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The use of social and contact networks to answer basic and applied questions

about infectious disease transmission in wildlife and livestock is receiving

increased attention. Through social network analysis, we understand that

wild animal and livestock populations, including farmed fish and poultry,

often have a heterogeneous contact structure owing to social structure or

trade networks. Network modelling is a flexible tool used to capture the het-

erogeneous contacts of a population in order to test hypotheses about the

mechanisms of disease transmission, simulate and predict disease spread,

and test disease control strategies. This review highlights how to use animal

contact data, including social networks, for network modelling, and empha-

sizes that researchers should have a pathogen of interest in mind before

collecting or using contact data. This paper describes the rising popularity

of network approaches for understanding transmission dynamics in wild

animal and livestock populations; discusses the common mismatch between

contact networks as measured in animal behaviour and relevant parasites to

match those networks; and highlights knowledge gaps in how to collect

and analyse contact data. Opportunities for the future include increased atten-

tion to experiments, pathogen genetic markers and novel computational tools.
1. Introduction
Although there was optimism that the war on infectious diseases was over in the

1970s [1], humans are still faced with challenges of pandemics, as well as emer-

ging and re-emerging diseases, many of which originate in animals [2]. Animal

pathogens not only cause problems for humans (zoonoses), but infectious dis-

eases also negatively affect the health of animals, including livestock and wild

animals. Both livestock and wildlife can be infected by pathogens that infect mul-

tiple hosts; multihost pathogens have the potential to cause devastating effects on

the livelihoods of livestock farmers, national economies and the environment via

wildlife die-offs. Concern over multihost pathogens is increasing with com-

pounding effects of land development, globalization and climate change.

Infectious diseases in livestock can be exacerbated by intensive agriculture, as

more individuals are concentrated in smaller spaces [3]. Additional infectious dis-

ease threats exist for wildlife, especially for small populations of conservation

concern, which may be stressed owing to loss of habitat and are vulnerable to

pathogens that ‘spill over’ from other more numerous hosts [4]. Larger human

populations and more demand for space have led to increased contact between

humans, wildlife and domestic animals, which creates more opportunities for

pathogen transmission. The war on infectious diseases is clearly not over.

To understand how disease spreads through a population, we need to

understand b, the transmission rate of infection. However, it is challenging to

estimate b. Thus, it is commonly assumed that

b ¼ g �K, (1:1)

where b is the transmission rate of infection, g is the probability of pathogen

transmission given a contact and K is the contact rate. From the perspective

of the population, this formula can be thought of as a disease transmission

matrix between pairs of individuals (b; ‘who transmits to whom’), represented
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Figure 1. Conceptual model illustrating that a transmission network (b) is
often represented as a contact network (K ) scaled by a probability (g). Black
circles could represent individual animals, or groups of animals such as farms.
Connections between circles represent pathogen transmission events in the
transmission network (a) or contacts in the contact network (b).
Figure adapted from the Serengeti lion networks [5].
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by a contact matrix or mixing network between individuals

(K ) scaled by g. This concept is visualized in figure 1,

where black circles represent individuals or groups of

individuals (nodes), and connections between nodes (edges)

represent pathogen transmission events in the transmission
network or contacts in the contact network. Note that the trans-

mission network is typically a subset of the contact network,

as not all contacts lead to disease transmission. Disease ecol-

ogists recognize that g is challenging to estimate and

therefore focus effort on quantifying the contact network

[6]. Contact networks are thus conduits for transmission

pathways of infectious diseases in populations [7,8].

The contact structure of a population fundamentally

depends on behaviour, which can drive social interactions,

animal movements, migration, dispersal, social systems and

territoriality [9,10]. Contacts are an unavoidable consequence

of sociality owing to the spatio-temporal concentration of

potential hosts. For group-living species, social transmission

of pathogens is a cost of living in groups [11–13]. While

social transmission of pathogens can occur between conspeci-

fics or members of different species, the nature and patterns

of contacts vary as a function of species-specific sociality [14].

A wide range of scientists from animal behaviourists to

anthropologists are interested in quantifying the link between

sociality and health [14]. However, the linkage is not as

straightforward as it might seem. It has been posited that

increased sociality (e.g. more connections among the nodes

in a network) influences health outcomes (e.g. risk of infec-

tious pathogen exposure for an individual). Whether more

sociality increases or decreases individual risk of disease is

an unresolved issue [15]. Mathematical or dynamic models

can be used to shed light on this debate, as they are useful

tools for studying disease dynamics in populations. Dynamic

disease models allow us to ask questions that are ethically or

logistically unfeasible in the real world, estimate key

epidemiological parameters, link data across scales, explain

observed patterns and conduct ‘what if’ experiments by

testing possible disease control measures [16].

