103]. Time of day can further influ-

ence peak amplitude and duration of GC responses [104], and

the sex and age of an organism affect response dynamics in

humans and rodents [21,22,26,27,105,106].

These different response dynamics are significant because

short- versus long-term elevations in GC production are

associated with different influences on biological processes

and health. In particular, GC recovery rate (time to return

to baseline concentrations after a challenge) has particular

functional/health significance (e.g. [107]). Social status,

whether high or low, is associated with an array of different

challenges, some that stimulate long-term elevations in GC

production and others that stimulate short-term elevations.

These different challenges may confer different influences

on physiology and health.
(c) Metabolic and health effects of short- versus long-
term glucocorticoid elevations

Studies with laboratory rodents suggest that short- versus

long-term GC elevations have different influences on health-

related processes. We review some of these findings and

apply these lessons to primates based on the fact that HPA

regulatory processes are evolutionarily conserved, with signifi-

cant homology among vertebrate species [108–110]. Effects of
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HPA axis hormones on health processes in laboratory rodents

may generalize to a wide range of vertebrate organisms.

GCs are widely recognized for their effects on carbohydrate

metabolism, gluconeogenesis and subsequent increased blood

glucose. In addition, GCs regulate lipid metabolism in adipose

tissue, enhance de novo lipid synthesis in the liver, and increase

protein catabolism [111,112]. The release of energy-rich substra-

tes supplies an organism with increased metabolic resources to

cope with stressors. Over longer periods, these hormones can

increase body mass because they tend to increase feeding be-

haviour and stimulate intake of high-caloric foods in humans

and rodents [113–115]. Finally, GCs influence an array of

other biological systems such as the cardiovascular, respiratory,

immune, visual, metabolic and reproductive systems (reviewed

below and in table 2) [119].

Duration of elevated GC production is an important deter-

minant of physiological consequences. While many of the acute

effects of GCs mobilize energy, chronically elevated circulating

GCs enhance energy storage (table 2). For example, in mice,

chronic (four-week) exposure to elevated GC caused an initial

weight loss followed by significant weight gain [32,117]. Acute

GC elevations can activate the adaptive immune system,

whereas chronic GC elevations are linked to suppressed cell-

mediated leucocyte trafficking [29]. Telomerase, an enzyme

that maintains telomere length, is upregulated in human per-

ipheral mononuclear cells 1 h after exposure to an acute

laboratory social stressor, but chronic stress is associated with

reduced telomere length in these cells [118,120].

Short- versus long-term effects of GCs and stressors are also

important in the brain where they influence behavioural

responses. Immediately after acute exposure to GC, hippo-

campal-dependent information processing is impaired, but an

hour to days later hippocampal long-term potentiation is

enhanced [121]. GC injections 90 min before behavioural testing

caused enhanced exploratory behaviour and decreased fear

behaviour in rats, but when exposed to repeated GC adminis-

tration for 25 days, rats were less exploratory and displayed

enhanced fear behaviour [116]. Acute actions of GCs may

enhance processing of stress-related information, which helps

the individual to cope with similar future challenges, but effects

of sustained GC elevations may overpower adaptive responses

to acute stress.

In regard to the stress of dominance, acute GC elevations

support enhanced responding. For example, an aggressive

interaction to attain or maintain dominance requires increased

energy, and GC-induced carbohydrate, lipid and protein

metabolism provides a sustained source of energy. Acute GC

elevations also stimulate leucocyte redistribution to the skin,

which can fight off infection after potential wounding. While

we have discovered a great deal about the role of GCs in

health and coping, there is still much to learn. For example,

there are few direct comparisons of the effects of short- versus

long-term GC elevations in controlled experiments (table 2),

and this experimental work is primarily performed in rodents.

Further research is needed to clarify open questions with regard

to chronic GC elevations such as what constitutes long-term

exposure and at what point detrimental effects occur.
(d) Limitations of current methods
Faecal GC metabolites (FGCMs) measures provide a non-inva-

sive estimate of HPA axis function ideal for field studies.

