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Increased risk of infectious disease is assumed to be a major cost of group

living, yet empirical evidence for this effect is mixed. We studied whether

larger social groups are more subdivided structurally. If so, the social subdivi-

sions that form in larger groups may act as barriers to the spread of infection,

weakening the association between group size and infectious disease. To

investigate this ‘social bottleneck’ hypothesis, we examined the association

between group size and four network structure metrics in 43 vertebrate and

invertebrate species. We focused on metrics involving modularity, clustering,

distance and centralization. In a meta-analysis of intraspecific variation in

social networks, modularity showed positive associations with network

size, with a weaker but still positive effect in cross-species analyses. Network

distance also showed a positive association with group size when using intra-

specific variation. We then used a theoretical model to explore the effects of

subgrouping relative to other effects that influence disease spread in socially

structured populations. Outbreaks reached higher prevalence when groups

were larger, but subgrouping reduced prevalence. Subgrouping also acted

as a ‘brake’ on disease spread between groups. We suggest research directions

to understand the conditions under which larger groups become more subdi-

vided, and to devise new metrics that account for subgrouping when

investigating the links between sociality and infectious disease risk.
1. Introduction
The social transmission of infectious agents is widely expected to increase with

group size in animal societies [1–4]. Some empirical evidence supports this

prediction. For example, Whiteman & Parker [5] found higher louse abundance

in larger aggregations of Galapagos hawks (Buteo galapagoensis), while Ezenwa

[6] discovered a positive association between prevalence of intestinal parasites

and group size in African artiodactyls. Across primates, malaria prevalence

increases with group size in comparative tests [7,8], and a recent study found

evidence for positive selection on genes related to immunity in species living

in larger groups [9]. Despite the intuitive appeal of the ‘group size–infectious

disease effect’, some studies have failed to discover the expected positive associ-

ation. For example, Arnold & Lichtenstein [10] did not find significantly higher

levels of ectoparasite infection in an intraspecific study of alpine marmots

(Marmota marmota) living in larger groups, and in comparative studies of pri-

mates, group size showed no significant associations with immune system

parameters that are expected to proxy disease risk [11–13].

Similarly, complex relationships exist between disease risk, group size and

social organization in insect societies [14], whose evolution also has been

strongly influenced by infectious disease [15–17]. For example, pathogen infec-

tion rates in bumblebee colonies increase with interindividual contact rates [18],

which should increase with colony network density and size. However, in an
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infection study, termite nymphs had higher fungal infection

rates when reared in smaller groups or alone, versus in

groups of moderate size [19]. Increased susceptibility to

socially transmitted infectious agents has been reported in

smaller and larger honeybee colonies relative to those of

moderate size [20,21].

In some cases, a negative association between group size

and infectious disease makes sense. For example, an individual

living in a larger group may obtain relief from vectors that

actively search for their hosts, such as biting flies and the infec-

tious diseases that they transmit (e.g. yellow fever virus and

filarial nematodes). This may arise through the encounter-

dilution effect, where detection of a group by a searching

parasite increases more slowly than group size and the prob-

ability that an individual is attacked decreases with group size

[22,23]. Overall, these effects can result in a lower per capita
biting rate, and thus a negative association between group

size and infection risk. Evidence for the encounter-dilution

effect has been proposed for several systems, including biting

flies on horses [24] and ectoparasites on rodents [25].

To make sense of these diverse patterns and potential effects,

researchers have turned to meta-analyses to assess the linkage

between group size and infectious disease risk across taxa

[23,26,27]. In one recent meta-analysis, Rifkin et al. [26] found

that 19 of 69 studies showed a negative association between

group size and infectious disease (not all significant). Across

all parasite and pathogen types, the average effect size was

only r ¼ 0.141, which is considered a ‘weak’ effect [28]. Counter

to predictions of the encounter-dilution effect, the authors found

that vector-borne infectious diseases and parasitoids showed the

highest (positive) effect sizes among five subsets of parasites. In

another recent meta-analysis, Patterson & Ruckstuhl [27] found

larger effect sizes for some subsets of parasite and pathogen

types, and a negative association between group size and para-

sitism for mobile parasites, but weak (non-significant) effect

sizes involving parasite richness.

In this paper, we investigate the hypothesis that social net-

work structure modulates the association between group size

and infectious disease risk: larger groups may be more subdi-

vided structurally, resulting in social subgroups that act as

transmission bottlenecks within the group [29]. If so, these

social barriers would offset the increased potential for an infec-

tious agent to spread in larger groups, and thus reduce the

overall association between group size and infectious disease

risk (although it need not eliminate the association completely).

Several studies have investigated aspects of this ‘social bottle-

neck hypothesis’ [30–32]. In a study that directly investigated

network structure in non-human primates, Griffin & Nunn

[29] found a positive association between group size and

social network subdivision (community modularity), and

negative associations between modularity and parasite rich-

ness (including micro- and macroparasites). However, several

issues with this study suggest that further research is needed:

sample sizes were small, the metric of community modularity

used may show a mathematical relationship with network size,

and data on parasite richness and network structure for each

species were obtained from different social groups (owing to

lack of information on the same social groups).