Disease dynamics are often studied using modifications of a

Susceptible–Infectious–Removed (SIR) model, where the tem-

poral dynamics of susceptible, infected and removed members

of the host population are tracked over time. Conventional SIR

models assume that all individuals in a population, or subpopu-

lation, are well mixed and therefore have homogeneous contact

structure within that group or compartment. However, these

assumptions overlook important heterogeneities at the
population and individual levels and do not allow for the

inclusion of superspreaders, which are individuals responsible

for a majority of transmission events [17,18].

Network modelling, or contact network epidemiology,

gained popularity for studying sexually transmitted disease

transmission in human populations [19] and later through

the discovery of superspreaders during the Severe Acute Res-

piratory Syndrome (SARS) outbreak in 2003 [20,21]. Network

modelling approaches can easily incorporate a heterogeneous

contact structure and are most useful when each individual is

in contact with a small fraction of the population [22]. Net-

work models are especially useful for designing targeted

interventions, either for particular types of members of a

population or for specific individuals. Network models

could be considered the most general modelling tool, where

specific types of networks include compartmental SIR

models (where all individuals are connected to each other)

or lattice-based models (where individuals are connected

only to their neighbours) [6]. Alternatively, network models

could be considered an extension of an SIR model that incor-

porates more realistic contact structures, although network

models are not as data hungry or computationally intensive

as agent-based or individual-based spatial models [22]. The

choice of model type is considered ‘a skill in itself’ and is

dependent on the question asked, the quality of empirical

data and the needed output [22]. Choosing the correct type

of model is important; for example, compartmental SIR

models can overestimate the speed of an outbreak if hetero-

geneous contacts are present but not captured in the model

[23,24]. Although network modelling has been proved to be

a useful tool to study transmission of infectious diseases in

human populations [7,25–27], it has generally been an under-

used approach for investigating disease dynamics in wildlife

[6] and livestock populations [28,29].

This review article will focus on the use of contact net-

works to answer questions about infectious disease

transmission in wildlife and livestock. I will describe how to

combine animal contact data with network modelling, often

with a cautionary tale. This review will: (i) highlight why wild-

life and livestock often have a heterogeneous contact structure;

(ii) illustrate the rising popularity of network approaches for

understanding pathogen transmission in animal populations;

(iii) discuss the common mismatch between contact networks

measured in animal behaviour and pathogens that match the

contact networks; (iv) highlight knowledge gaps; and

(v) propose opportunities and ways forward for the field.
2. Heterogeneous contact patterns in wildlife
and livestock

Infectious diseases spread through transmission routes that

vary in contact intensity along a spectrum from indirect to

direct transmission, where contact might be thought to

increase in importance for transmission as one moves from

environmental contamination to vector-borne, and then to

aerosol, to close-contact, and finally to sexually transmitted

pathogens [30]. Accordingly, the definition of what constitutes

a contact relevant for disease transmission varies according to

the pathogen of interest. For example, anthrax is spread via

ingestion of spores from endemic environments, rabies is

transmitted through the bite of a rabid animal, and sexually

transmitted infections are spread via sexual interactions. The
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extent of pathogen spread on a contact network is not only

dependent on how a contact is defined, but is also dependent

on both population and individual-level phenomena. Often

there is variation, or heterogeneity, in the probability of con-

tacts between individuals, leading to different macroscale

network architecture between populations. Finally, it is

worth noting that many pathogens have multiple transmission

pathways; some sexually transmitted pathogens, for example,

also spread vertically from mother to offspring.

At the population level, pathogens are expected to trans-

mit faster and more extensively in populations that have less

social or spatial structure (also known as modularity [15,31]),

more variation in group size [32] and more movements or

more connections between groups [33]. Wild animals often

have a heterogeneous contact structure owing to their terri-

torial nature, spatial distribution of individuals across

heterogeneous landscapes or complex social systems [5].

Wild animal social systems can also vary between popu-

lations in different ecosystems owing to varying resource

availability. For example, jackals live in small family groups

unless they have access to ample food sources, in which

case they live in larger communities [34,35].

For livestock, including poultry and managed fish popu-

lations, contact structure is also heterogeneous, but instead of

being tied to social systems, contacts are typically dependent

on group size, spatial structure and animal movements, which

are frequently controlled by human management actions

[28,36,37]. For example, swine in typical commercial systems in

the US are grouped into rooms in buildings on farms, and

there are scheduled movements of swine between rooms [38]

and farms. Livestock movement networks (e.g. cattle, swine,

poultry, farmed fish) are often directional and can be weighted
by the number of animals moved, or the frequency of move-

ments. Of course within a spatially restrained group, as

defined by a farm, pen, pond or building, livestock could also

have preferential associations owing to social structure [39,40].