However, there are limitations to this method; several factors
influence the amount and rate of GC metabolism and excretion

[122–128]. For example, GC metabolism differs between sexes in

mice, rats and other rodents, with males typically excreting

higher concentrations than females, with exceptions

[123,124,127,128], and the specific FGCMs excreted are sex-

and species-specific [123–125]. Quantification of circadian

rhythm is difficult: FGCMs can show a diurnal rhythm mirror-

ing that of circulating GCs, but this rhythm can only be

documented in animals that defecate multiple times per day

[124,126,127]. Intestinal transit time, which regulates FGCM

excretion rate, is influenced by physical activity; rodents excrete

GCs more rapidly during the active versus passive phases [123].

Total faecal mass influences FGCM concentration, which may

not reflect circulating concentrations [126]. Thus, FGCM

measures provide a useful estimate of GC production in free-ran-

ging animals with appropriate methodological considerations

and biological validation for each species [125].

More relevant to this review is the fact that faeces are

excreted in discrete periods, and therefore, faecal steroid

measures reflect a physiological average of circulating steroid

levels over several hours or days. These measures represent

an estimate of overall production during both low- and high-

production periods. Also, most studies necessarily use oppor-

tunistic sampling and estimate mean steroid production across

long periods (weeks, months). Because GC production is

affected by many variables and because faecal samples have

inherent limitations, accurate quantification of individual

differences in GC production requires frequent within-individ-

ual sampling over a significant period. From current studies, it

is difficult to know whether high-mean FGCM levels reflect

consistently high levels of circulating GCs (e.g. chronic stress

associated with negative health consequences) or frequent or

particularly high elevations in GC production in response to

challenges (e.g. a profile that may activate adaptive metabolic

processes; see figure 1 for different GC dynamics underlying

the same GC mean). If GC production estimates are to provide

a mechanism by which social stress/status confers specific

health benefits or costs, then it is particularly important to

distinguish between these two kinds of GC profiles.
4. Social status, glucocorticoid production
dynamics and fitness: the ‘dynamics of stress’
framework

(a) Novel predictions on social dynamics, social status
and glucocorticoid production dynamics

We propose two testable predictions that are sex-specific in

‘typical’ species where males engage in aggressive within-sex

competition for limited access to mates and females engage in

lower levels of aggression for access to physical resources

(male challenges are more intense but shorter lived than

female challenges). (i) In species that show ‘stress of dominance’

(dominant individuals have greater mean GC production),

dominant individuals will have more frequent and/or higher

GC elevations than subordinates as a result of acute intense

metabolic demands like within-sex fighting, and trough pro-

duction will not relate to social status (figure 2a: ‘stress

dynamics of dominance’). (ii) In species that show ‘stress of sub-

ordination’ (subordinate individuals have greater mean GC

production), subordinate individuals will have chronically
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(a) stress dynamics of dominance
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Figure 2. Predictions about adaptive temporal patterns of GC production in a
dominant versus subordinate individual in two different social systems:
(a) where dominant individuals maintain elevated mean GC production rela-
tive to subordinate individuals and (b) where subordinate individuals
maintain elevated mean GC production relative to dominant individuals.
Square indicates mean GC concentration for dominant individuals, circle indi-
cates mean GC concentration for subordinate individuals. (a) In the ‘stress
dynamics of dominance’ scenario, the dominant individual has elevated
mean GC production as a result of greater peak production compared with
subordinate individuals; this is a pattern that may confer metabolic, repro-
ductive, immune and/or cognitive benefits to the dominant individual and
support increased survival/fitness. (b) In the ‘stress dynamics of subordination’
scenario, the subordinate individual has elevated mean GC production as a result
of greater trough production and/or slower returns to baseline compared with
dominant individuals, and this pattern may incur decreased fitness/survival
benefits. (Online version in colour.)
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elevated GC production and/or fewer periods of return to

expected basal production relative to dominants as a result of

chronic low-grade metabolic demands like exclusion from key

resources. In this scenario, peak GC production will not differ

between subordinate and dominant individuals (figure 2b:

‘stress dynamics of subordination’). These distinct temporal

profiles may have different consequences for health and fitness.