To investigate the social bottleneck hypothesis, we com-

bined empirical and theoretical approaches to examine the

links between group size, group subdivision and disease

spread. Empirically, we expanded the taxonomic scope of the

analysis to include a broader array of organisms (including
social insects), and included additional measures of network

structure. We used meta-analysis and phylogenetic compara-

tive methods [33,34] to investigate whether group size

covaries with these network metrics within and across species.

We also developed a theoretical model that simulates the spread

of a socially transmitted infection in social groups varying in

size and degree of subdivision. We compare disease prevalence

and spread in relation to subgrouping and other variables rel-

evant to social disease transmission, predicting that greater

subgrouping will limit outbreak size, because infections will

tend to be more contained within subgroups. Importantly,

our model enabled us to assess how the effect of substructure

within groups compares with other epidemiologically impor-

tant drivers of outbreak size, such as mortality rates and per

contact probability of transmission.
2. Material and methods
(a) Social networks and network structure
We obtained data on social networks from 102 social groups in

43 species of animals. Network data were gathered by surveying

the literature for published association matrices and by contact-

ing authors for permission to use data for matrices not directly

published, but for which network analyses had been performed.

To generate networks [35], we generally preferred social

behaviours involving affiliative associations, although some

agonistic interactions were also used. For 11 species, data were

available for more than one social group, meaning that we had

intraspecific variation recorded in the database; for seven of

these species, we obtained four or more networks, allowing us

to examine the association between group size and network

characteristics within species (and to combine these intraspecific

analyses in a meta-analysis of different species). Network sizes

ranged from 3 to 143, with a mean of 23.9; 36 of the 102 networks

had fewer than 10 nodes. Details are provided in the electronic

supplementary material, including information on sources of

data, type of interaction used and whether the animals were

from wild or captive populations.

We generated weighted social networks, with symmetric ties

(assuming no difference between ij and ji interactions) in undir-

ected networks to allow for the greatest inclusion of networks;

when provided, ij and ji weights were summed, and then all

ties were normalized, so that the average tie strength was equal

to 1. We chose network metrics that we expected to be mathemat-

ically independent of, but empirically associated with, network

(group) size, and that capture different aspects of network

structure: modularity, clustering, distance and centrality.

The first metric is Newman’s [36] leading-eigenvector measure

of community modularity, hereafter called Newman’s modularity.

This is one of multiple measures of modularity that gauge how

divided a given graph is into subgroups, with higher values indicat-

ing greater subdivision into distinct subgroups. Newman’s

algorithm was designed to be mathematically independent of net-

work (group) size. As such, it has been used to investigate

associations between network size and modularity in metabolic

networks [37], although we acknowledge that constraints exist on

the number of modules at extremely small group sizes. As a

measure of network substructure, Newman’s modularity offers

the best test of the social bottleneck hypothesis; in this context, we

predicted that modularity shows a positive association with

group size. Newman’s modularity was calculated using the R

[38] package ‘igraph’ [39].

As a second metric, we calculated the clustering coefficient,
which quantifies how densely direct neighbours are connected

to one other (i.e. the number of links between neighbours
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divided by the maximum number of links that could exist

between them). Clustering measures variation in connectivity

among nodes at a more local level than does modularity. It

evaluates the prevalence of those cases in which a node is con-

nected to two other nodes, and those are also connected to

each other (forming a triangle), in essence capturing the redun-

dancy of ties. This binary measure uses presences or absences

of ties, rather than their weights, to provide a more readily intel-

ligible metric. Predictions are less clear-cut for the clustering

coefficient than for Newman’s modularity and will depend on

the specifics of the network and the initially infected individual.

While we generally expect that disease transmission will typi-

cally increase in networks with higher clustering owing to

increased redundancy of ties, and therefore greater opportunity

for transmission [40,41], these patterns are likely to be weaker

and may be more complex than for Newman’s modularity.

Clustering coefficients were calculated using UCINET 6 [42].

For a third metric, we calculated a weight-normalized distance
between nodes, using Opsahl’s [43] updated algorithm for

Dijkstra’s [44] cost-corrected shortest distances from one node to

another. In this measure, distances are represented as the number

of ‘normalized’ ties (a tie of the average weight of all ties in the net-

work) that compose the shortest path between two nodes. We used

the mean of all shortest paths within a network to represent the

average shortest distance between nodes in the network, with

larger distances representing a less traversable network. Weight-

normalized distances were calculated using the R package ‘tnet’

[45]. We checked for the effect of weighting by comparing the

same network measures for the binary (a more common measure

of shortest distances) and weighted versions of all networks, and

the difference was negligible. Increased internodal distance may

increase with group size, and could delay the rate of disease trans-

mission across the entire network. However, in social networks,

distance can be shortened by modularity in network structure [40].

A fourth measure, eigenvector centralization, captured variation

in connectedness across nodes in the graph. Eigenvector centrality,

the nodal metric that corresponds to and composes the network-

level metric of centralization, is the measure of the influence of a

node in a network [46,47]. Euclidean-normalized eigenvector cen-

tralities of all nodes are used in calculating a single eigenvector

index for the entire network, called eigenvector centralization.