Therefore, animal behaviour might be more important in driving

within-group contacts than between-group contacts in livestock.

On an individual level, there is variation in the probability

that an individual is exposed, gets infected and subsequently

transmits a pathogen. Superspreaders are an extreme version

of this variation. The concept of a superspreader has been

expanded to include supershedders [41,42], and could be

expanded further to include ‘supersusceptibles’ that easily

get infected or ‘supermovers’ that might connect distant

parts of a network. The cause of variation in these ‘super’ cat-

egories could be owing to a range of factors associated with

the individual host, including host genotype, prior exposure

to the pathogen (leading to an ability to rapidly produce anti-

bodies), demographic class, behaviour and/or coinfection

status. Demographics include age, sex and body size, which

could also correlate with behaviour. Individual behaviour

can vary along a continuum of behavioural types (personal-

ities), such as shy versus bold (e.g. lions [43]), levels of

aggression or activity, or dominance in group-living wildlife

and livestock [44]. Individual behavioural types also affect

interspecific contacts, as seen in badger–cattle interactions

where higher-ranked cattle were more likely to have contact

with badgers [45]. Major histocompatibility complex genotype,

whether or not individuals are infected with other pathogens

(i.e. co-infection), or their stress level can also determine how

susceptible the individual is to infection, and how infectious

the individual might become [46]. Heterogeneity in pathogen
transmission at both the population and individual levels

can create challenges for understanding the complex mechan-

isms influencing the spread of infectious diseases in

populations, yet network modelling can be a useful tool to

incorporate this complexity.
3. Increasing interest in social network analysis
and network modelling

The terminology surrounding ‘networks’ and its associated

uses can be confusing because the word ‘network’ is used

in both social network analysis (SNA) and network modelling.

However, the two concepts are quite distinct. SNA is used

to describe the contact structure of a population, whereas net-

work modelling is a flexible tool by which to introduce and

simulate a contagious process on a descriptive social, associ-

ation or contact network [21,47]. SNA, also known as

network analysis or contact analysis, has recently gained

popularity in the field of animal behaviour to quantify

animal social networks and to compare social networks

within and between species [9,10,48]. SNA has also been

used to investigate potential pathogen spread in wildlife.

For example, SNA has been used to determine which individ-

uals are at high risk of infection [49,50], identify traits of

highly connected individuals [51], inform disease manage-

ment policy [52] and correlate highly connected individuals

with high rates of parasite infection [53].

SNA can also describe the heterogeneous network of live-

stock or poultry movements, often with the intention to

determine the risk of disease spread in populations, identify

high-risk herds or target surveillance [54–61]. In many cases,

SNA has identified that a small percentage of farms contribute

to the majority of livestock and poultry movements, and hence

risk of disease transfer; these particular farms are the ones to

target for increased surveillance or interventions [62–64]. Alter-

natively, SNA has shown that livestock movements are not a

risk-factor for infectious diseases [65]. For fish, SNA has been

used to identify aquaculture sites in a farmed-fish network

that should be targeted for parasite control [66] and to explain

virus infection pressure caused by water transport [67]. SNA

typically represents interactions on static networks. However,

the social network could be subdivided to represent contacts

or movements occurring during different time periods: for

example, by constructing different social networks in the breed-

ing and non-breeding seasons [68], or between years with

variable rainfall [69] or changes in the poultry and livestock

trade network across seasons [70,71] and across years [58].

Descriptive network measures can also be used to compare com-

peting models, such as for describing livestock movements

dependent and/or independent of distance between farms [72].

Network modelling can build on the same data as SNA. The

structure of the contact network influences how pathogens

transmit on the model network [33,73]. For example, even

with the same number of individuals and same number of effec-

tive contacts, when the configuration of the network is changed,

it can affect both the rate at which individuals become infected

and the final size of a disease outbreak [6]. Thus, it is important

to get the most accurate contact structure possible, yet this must

be weighed against the costs: collecting contacts can be time-

and data-intensive. High-resolution data on contacts can be

obtained from behavioural studies and new technology [6],

including livestock tracking and reporting systems (e.g. active
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Figure 2. The number of publications in Scopus per year containing the search terms ‘contact network’ or ‘social network’ or ‘social-network’ or ‘association net-
work’ or ‘contact analysis’ and ‘disease’ or ‘pathogen’ or ‘parasite’ in the title, abstract or keywords. The ‘wildlife’ category refers to publications with the search
terms ‘wildlife’ or ‘wild animal’ or ‘social insect’, whereas ‘livestock’ refers to publications with the additional criteria of ‘poultry’ or ‘cattle’ or ‘cows’ or ‘swine’ or
‘pigs’ or ‘turkeys’ or ‘fishes’ or ‘livestock’ and not ‘Turkey (republic)’ and not ‘humans’. Search was run on 12 June 2014. This is an underrepresentation of
publications, as many wild animals, such as mice, raccoons, apes and chimpanzees, did not show up in the ‘wildlife’ search.
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and passive radio-frequency identification (RFID) tags).