We expect that these status-related GC production patterns

will be apparent during periods of instability, in both sexes, and

in social groups in which competition more often involves

contest than scramble. In addition, we expect the ‘stress

dynamics of dominance’ scenario to be more frequent in

males in species in which male–male fighting is particularly

aggressive and wounding is significant, and the ‘stress

dynamics of subordination’ to be frequent in females in species

in which female–female aggression and wounding are not
frequent and high-quality food supplies are easily monopolized

[20]. We expect these patterns to be reversed between the sexes

when specific characteristics of dominance rank acquisition and

maintenance are not ‘sex-typical’ (e.g. where males compete for

access to clumped food resources, and/or females compete in a

particularly aggressive manner that involves enhanced weap-

onry). In the following section, we provide one example of

how the above predictions may be tested with existing datasets

with frequent GC sampling.

(b) Example of social status-related glucocorticoid
production dynamics

This kind of analysis will work best when many samples

from the same individual are available. We re-analysed pub-

lished data from wild female ring-tailed lemurs [129], which

live in relatively small social groups (5–30 individuals) in

extremely arid environments in Madagascar [130–132]. All

females are dominant to all males, and this behavioural adap-

tation is thought to have evolved as a result of very limited

resource availability [72,133].

Faecal samples were analysed from 10 females across

two social groups during two months of mid-to-late dry

season when females were lactating (mean of 39 samples

for each female; range of 32–47 samples/female) [129].

Samples and behaviour were collected during four alternat-

ing one-week periods for each group, with approximately

10 samples/female/week, and no differences in sample size

between high- and low-ranking females. Dominance rank

was quantified using agonistic interaction matrices based

on all observed interactions. Prior analyses of these data indi-

cated that the two highest-ranking females in unstable social

groups produced more FGCMs than the three lowest-ranking

females in these groups, and that FGCM levels were posi-

tively related to aggressive behaviour [53]. To determine

potential health consequences of elevated GC levels, it is

imperative to understand whether elevated faecal levels

reflect frequent or intense acute GC elevations (figure 2a) or

chronically elevated basal circulating GC levels (figure 2b).

Frequent or intense GC elevations in an individual may

confer certain health benefits, whereas long-term basal

GC elevations or protracted GC responses may have more

negative health consequences.

One way to distinguish between the two GC response

profiles is to analyse minimum versus maximum FGCM

levels from each individual. With enough samples from the

same individuals, one can compare individual minimum

versus maximum production across time. As the number of

samples from an individual increases so too will the range,

with greater maximum and lower minimum levels obtained

as sample size increases [134]. Therefore, studies of minimum

and maximum FGCM levels require many samples from the

same individual and comparable sample sizes across individ-

uals or controls for variable sample sizes. With enough

samples, it is possible to refine faecal steroid analyses to esti-

mate temporal dynamics, and the potential functional

significance of individual GC production profiles. Specifi-

cally, if high-mean FGCM levels result from relatively

frequent or intense GC spikes in circulation, then minimum

FGCM levels should be similar in animals with high- or

low-mean FGCM levels, but maximum FGCM levels may be

greater in the high- versus low-mean FGCM individual

(figure 2a). On the other hand, if high-mean FGCM levels
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result from chronically elevated circulating GC levels, then

minimum FGCM levels will be higher than those from an

individual that has chronically lower circulating GC levels

(figure 2b).

With the ring-tailed lemurs we were able to determine indi-

vidual minimum and maximum FGCM values for each one-

week observation period. High-ranking females with high

mean FGCM levels (ranks 1–2) had similar minimum FGCM

levels to low-ranking females (ranks 3–5; 9–19 versus

7–14 ng g21, repeated measures ANOVA F1,8¼ 2.2, n.s.).