All centralities are compared with that of the most central node,

such that lower eigenvector centralization values denote a less cen-

tralized network in general, where ties are more egalitarian in their

distribution. Higher eigenvector centralization values denote a

more centralized network, where one or a few nodes efficiently

connect the highest-degree nodes of the network. Eigenvector cen-

tralization was calculated using the R package ‘igraph’ [39]. While

the social bottleneck hypothesis does not explicitly predict the

relationship between eigenvector centralization and group size,

this measure quantifies the evenness of the relative importance

of individuals in the group. From the viewpoint of disease

spread within groups, one might expect that an infectious agent

would move more rapidly across a more centralized network.

However, because removal of highly central nodes can fragment

a centralized network, this effect would depend, in part, on patho-

gen attributes such as disease latency, case fatality rates and the

degree of immunity after clearing infection.

In summary, we provide analyses using four measures of

network structure, some of which are weighted and some of

which are not. Newman’s modularity provides the clearest pre-

diction of the social bottleneck hypothesis, and thus is the one

we focus on for testing that hypothesis.
(b) Statistical analysis of comparative data
For species with four or more networks available, we calcula-

ted correlation coefficients between network structure and
network size for each of the measures of network structure sep-

arately, and then conducted a meta-analysis in the software

COMPREHENSIVE META-ANALYSIS, v. 2 [48]. We also conducted a

phylogenetic meta-analysis of the resulting effect sizes using

the methods described by Lajeunesse [49], as implemented in

PHYLOMETA [50].

We also ran phylogenetic comparative analyses involving

phylogenetic generalized least-squares (PGLS) in R using the

package caper [51], with a statistical model of ‘network

structure � group size’. For species with more than one network,

we avoided taking an average of the network metric, and instead

used only a single network for each species, with data on net-

work size and the network metrics thus obtained from the

same network. To deal with this intraspecific variation, we ran-

domly chose one network for each species (if more than one

was available), and then ran a standard PGLS on the resulting

dataset, including estimation of the branch scaling coefficient l,

which is a measure of phylogenetic signal [52,53]. This was

repeated 1000 times for each analysis, and mean and distri-

butions of resulting statistical output were compiled. We

assessed significance as having a mean p-value less than 0.05.

For both the meta-analysis and the comparative analysis, we

compiled a phylogeny for the mammalian species in the final

dataset by pruning the published, revised mammalian supertree

from Bininda-Emonds et al. [54], and by manually grafting

additional branches as needed, using node estimates from

TIME-TREE for splits among vertebrates, between vertebrates and

arthropods, and between wasps and bees [55]. Additional

branches were added for the split between the ant genera Pogono-
myrmex and Camponotus (at 104.7 Ma) from Brady et al. [56], and

for the recent split between the two wasp species of Ropalidia,

arbitrarily estimated at 1 Ma, based on their status as congeneric

species (no genetic estimates were available for these species).

The tree is provided in the electronic supplementary material.

To isolate the effects of deep branches in the trees (i.e. between

invertebrates and vertebrates), we ran comparative analyses

with both the full phylogeny and with a phylogeny composed

only of the mammals.
(c) Theoretical model of disease spread
Our theoretical model was constructed as a modification of a

meta-population model used previously to study the spread of

socially transmitted infections [57] and cultural traits [58]. The

model was implemented in MATLAB version R2013b. Simu-

lations took place on a 10 � 10 square lattice, where each cell

represented a distinct social group that was formed based on

user-specified values for group size (g) by drawing a random

number from a Poisson distribution (with mean of g for

number of females, which was doubled to give the total group

of males and females). Individuals were characterized by infec-

tion status, including number of days in an incubation period

(c, i.e. exposed but not yet infectious) and, following host incu-

bation, number of days in a host infectious period ( f ). All

individuals in the population were initially uninfected.

Individuals were randomly assigned to one of s subgroups

within each social group; setting s equal to 1 resulted in no sub-

group structure. We assumed that disease spread was higher

among individuals within the same subgroup than among indi-

viduals in different subgroups, with subgroup affiliation

representing the only source of heterogeneity in the edges of

the network (although an actual network was not generated).

By assuming only two kinds of ties—those within subgroups

(modules) and those between subgroups—our model deals

with important types of nodal heterogeneity in real-world sys-

tems that may affect disease spread (e.g. super-spreaders),

which may obscure the effect we were most interested in

(subgrouping).



Table 1. Simulation parameters and range of values used (Latin hypercube
sample).

parameter minimum maximum

group size: females (g) 8 60

number of subgroups (s) 2 6

mortality ratea (mb) 0.000055 0.0055

disease mortality (md) 1 11

transmission within subgroups (b1) 0.01 0.03

transmission between subgroups (b2) 0.001 0.01

dispersal rate (i) 0.001 0.01

incubation period (c) 1 41

infectious period ( f ) 1 41
aBased on life span range of 0.5 – 50 years and time step of 1 day in the
simulations.
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Model dynamics proceeded in discrete time steps, which rep-

resented single days in the lives of host individuals. In each time

step, the following processes took place sequentially: (i) infection

of hosts through exposure to other infected individuals in the

same social group; (ii) deaths due to the intrinsic mortality rate

and/or disease-related mortality; (iii) stochastic dispersal of indi-

viduals to neighbouring groups; and (iv) stochastic births of

individuals in groups to replace individuals lost to background

(but not disease-related) mortality.