Network modelling is now more feasible for animal systems

owing to an ability to collect high-resolution contact data and

to integrate the contact data into new theoretical approaches.

Network models can be used to understand factors behind

disease outbreaks, design effective surveillance and evaluate

the consequences of disease outbreaks [74]. Contact network

models have been used to predict the spread of exotic diseases

between river catchment areas owing to anthropogenic move-

ments of fish [75] and to recommend that the fish industry

be designed around epidemiologically isolated management

areas [37]. Network modelling has been used in wildlife sys-

tems to: identify the most connected individuals to target for

vaccination [76]; illustrate that current vaccination levels may

be inadequate to prevent large outbreaks [77]; identify the

most important behaviour for disease transmission [78]; and

incorporate seasonal-mixing preferences in models [79]. For

livestock, network modelling and simulations have highlighted

that disease transmission through livestock movements could

explain the initial spread of the 2001 foot-and-mouth epidemic

in the UK [80] and that network properties can direct targeted

surveillance [28].

A combination of increasing exposure to network concepts

and the wider application of novel technology has led to an

increase in the use of SNA and network modelling for wildlife

and livestock. According to a search run in the abstract and

citation database of peer-reviewed literature, Scopus, with

the search terms ‘contact network’ or ‘contact analysis’ or

‘social network’ or ‘social-network’ or ‘association network’,

publishing trends have shown a general increase for wildlife

and livestock systems (figure 2). The first publications met

this criterion in 2003. As can be seen by the variety of ‘net-

work’ and ‘contact’ terms used for the citation search

underlying the trends in figure 2, network terminology is

not standardized. Similar approaches can be called various

terms in different disciplines, making it challenging to do
comprehensive literature searches; therefore figure 2 likely

underrepresents interest in network approaches.
4. Challenges of network modelling
(a) Mismatch between contact network and pathogen
Two types of missing data are common for network model-

ling: a lack of knowledge about contact patterns or a lack of

information on infection patterns. Here, each of these is dis-

cussed in turn. The type and main cause of missing data

might differ when considering wildlife or livestock.

(i) Lack of knowledge about contact patterns
Efforts to construct realistic network models can be hampered

by a lack of detailed contact data. Although disease outbreaks

in wildlife populations are notoriously difficult to observe and

measure, in some rare situations outbreak data can be collected.

This can occur when virulent pathogens cause high mortality

in an easy-to-detect species (e.g. large marine mammals wash-

ing up on beaches or massive numbers of dead fish in lakes), or

in well-monitored populations where individually identified

animals disappear or carcasses are found [81,82]. Prevalence

and incidence data are sometimes available for pathogens

that cause clinical signs, such as tuberculosis in meerkats

[83], mycoplasmal conjunctivitis in house finches [84] or

rabies in carnivores [85]. In the uncommon situations where

wildlife disease outbreaks have been observed, detailed contact

data are often lacking, even to the point of not knowing the

host abundance or social system. Without knowing the empiri-

cal social contacts, the wide choice of potential network

structures makes the design of network models challenging.

Thus, without contact patterns we are not able to tease apart

competing hypotheses about the mechanisms of disease trans-

mission for most systems, and as a consequence, are not able to

implement targeted intervention and control measures.
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One would think it would be easier to study and under-

stand pathogen spread in livestock systems than in wildlife.

Livestock farmers should know the numbers, movements,

locations, birth rates, mixing patterns, etc., of each of their

animals. However, there are different challenges in applying

network modelling to livestock systems from those faced by

wildlife managers. For livestock and managed fish popu-

lations, disease outbreaks can be observed, but detailed

data on contacts are often missing. Some differences might

have to do with the end result, as producers may not be inter-

ested in understanding basic ‘disease dynamics’ within a

farm because depopulation and vaccination are often sol-

utions that can locally eliminate a pathogen. On a regional

level, challenges can revolve around data sharing and privacy

issues. For example, in the USA, the basic fundamentals

about the structure of regional farm and livestock movement

networks are not known, including missing data about farm

size, location and animal movements [86]; this is also true for

fish industries [87].
0140107
(ii) Lack of information on infection patterns
The collection of contact data is getting easier. New remote bio-