However, maximum FGCM levels were twice as high in

high- versus low-rank females (34–155 versus 27–44 ng g21,

repeated measures ANOVA F1,8 ¼ 10.2, p , 0.05). Results

were not affected by sample size (as a covariate), nor by

inclusion of more samples from other seasons. These results

suggest that high-rank ring-tailed lemur females do not necess-

arily have chronically elevated GC levels, but rather that they

experience higher, longer or more frequent elevations in circu-

lating GC levels with similar trough levels to subordinate

females. Further analysis revealed that high-ranking females

had greater FGCM levels one day following a significant

challenge (territory invasion, predation threat) compared

with low-ranking females, suggesting that high-ranking

females have a physiological stress response that is more

responsive to environmental stressors [1]. Based on the prior

review of GC dynamics, heightened GC responses may

confer certain fitness advantages.

The analysis of minimum versus maximum FGCM levels

in female ring-tailed lemurs supports the prediction that

elevated GC production in dominant aggressive versus sub-

ordinate less-aggressive individuals probably occurs in a

discrete or acute fashion, and may thus confer different fit-

ness consequences from those associated with chronically

elevated GC production. This information will be important

to collect in future studies of social status-associated GC pro-

duction. Only by documenting the relative variability in

individual GC production can we infer the potential costs

or benefits of differential GC production among high-

versus low-ranking individuals (e.g. [135,136]). Because

social dynamics among ring-tailed lemurs are exceptional

[72,73], future studies in species with more prototypical

social structures are required.
5. Conclusion and future directions
Quantification of the temporal patterns of GC production

among individuals is necessary to understand potential fit-

ness costs and benefits of status-specific GC production. We

must distinguish between high-GC individuals with a

responsive HPA axis to acute threat and those with more

chronically elevated GC production either in the absence of,

or as a result of, chronic threat. The former profile of GC pro-

duction may confer specific fitness benefits (increased coping

responses), whereas the latter profile may confer specific

health costs (e.g. slower wound healing, decreased memory,

decreased energy availability). It is also important to

distinguish between low-GC individuals that are hypo-

responsive to threat and those with low basal levels and

short elevations in GC production at appropriate times.

Dissection of individual GC production temporal dynamics

as they relate to environmental cues will provide the

best estimate of HPA axis regulation efficiency—a key
factor in predicting health outcomes. Furthermore, different

social structures [137] may help explain different temporal

dynamics in stress physiology and predict status-related

fitness consequences.

There are several key areas for future work on GC

production (and HPA axis regulation) as it relates to health-

related outcomes for high- versus low-status individuals.

First, it will be important to document individual HPA axis

regulation. To this end, frequent measures of GC production

within the same individual will facilitate estimation of GC

responses to environmental stimuli (e.g. [58,61,129]). Non-

invasive GC measures have greatly advanced our under-

standing of GC production in free-ranging animals and we

have suggested a method to assess variability (HPA regu-

lation) within individuals that is feasible with relatively

crude estimates of GC production. Moreover, peripheral GC

sensitivity assays can provide estimates of HPA axis regu-

lation. Given ethical and logistical constraints for some

study populations, one blood sample per study animal

could facilitate indirect estimation of GC function. For

example, in vitro immune system challenges, with cells from

whole blood samples, can be performed to assess GC recep-

tor sensitivity (e.g. [100,138–140]). Second, to understand the

specific environmental factors that stimulate stress responses

in high- versus low-status individuals, further work is

required to document individual GC production in response

to specific challenges and benefits associated with high- and

low-social status (e.g. physical activity, exposure to aggres-

sion, access to social support, access to food/shelter, social

stability, costs of reproduction) [33–36,38,40,53,141–144].

Third, the relationship of GC production to specific health

outcomes for high- versus low-status individuals will provide

information on the moderating role of GC production on

status-related outcomes. For example, some studies have

related GC production (versus social status) to specific

health outcomes like mortality and illness/resilience, and to

functional immune measures like wound healing and para-

site clearance (e.g. [61,145–148]). The same GC receptor

sensitivity assays in cultured immune cells described above

can also provide insights into molecular correlates of

immune system function in high-GC animals [140]. Finally,

experimental work (and taking advantage of naturally

occurring shifts in social status) will provide insights into

the relative causal relationship between social status costs/

benefits and GC production, and between GC production

and health-related outcomes [139,144,146,149–152].
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