More specifically, infection occurred with transmission prob-

ability b1 through contact with an infectious individual in its

subgroup, and b2 through contact with an infectious individual

in a different subgroup (but within the same social group).

In all simulations, b1 . b2. We assumed that after clearing

infection, individuals lacked immunity to the infectious agent

and therefore could be re-infected (i.e. a susceptible–exposed–

infected–susceptible (SEIS) model); this assumption is especially

reasonable for macroparasites, which are common in animal

social groups and generally do not elicit lifelong or complete

immunity. Each individual experienced a baseline probability

of death (mb), and infected individuals had an additional source

of mortality due to disease (md), where md was a multiplier of mb

(range of values is given in table 1).

Births occurred for groups with at least one individual pre-

sent. We assumed that the population was at carrying capacity

when the simulation was initiated, and we implemented extra

calculations to help maintain the initial demographic context

throughout a simulation run. To achieve this, we recorded the

initial sizes of each group. Groups that were smaller in the cur-

rent time step relative to their initial values—but that still had

at least one individual in the group—had a higher probability

of receiving a birth. Specifically, they were twice as likely to be

assigned a birth as other groups that matched or exceeded initial

group sizes. It is worth repeating, however, that disease-related

mortality resulted in overall reductions in population size, as

these individuals were not replaced.

Dispersal of individuals to neighbouring groups occurred

with probability i. The new group was selected randomly from

among those on the border or corners of the origination cell,

and thus not determined based on group size, although dispersal

was not allowed to cells where the group had disappeared owing

to deaths of all individuals. The lattice was bounded spatially

and was not reflective; thus, a dispersing individual that hit a

boundary did not move in that time step. Dispersal was com-

pleted in one time step. We assumed that dispersal was more

likely for groups in which the number of individuals of a particu-

lar sex was above the initial values for the number of individuals

for that sex, thus using a procedure similar to that described

above for mortality to maintain the initial population structure.
(d) Model parametrization and analysis of output
To explore how multiple parameters influence disease dynamics,

we undertook multivariate analyses using random sampling via

Latin hypercube sampling, which is a type of stratified Monte

Carlo sampling that is more efficient than random sampling or

assessing all possible parameter values [58–61]. As summarized

in table 1, nine parameters were varied across flat distributions in

the Latin hypercube sample: group size (g), number of sub-

groups (s), transmission probability within subgroups (b1),

transmission probability between subgroups (b2), intrinsic (mb)

and disease-related mortality (md), rate of dispersal (i), incu-

bation period (c) and infectious period ( f ). For parameters that

required integer or discrete values (s, i, c and f ), we sampled

them as continuously varying traits in the Latin hypercube

design and then averaged to units required by the simulation

model (group size, g, was drawn from a Poisson function,
resulting in an integer value for the number of individuals of

one sex in a group, and doubled to represent both sexes).

With this approach, we generated N ¼ 500 parameter sets for

the simulation. For simulation Ni, we ran the model with the

Latin hypercube sample Ni, and then re-ran the model for

sample Ni with number of subgroups (s) set to 1 to simulate trans-

mission in groups without substructure, resulting in a total of 1000

simulations (one-half of which had no subgrouping within

groups). This produced a paired-design simulated dataset that

enabled us to test whether prevalence was lower when subgroups

were present, independently of variation in other parameters. In

addition to simply comparing output from simulations with and

without subgrouping, we investigated output variables (average

prevalence and number of groups infected, i.e. disease spread) in

a statistical model that included all the predictor variables, but

with subgrouping set to a binary variable, to indicate whether

the simulation had subgroups. Among the output samples with

subgrouping, we also tested whether the number of subgroups

had a negative effect on prevalence and number of groups infected,

and how the effect size for s compared with effect sizes of other

variables in the model, particularly female group size (g).

For statistical testing, we used an information theoretic fra-

mework based on model averaging [62]. Specifically, we

obtained an Akaike information criterion (AIC) weight for each

of the possible models, and then averaged the subset of models

with Akaike weights greater than 0.001. We implemented full-

model averaging, in which means and variances of parameters

that were not included in a model were set to 0 for that model

and included when averaging the coefficient estimates. We stan-

dardized coefficients so that larger coefficients indicated larger

effects. We assessed ‘significance’ via the ‘importance’ measure

for each variable, which indicates the cumulative Akaike weights

in the models that included that variable (and thus ranges from

0 to 1).

Analyses were conducted in R [38] with the packages MuMIn

[63] and QuantPsyc [64]. To obtain the Latin hypercube sample,

we used the R package tgp [65,66].
3. Results
(a) Network structure and group size: meta-analysis
We first conducted a meta-analysis of associations between

group size and network metrics using data on seven species

with intraspecific variation. We tested whether there was
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Figure 1. Results of meta-analysis. Panels show forest plots depicting the effect size and 95% confidence limits for individual studies in analyses of (a) Newman’s
modularity, (b) clustering coefficient, (c) weight-normalized distance and (d ) eigenvector centralization. The diamond symbol shows the overall effect size and
confidence limits.