monitoring technologies, which include radiotelemetry, RFID,

global positioning system tracking, tri-axial accelerometry and

video tracking, are improving our ability to collect extensive

contact data on study populations [6,88,89]. However, in the

absence of an observable outbreak as discussed above, it

remains a problem to match this contact data with relevant

and appropriate parasites. For example, for wildlife species

that are abundant, relatively easy to catch and handle, and

where detailed data on contacts can be obtained using technol-

ogy [90,91], often the circulating pathogens do not cause

morbidity or mortality to the host. Because these pathogens

do not necessarily cause disease or death, there might be a per-

ceived need to simulate highly lethal pathogens on the contact

network. If this is done, the choice of a pathogen to simulate

should be made with caution, as discussed below.

For observational studies of wildlife populations with

already-existing detailed contact data (e.g. [92,93]), there is a

great opportunity to use network modelling owing to the

detailed understanding of animal behaviour and the high

resolution of observational data. However, behavioural

researchers often lack data on pathogens with transmission

modes and life histories that are relevant to the available con-

tact data. There are at least two main reasons for this

problem. First, detailed behavioural data are often collected

on a single species, often in small populations of conservation

concern (but see [94,95]). This is a problem because pathogens

often infect multiple hosts, and researchers often lack infor-

mation on contact patterns between various host species [96].

Second, researchers often lack data on host infection status

in wildlife populations. This situation is especially common

when infected individuals cannot be identified without captur-

ing the hosts, which can be logistically challenging, unethical or

even impossible. Thus, studies that use behavioural data to con-

struct a contact network often do not have infection data;

although this can be overcome with simulation of pathogen

spread through network modelling. However, we must be care-

ful to simulate pathogen spread on appropriately matched

contact networks. For example, we should simulate infectious

diseases with short infectious periods (e.g. weeks) on networks

where the contacts used to create the network were aggregated
over weeks (versus years). Long-term aggregation of the con-

tacts would likely create a network that is substantially more

connected than the network that the pathogen actually experi-

ences [97]. Caution should be used whenever social networks

are used to infer disease transmission, as the method of data col-

lection also affects the construction of the social network [90]. If

infectious diseases are going to be simulated on social net-

works, edge construction needs to incorporate parasite life

cycles and reflect the type of exposure needed for pathogen

transmission [98].

Although the health status of livestock is more easily col-

lected compared to wildlife, infection status of individuals or

of herds is not typically shared on a regional level owing to

privacy issues, even if it is known. Unless animal movements

and animal testing are mandated and regulated, regional

studies of disease spread in agricultural settings are challen-

ging. In general, it might be easier to overcome the lack of

either contact or pathogen data in agricultural systems than

in wildlife systems.

In summary, there is the potential to have a mismatch

between a contact network and a pathogen for both wildlife

and livestock; missing data are often the root cause of the

mismatch. Often, we have either observed an outbreak, but

do not know the contact structure, or know the contact

structure but lack an appropriate pathogen. In order to com-

bine animal contact data with network modelling, and to

avoid a contact network–pathogen mismatch, a simple

thought process could be implemented (box 1).

(b) Questions to consider in the design of network
models

Numerous challenges exist when attempting to use data on

host contacts to construct infectious disease models, or

when trying to infer contact structure from outbreak data.

Below are a few questions to consider in the design of

network modelling studies, some of which are unresolved.

(i) How to define a ‘contact’?
Defining a contact is challenging (box 1, step (iii), [99]). We often

do not know how a pathogen is transmitted between hosts and

therefore cannot define a contact sufficient for disease trans-

mission [51,100]. For directly transmitted pathogens, ideally a

contact would be defined as a susceptible and infectious host

being within a specified distance for a specified length of time;

however, the distance and time period are normally unknown

for the host species and pathogen strain of interest. The definition

of a contact is even more challenging for indirectly transmitted

pathogens owing to environmental persistence (e.g. macropara-

sites spread by faecal–oral transmission, anthrax spread by

ingestion of spores, fungi infecting bees or bats) or the impor-

tance of vectors (e.g. ticks and mosquitoes). Because of these

challenges and with the exception of a few studies on indirectly

transmitted pathogens, network modelling has mostly been

used to model directly transmitted diseases [101].

(ii) How does infection with a pathogen change the contact
structure of a population?

Individual behaviour, and hence the contact network, can

change once an individual is infected [102]; it is rare that the

change in behaviour is quantified. Healthy animals could

avoid or potentially be attracted to sick animals, and sick



Box 1. Implementation: how to combine animal contact data with network modelling.

Whether the contact data come from new technology or from observations, the following steps will be useful in combining

relevant contact data with a pathogen:

(i) Define pathogen of interest.

(ii) Identify the life cycle of the pathogen, including host range (e.g. are there multiple hosts or vectors or environmental

stages?)

(iii) Identify type of contact needed for pathogen transmission. Evaluate whether this type of transmission can be cap-

tured by measurements of social contact.

(iv) Identify the infectious period for the pathogen.

(v) Determine the definition of a node based on the minimum level at which it is important and feasible to collect data

on heterogeneous contacts (e.g. will the nodes be individuals, social units, rooms in farms, farm premises or habitat

patches?)

(vi) Collect the number of contacts between nodes on a time scale relevant to (likely equivalent to or less than) the infec-

tious period of the pathogen. These will be the edges.

(vii) If outbreak data exist, estimate the transmission rate of the pathogen. The network model can then be used for hypothesis

testing or ‘what if’ scenarios.

(viii) If no outbreak data exist, use epidemiological parameters obtained from the literature to simulate outbreaks from a range

of parameters and test hypotheses.

(ix) Test control strategies on the network.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140107

6

animals likely change their interactions with others. As an

example of avoidance, Schaller et al. [103] discuss (human)

avoidance behaviour, where avoidance of potentially infectious

social interactions might lead to a reduced risk of infection at the

individual and population levels. Alternatively, healthyanimals

could be ‘attracted to’ sick animals; lions generally separate

themselves from their pride mates when they are sick, but, in

the case of canine distemper virus infection, lions that had

convulsions in the presence of their companions were some-

times attacked (Craig Packer 2014, personal communication).

As another example of behaviour change, animals infected

with rabies can either experience ‘furious’ rabies and likely

have more contacts, while others exhibit ‘dumb’ rabies and

have fewer contacts [77]. Similarly, toxoplasmosis can cause

behavioural changes in the intermediate host (e.g. rat) to

enhance predation by the definitive host (e.g. cat) to complete

the parasite’s life cycle [104,105]. In an experimental setting,

the grooming behaviour of ants changes upon fungal exposure;

exposed ants increase individual self-grooming rates and

reduce allogrooming of conspecifics [106], with consequent

changes on the structure of the ant contact networks.

Ideally one would have empirical data describing how a

network changes once infection occurs and spreads (e.g.

[107]), although simulating a change in behaviour can be a

useful tool to work around the lack of data on behavioural

changes caused by infection. Data collection for step (vi) of

box 1 could occur in a population preferably before, during,

and after an outbreak, so any changes in behaviour could be

documented on a population level. If empirical data are avail-

able on behavioural changes, dynamic networks are tools to

incorporate temporal changes in contact network structure.
(iii) What is the minimum level of detail needed to capture the
contact structure?

While it is unclear at what scale interactions should be studied

[108], the level of resolution will likely depend on the host,

pathogen and system of interest, with consideration of what is

computationally feasible [22,99]. For example, to model
transmission of foot-and-mouth disease (short infectious

period) or bovine tuberculosis (long infectious period) in cattle

herds, do we need to include contact heterogeneity between

individuals within a farm, or just movements between farms,

sub-regions or regions? While the framework for modelling het-

erogeneity both within and between groups is available [32], it is

unclear at which level capturing within-group heterogeneity

is necessary. The scale likely depends on an interaction between

host contacts and infectious period [97], and the relative impor-

tance of direct versus indirect transmission [109]. In a study on

US cattle movements, heterogeneities in cattle shipments only

emerged at the county level, not at the state level; thus, analysis

of county-level networks was sufficient to understand

movements in this system [110].

(iv) How to scale up the observed network to a biologically
relevant size?

New technologies, such as proximity contact loggers, have the

potential to capture the contacts of an entire population, but

they are expensive. Behavioural observations are also expen-

sive in terms of person-hours; even then, not all animals are

observed simultaneously. Therefore, studies of animal contacts

typically focus on a subset of a larger population. Because we

are interested in disease dynamics in a biologically meaningful

geographical area (such as a protected area or a region of

high livestock production), we need additional tools to enable

us to ‘scale up’ to populations of relevant sizes. Methods for

scaling up empirical networks are being developed, but on a

case-by-case basis [68,77,106,111].