Table 2. PGLS results, examining the full dataset of vertebrates and invertebrates. Sample size was N ¼ 43 (number of analysed species) in all analyses. Aside
from ‘% coefficients .0’, all entries in this table are means across 1000 random subsets of data to account for intraspecific variation.

model % coefficients >0 (%) PGLS coefficient standard error p-value R2 lambda

Newman’s modularity 100 0.002 0.001 0.079 0.081 ,0.001

clustering coefficient ,1 20.004 0.003 0.207 0.042 ,0.001

weight-normalized distance 94.7 0.011 0.019 0.549 0.012 0.344

eigenvector centralization 0.5 20.001 0.001 0.404 0.026 0.231

Table 3. PGLS results, examining mammals only. Sample size was N ¼ 38 in all analyses. Aside from ‘% coefficients .0’, all entries in this table are means
across 1000 random subsets of data to account for intraspecific variation.

model % coefficients >0 (%) PGLS coefficient standard error p-value R2 lambda

Newman’s modularity 100 0.005 0.003 0.210 0.061 ,0.001

clustering coefficient 21.9 20.006 0.011 0.594 0.015 ,0.001

weight-normalized distance 5.7 20.029 0.050 0.566 0.012 ,0.001

eigenvector centralization 17.4 20.001 0.003 0.621 0.011 0.005
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phylogenetic signal in the meta-analysis [49], and found no

evidence for such an effect (e.g. for Newman’s modularity,

AICnon-phylo-model ¼ 21.97, AICphylo-model¼ 30.44, favouring the

non-phylogenetic model). Thus, we used standard (non-

phylogenetic) meta-analysis techniques. Results are summarized

in figure 1. Newman’s modularity and weight-normalized dis-

tance both showed a strong positive relationship with group

size within species (Newman’s modularity: Z ¼ 5.052, p ,

0.001; weight-normalized distance: Z ¼ 3.821, p , 0.001). The

results involving Newman’s modularity support predictions of

the social bottleneck hypothesis, whereas the results involving

distance indicate that networks are less traversable when

groups are larger. In contrast, the clustering coefficient and

eigenvector centralization showed no discernible relationships
with group size (clustering coefficient: Z ¼ 0.258, p ¼ 0.797;

eigenvector centralization: Z ¼ 0.560, p¼ 0.575).

(b) Network structure and group size: phylogenetic
generalized least-squares

We next conducted phylogenetic comparative analyses of

correlated evolution using PGLS across species, using a

resampling procedure to deal with intraspecific variation

when it existed. Results are provided in tables 2 (all animals)

and 3 (mammals only). For Newman’s modularity using the

full dataset, the association with group size was always posi-

tive across randomized datasets (figure 2), but not

consistently significant (mean p-value of 0.079). Statistical
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significance was on average weaker when only mammals

were analysed, although all estimated regression coefficients

remained positive (table 3). The positive trend across species

is weaker than in meta-analysis of within-species associations

of network structure and group size (figure 1). We used

matched data on network metrics and size from the same

social groups rather than averaging intraspecific data for a

‘species-specific’ network. Thus, weaker results in the

cross-species analyses are likely to arise because additional

interspecies differences account for network modularity

independently of group size.

The clustering coefficient tended to show a negative associ-

ation with group size based on the regression coefficient, but

again, the mean p-value was above our significance threshold

when all species were examined (table 2) and when focus-

ing on mammals (table 3). Similarly, weight-normalized

distance and eigenvector centralization showed no significant

associations with group size. Based on the signs of the esti-

mated regression coefficients, weight-normalized distance

tended to show consistent positive associations with group

size across all species, and eigenvector centralization showed

consistent negative associations with group size, yet this con-

sistency disappeared when investigating only mammals

(tables 2 and 3). The consistency in the sign of the regres-

sion coefficients was not matched with compelling levels of

statistical significance.
(c) Theoretical model of disease spread
Across 1000 simulations, maximum prevalence showed a

bimodal distribution, reflecting that the simulation failed to

take off in many simulation runs (figure 3a); maximum

prevalence was less than 5% in 253 of the simulations. In

most simulations, the disease went extinct (figure 3b), as

expected given that disease-induced mortality was greater
than background mortality and individuals that died from

the disease were not replaced. However, in 45 of the simu-

lations, a peak was reached and the prevalence was still

declining when the simulation ended (figure 3c). To control

for variation in disease dynamics of different simulation

runs, we based our analyses on results involving maximum

prevalence, rather than final or average prevalence.

We also examined the number of groups infected in a

simulation run. In 183 of the 1000 simulations, the disease

never left the starting group (i.e. only one group was

infected), whereas in 595 cases, all 100 groups were infected

at least once during the simulation run. The mean number

of groups infected (out of 100 on the lattice) was 73.1, reflect-

ing that the disease was very effective in spreading across the

lattice in most simulations. Overall, initial indications are that

the simulation parameters used in the Latin hypercube

sample captured substantial variation in outbreak success.