(v) How to capture contacts on multiple host species?
Pathogens that infect multiple hosts can be challenging to

model for both well mixed or network models, as normally

we do not have within- and between-species contact data for

multiple hosts. Making behavioural observations for individu-

ally identified multiple host species is challenging. Novel

technology, such as automated proximity loggers or even

camera traps, seems to be a promising route to better document
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contacts [45,112]. However, automated proximity loggers and

camera traps are not feasible when we lack information on

which hosts are involved and where interspecific contacts

might take place, therefore informing where to place the loggers

and traps. Likely owing to the inability to understand the con-

tact structure of multiple populations simultaneously, studies

of the dynamics of zoonoses [113] or multihost pathogens at

the livestock–wildlife interface are rare [114].
 hing.org
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5. Opportunities for understanding disease
transmission using contact networks

(a) Experiments and manipulations
A promising area for further research includes increased

attention to experiments and manipulations. Both hosts and

pathogens can be experimentally manipulated through remo-

vals or additions, and consequent changes on the contact

network can be documented [107]. Abundant and small

wild animals are useful study systems for manipulations of

free-ranging animals in natural systems. Experimental manip-

ulations can be done on these common species to see how

varying the host–pathogen environment influences different

network measures and pathogen spread [107,115,116]. In

addition, studies of common pathogens in common species

are highly useful for two reasons. For applied research ques-

tions, pathogens found in abundant wildlife species are often

important for their role in ‘spilling over’ into humans, agricul-

tural animals or wildlife of conservation concern [117]. Second,

for basic research questions, network studies on common wild

animal species are extremely useful and important for testing

mechanistic principles of transmission on networks.

Livestock systems are a great system to test the theory of

infectious disease spread [118,119], because producers actively

manage host demographics and contact rates, and can be will-

ing to test new methods for disease control, including targeted

control measures. In addition, pathogen surveillance and

detection in managed populations are more feasible since

livestock are often more easily handled than wildlife.

(b) Pathogen genetic markers
In order to overcome some of the challenges in measuring

contacts between members of the host population, parasite

genetic markers, microbial genetics, whole-genome sequen-

cing, pathogen phylogenetics and phylodynamics are

increasingly used to infer pathogen transmission networks

[120,121]. Instead of focusing on the host, these methods

focus on the pathogen to infer transmission networks. Ide-

ally, genetic studies should be conducted in parallel with

traditional detailed contact studies in order to define which

interactions are important for transmission [99].

It is important to find the correct pathogen to use as a

genetic marker. Pathogens that are spread via direct contact

with conspecifics and that experience rapid mutation rates

relative to the host genome are useful for evaluating trans-

mission of directly transmitted pathogens in populations

[121]. RNA viruses are particularly well suited as markers

of host contact, because their fast mutation rate and short

generation time result in unique genetic signatures that can

be compared and related across individuals [122–128]. How-

ever, isolating virus typically requires invasive sampling to

collect blood, tissue or saliva.
Non-invasive sampling (e.g. collection of faeces, hair) is a

preferred method over invasive sampling; non-invasive

sampling is especially appealing for collecting pathogens

from wild animals. Bacteria can be collected from faeces and

can be used as indicator organisms to infer transmission or

contact networks. Two bacteria found in faeces, Escherichia
coli and Salmonella enterica, have been used to deduce if contact

networks (based on association networks) correspond to the

transmission networks of E. coli and Salmonella (as inferred

by similarity in genetic subtypes). Bacterial transmission net-

works have been correlated with social association patterns

in wild lizards and giraffe populations [129,130], but not in ele-

phants [131], potentially owing to extensive space use of

elephants. Pathogen transmission networks can also be used

to shed light on contact patterns between multiple host

species. For example, E. coli infects a wide range of hosts

and has been used to infer superspreading species and

deduce multihost association patterns and habitat overlap

between humans, livestock and wild animals [132,133].

Another non-invasive proxy of transmission that could be

used to look at social contacts is the similarity in the gut

microbial community. 16S rRNA marker-based studies pro-

vide a new opportunity to obtain and analyse high-depth

representations of microbial communities at a low cost.

Profiling of an entire microbial population has been used

extensively over the past few years in the study of human con-

ditions, revealing links between the microbiome, nutrition and

diseases [134,135]. It has also been used in livestock to study

the effects of management changes on the gastrointestinal

microbiome [136–138]. The power of this approach over the

use of indicator organisms such as E. coli is the high level of

discriminatory power, since it relies on entire microbial popu-

lations instead of the genetic background of a single organism.

Social relationships likely influence the composition of the gut

microbiome [93,139–141], and similarity in the gut micro-

biome could be used to infer social contacts to simulate the

spread of pathogens on network models, although shared

habitat and behaviours must be controlled for. It should be

noted that host-associated microbial communities are often

linked with health benefits [142], rather than health costs. So

instead of only using microbial communities as proxies to

understand disease dynamics, contact networks could be

used to model epidemics of beneficial organisms (i.e. the

spread of ‘health’) on social networks. This avenue of future

research could shed light on the intersection between sociality

and health, both in terms of health costs and benefits.
(c) Computational tools and methods
Contact network studies began with what were fairly simple

descriptive tools (e.g. SNA) and have now advanced to more

sophisticated modelling techniques. New computational

tools and methods for understanding disease transmission

continue to evolve. These include Bayesian inference for partial

contact tracing [143], pathogen whole-genome sequencing

[144], and new statistical frameworks to bridge epidemiologi-

cal models and coalescent-based inference methods [145].

There is a push for further development of robust analytical

methods for network epidemic models [146], and for methods

to make efficient phylogenetic inferences on the large amounts

of sequence data currently being produced [147].

Because of the improvement in technology to collect detailed

temporal data on contacts, empirical data to parametrize contact
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networks now exist. However, large datasets can create bioinfor-

matic challenges. While new technologies, such as proximity

loggers or RFID tags, improve our ability to collect very detailed

data on contact structures in host populations, analysing these

data presents a computational challenge, especially in a dynamic

network framework where the network structure is changing.

Currently, the methods for modelling dynamic networks

are being developed [8,148,149] and will need to continue to

develop to keep up with the growing size and temporal

resolution of the contact data.
 g
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6. Conclusion
The incorporation of contact networks into the study of infec-

tious diseases has advanced our understanding of pathogen

transmission and dynamics, with applications for wild ani-

mals and livestock. New network modelling techniques

build on the foundations of SNA and traditional SIR model-

ling, often blending the two methods. Network modelling

approaches are well suited to capture heterogeneous contact

patterns within and between animal groups, to simulate dis-

ease spread and to test hypotheses across a wide range of

wild and domestic animal social systems. Network models

can use detailed data on behavioural contacts, collected

from either observational behavioural studies or from new

technology. It is imperative, however, that the type of contact

matches the transmission route of the pathogen of interest.

In addition to furthering our understanding of basic

research on pathogen dynamics, contact networks can produce

useful applied outcomes for animal populations. Network

methods are ideally suited to help design targeted surveillance

and control programmes; targeted measures can be more effi-

cient and effective than random surveillance and control.

Targeted control measures for individuals, or groups of indi-

viduals, can include proactive or reactive vaccination, culling

or depopulating and/or quarantine of selected individuals. Tar-

geted surveillance and control can also focus on distinct time

periods, as elucidated by changes in contact patterns between

different periods of time. Because of these varied benefits—

and despite inconsistencies in ‘network’ terminology—the use

of SNA and network modelling is increasing.

However, some critical gaps remain in our knowledge of

contact networks. The field is wrestling with how best to

define a contact, capture contacts between multiple host

species and scale up observed networks to biologically rel-

evant sizes. In addition, we do not know how infection

with a pathogen changes individual behaviour (and conse-

quently the contact structure at the population level) or the

minimum level of detail needed to accurately capture

important features of contact structure.

Some of these challenges can be solved using new

approaches. Great potential exists for increased use of exper-

iments in either common wild animal populations or
livestock systems. There is excitement about using new patho-

gen genetic markers from viruses, bacteria and the gut

microbial community to infer transmission networks. The

transmission networks could be used to infer contact networks,

which could be used to simulate pathogen spread with similar

modes of transmission. Finally, new computational tools are

being developed to keep up with the influx of large contact

datasets, and new modelling methods are being designed to

incorporate the importance of including temporal changes on

the contact network into dynamic network models. Many of

these novel methods are being developed on an individualized

case-by-case basis; hence no off-the-shelf and user-friendly

software currently exists for these needs.

While the progression towards using new genetic markers

and developing computational techniques for contact networks

can provide powerful methods for understanding disease

dynamics in animal populations, the increasing complexity of

methods could present an obstacle in terms of accessibility.

Behavioural ecologists, producers or veterinarians would

likely find some of the cutting-edge contact network modelling

methods too mathematical and theoretical. However, access to

many of these new methods is possible through collaborations

with physicists, bioinformaticians or molecular analysts who

are developing and using the new methods. Collaboration

between disease modellers and scientists who know the data

and the field system well can shed light on animal epidemiology

[150,151] and can make headway on discerning both theoretical

and applied questions. Applied questions could become more

relevant if network models were constructed with an appropri-

ate policy analysis as the output (e.g. evaluate vaccination

versus do nothing, and the cost/benefit of each approach), as

is being done in the field of public health. In addition, collabor-

ation will likely expand the utility of contact network models in

shedding light on the linkages between sociality (e.g. contact

networks) and health outcomes (e.g. risk of infectious pathogen

exposure or acquisition of beneficial bacteria). Contact network

models could be used to compare the effects of increased

sociality on health at a population level, and the role of

social individuals on an individual level, including the role

of social factors in infectious disease spread.
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