We found that maximum prevalence was substantially

higher in the 500 simulations without subgrouping (median

of 73.4%, standard deviation ¼ 0.353) than in the 500 simu-

lations with subgrouping (median of 39.1%, standard

deviation ¼ 0.355). As shown in figure 4, the patterns were

consistent in the vast majority of simulations, with subgroup-

ing resulting in lower peak prevalence in all but 45

simulations (given the very low prevalence for ‘no sub-

groups’ in most of these cases, they typically represent

stochastic early extinctions). A similar pattern was found

when examining the number of groups infected, with

higher numbers of social groups infected on the 100-group

lattice without subgrouping (mean ¼ 81.1 groups), when

compared with cases when individuals within social groups

showed structured interactions (mean ¼ 65.0). In only 41

paired comparisons (out of 500) did the number of groups

infected come out higher in simulations with subgroups pre-

sent than with subgroups absent (and most of these again
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Figure 3. Example simulation output. (a) The distribution of maximum preva-
lence at the end of the full 1000 simulations, combining results of simulations
with and without social substructure. (b) Example of prevalence over time for a
run in which the simulated infectious disease went extinct. (c) Example of preva-
lence over time for a run in which the simulated infectious agent was heading
toward extinction, but had not yet reached that point. On the basis of the pat-
terns in b and c, we focused on maximum prevalence over the course of a
simulation as one of our two outcome measures from the simulation (with
number of groups infected as the other outcome measure).
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probably represent stochastic extinctions). Thus, we find

clear evidence that subgrouping resulted in fewer groups

becoming infected.

We also used the simulations to assess the effects of sub-

grouping relative to other epidemiologically important

variables, such as mortality resulting from infection. First,

we examined predictors of maximum prevalence across all

simulations, with predictors involving the variables shown

in table 1 and subgrouping coded as a binary factor (0 indi-

cated no subgrouping, whereas 1 indicated subgrouping

was present). These analyses revealed clear positive effects

of group size on maximum prevalence, and clear negative

effects of subgrouping on maximum prevalence (table 4).

Thus, individuals in larger groups had more risk, but an

independent negative effect existed owing to subgrouping.

These effects are comparable in size to other key variables,

such as mortality rates and infectious period, and somewhat

larger than the effects of transmission probability. Similar

results were obtained when using the number of subgroups

as a predictor (rather than using the binary codes), and

when examining patterns only within the subset of

simulations that involved subgrouping (2 , s , 6).

We also investigated a linear model predicting the

number of groups infected. We again found strong positive

effects of group size, with g having the largest effect size in
the model (table 5). Subgrouping—coded as a binary

factor—showed a negative effect, and was present in all

models retained, with importance of 1.0. Only infectious

period and group size had a larger standardized regression

coefficient (in absolute magnitude) than subgrouping in

this statistical model. We also found that probability of trans-

mission within subgroups (b1) was more important than

transmission of infection across subgroups (b2) in accounting

for the number of groups infected.
4. Discussion
One of the intrinsic costs of social life is increased risk of

acquiring socially transmitted infectious agents. Disease

transmission is theoretically expected to increase with

group size. However, the individuals in social groups are

not randomly connected; a benefit of this social structure

may be the mitigation of disease impact as group size

becomes larger. We call this the social bottleneck hypothesis.

We used empirical comparative and meta-analyses to

determine whether measures of social network structure

covary with group size, and we coupled these tests with

a simulation model of disease spread in relation to group

structure and other variables. Our empirical analyses focu-

sed on potential links between network structure and

size, expanding on a previous analysis of primates [29]. The

data indicate that network substructure, as measured by

Newman’s modularity, increases in larger social groups,

supporting the social bottleneck hypothesis. In a meta-

analysis of variation in group size and modularity in seven

species, we found consistently positive associations between

these variables. Although weaker in comparative analyses,

indications of a positive effect of network size on modularity

remained. Differences between within-species and cross-

species analyses do not reflect issues with treating group

size and network properties as characteristic of a species in

the comparative tests, because our comparative analyses actu-

ally use paired data on network characteristics and network



Table 4. Effect of group subdivision and other simulation parameters on ‘maximum prevalence’.

variable estimate lower CI upper CI importance

intercept 0.000 20.038 0.038 n.a.

female group size (g) 0.461 0.423 0.499 1.00

presence of subgroups (binary factor) 20.259 20.297 20.222 1.00

transmission within subgroups (b1) 0.124 0.086 0.162 1.00

transmission between subgroups (b2) 0.060 0.021 0.098 0.98

dispersal rate (i) 0.085 0.047 0.123 1.00

mortality rate (mb) 20.313 20.351 20.275 1.00

disease mortality (md) 20.256 20.294 20.218 1.00

infectious period ( f ) 0.333 0.295 0.371 1.00

incubation period (c) 0.009 20.029 0.046 0.28

Table 5: Effects of group subdivision and other simulation parameters on ‘number of groups infected’.

variable estimate lower CI upper CI importance

intercept 0.000 20.050 0.050 n.a.

group size (g) 0.366 0.315 0.416 1.00

presence of subgroups (binary factor) 20.192 20.242 20.142 1.00

transmission within subgroups (b1) 0.087 0.037 0.138 0.99

transmission between subgroups (b2) 0.036 20.015 0.087 0.49

dispersal rate (i) 0.038 20.013 0.088 0.51

mortality rate (mb) 20.178 20.229 20.128 1.00

disease mortality (md) 20.092 20.143 20.042 1.00

infectious period ( f ) 0.329 0.279 0.379 1.00

incubation period (c) 20.037 20.088 0.013 0.51
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size rather than averaging to the species level. Instead, weaker

results in comparative tests suggest that biological differences

across the wide range of species in our comparative analysis

affect the network measures. Other network parameters

also covaried with group size, especially weight-normalized

distance in the meta-analyses.

Our theoretical model investigated the effects of

subgrouping on disease spread. As expected, greater sub-

grouping slowed the spread of disease and reduced

maximum prevalence in the simulation model. The statistical

analyses revealed that the effect of subgrouping was as

important as some other key epidemiological parameters in

accounting for the spread of disease. Of course, these con-

clusions are only valid in the context of the simulation

design and range of parameters used here. While it is

plausible that similarly strong effects of subgrouping exist

in real-world systems, we presently lack the data to assess

this possibility directly.

We focused on how subgrouping may covary with group

size and potentially mitigate the spread of a socially trans-

mitted disease, partly as an explanation for the weakness of

the group size–infectious disease effect in one recent meta-

analysis [26]. Several other explanations for a weak group

size–infectious disease effect should also be considered.

First, it could be that the relevant level of analysis is the

meta-population, and that living in groups—regardless of
how big—acts to ‘quarantine’ infectious agents at the popu-

lation level. Indeed, it is useful to consider subgrouping at

multiple levels: individuals within groups, groups within

populations and even different populations. Rates of contact

between these subdivisions are likely to play important roles

in disease dynamics.

Second, animals in larger groups may invest more in

immune defences, as suggested in a recent study of primate

molecular evolution [67]. However, other studies of primates

have failed to find support for this possibility in comparative

analyses of leucocytes [11–13] or spleen size [68]. These

mixed findings suggest—at least in primates—that individual

immune responses are unlikely to be a major response to

increased disease risk in larger groups, although more

research is clearly needed to rule out such effects. A negative

relationship between sociality and individual immunity may

actually be found in some taxonomic groups where group

level defences occur [16]. Honeybees, for example, have

reduced numbers of immunity and detoxification genes

[69,70], suggesting that highly social systems may shift from

individual physiological immunity to effects at the social

group level [15,71]. This ‘social immunity’ can be enhanced

by behavioural strategies, such as social grooming [17]

and/or isolation or removal of infected individuals. These

behaviours, in turn, can be influenced by group size. In

ants, for example, allogrooming rates [15] and the relative
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performance of maintenance behaviours, such as waste

removal [72], have been shown to increase with group size.

A third possibility is that only a minority of the infectious

agents in wild populations spread from host to host through

social contact; instead, parasites and pathogens of wildlife

may show a proportionally greater occurrence of routes invol-

ving faecal–oral transmission and vector transmission, and

the strength of these transmission pathways may correlate

more weakly with group size. However, theoretical models

indicate that group size covaries with the spread of faecally

transmitted pathogens [73], and a recent meta-analysis

found the strongest effect sizes among vector-transmitted

parasites and pathogens [26]. Hence, this explanation also

appears to fall short, although more research is needed in a

wider array of biological systems.

Finally, social structuring may provide other mechanisms

to generate heterogeneity beyond the measures of network

structure examined here. Genetic variation can theoretically

provide a barrier to disease spread if a subset of related indi-

viduals express immunity, leading to the suggestion that

parasitism may have favoured the evolution of multiple

mating by queens in highly eusocial ant and bee colonies

[15]. In mammalian societies, relatedness could provide sub-

structure if individuals within family groups are more likely

to contact each other, or if dominance rank affects social

interactions. Substructuring may similarly be generated by

differences in behavioural roles and spatial separation

[14,41]. Groups could also substructure by age, as found in

the network structure of honeybee colonies. Older bees,

which are more likely to forage and thus to be exposed to

pathogens in the environment, are more likely to contact

one another than younger bees, and this provides a buffer

against pathogen exposure for younger bees in the hive [41].

Our findings also suggest that research is needed to

identify alternative metrics of group size that account for

network structure. In essence, we need a measure of

effective group size, from the standpoint of disease trans-

mission in a group. Just as effective population size can be

estimated as the harmonic mean of population size over

time, effective group size could be the harmonic mean of

module sizes in a group. Or, simulation approaches could

be used to estimate mean and variance of outbreak size for

groups with different substructuring characteristics. This

was essentially the approach taken by Griffin & Nunn [29],

and it could be extended to parametrize for a specific
infectious agent, including for agents that elicit lasting immu-

nity. Indeed, a single measure of effective group size may be

impossible to obtain, given that different infectious agents

will perceive a group and population differently based on

incubation period, transmissibility, dispersal, immunity and

transmission mode.

A related issue involves development of additional net-

work structure metrics of modularity, and ideally metrics

that are independent of group size. We focused on a

measure—Newman’s modularity—that is proposed to be

independent of group size [36]. However, group size itself

is an important aspect of subgrouping because, for example,

many more possibilities for forming subgroups exist among

30 individuals than among four. Larger groups can also

have more subgroups than smaller groups.

In conclusion, our combined empirical and theoretical

analysis reveals real and potential links between group size,

substructuring and socially transmitted infectious diseases.

Of the network measures we investigated, modularity—

i.e. subgrouping—is one that covaries with group size. It

could be that increased subgrouping is a counterstrategy to

infectious disease risk in larger groups that is shaped by natural

selection, or greater subgrouping could be a simple by-product

of limited amounts of time for interaction in larger groups.

Understanding the mechanisms that generate this pattern is

important for many aspects of sociality, and for understanding

disease dynamics in wildlife populations.

Data accessibility. Data used for the comparative and meta-analyses are
provided in the electronic supplementary material.

Acknowledgements. We thank Daniel Blumstein and Raghavendra
Gadagkar for providing data, Alexander Vining for help with format-
ting the figures, two anonymous referees and Peter Kappeler for
comments on the manuscript.

Funding statement. This research was initiated through a working group
supported by the National Evolutionary Synthesis Center (NESCent),
NSF no. EF-0423641. Training in phylogenetic comparative methods
was provided by the AnthroTree Workshop, which was supported by
the NSF (BCS-0923791) and NESCent. C.M.M. was supported
by Harvard University and the NSF Graduate Research Fellowship
Programme (DGE-1144152).

Authors’ contributions. C.L.N. initiated and guided the research and
crafted the initial manuscript. Network analyses were led by F.J.
and C.M.M., with data compilation by C.M.M., F.J., J.L.V. and
J.H.F. Comparative and meta-analyses were led by C.M.M. Epide-
miological simulations were led by C.L.N. All authors contributed
to the writing of the manuscript and approved its submission.

Conflict of interests. We have no competing interests.
References
1. Freeland WJ. 1979 Primate social groups as
biological islands. Ecology 60, 719 – 728. (doi:10.
2307/1936609)

2. Møller AP, Dufva R, Allander K. 1993 Parasites and
the evolution of host social behavior. Adv. Stud.
Behav. 22, 65 – 102. (doi:10.1016/S0065-
3454(08)60405-2)

3. Loehle C. 1995 Social barriers to pathogen
transmission in wild animal populations. Ecology
76, 326 – 335. (doi:10.2307/1941192)

4. Altizer S et al. 2003 Social organization and
parasite risk in mammals: integrating theory and
empirical studies. Annu. Rev. Ecol. Evol. Syst. 34,
517 – 547. (doi:10.1146/annurev.ecolsys.34.030102.
151725)

5. Whiteman NK, Parker PG. 2004 Effects of host
sociality on ectoparasite population biology.
J. Parasitol. 90, 939 – 947. (doi:10.1645/
GE-310R)

6. Ezenwa VO. 2004 Host social behavior and parasitic
infection: a multifactorial approach. Behav. Ecol. 15,
446 – 454. (doi:10.1093/beheco/arh028)

7. Davies CR, Ayres JM, Dye C, Deane LM. 1991 Malaria
infection rate of Amazonian primates increases
with body weight and group size. Funct. Ecol. 5,
655 – 662. (doi:10.2307/2389485)
8. Nunn CL, Heymann EW. 2005 Malaria infection and
host behaviour: a comparative study of Neotropical
primates. Behav. Ecol. Sociobiol. 59, 30 – 37. (doi:10.
1007/s00265-005-0005-z)

9. Wlasiuk G, Khan S, Switzer W, Nachman M. 2010
A history of recurrent positive selection at the toll-
like receptor 5 in primates. Mol. Biol. Evol. 26,
937 – 949. (doi:10.1093/molbev/msp018)

10. Arnold W, Lichtenstein AV. 1993 Ectoparasite
loads decrease the fitness of alpine marmots
(Marmota marmota) but are not a cost of
sociality. Behav. Ecol. 4, 36 – 39. (doi:10.1093/
beheco/4.1.36)

http://dx.doi.org/10.2307/1936609
http://dx.doi.org/10.2307/1936609
http://dx.doi.org/10.1016/S0065-3454(08)60405-2
http://dx.doi.org/10.1016/S0065-3454(08)60405-2
http://dx.doi.org/10.2307/1941192
http://dx.doi.org/10.1146/annurev.ecolsys.34.030102.151725
http://dx.doi.org/10.1146/annurev.ecolsys.34.030102.151725
http://dx.doi.org/10.1645/GE-310R
http://dx.doi.org/10.1645/GE-310R
http://dx.doi.org/10.1093/beheco/arh028
http://dx.doi.org/10.2307/2389485
http://dx.doi.org/10.1007/s00265-005-0005-z
http://dx.doi.org/10.1007/s00265-005-0005-z
http://dx.doi.org/10.1093/molbev/msp018
http://dx.doi.org/10.1093/beheco/4.1.36
http://dx.doi.org/10.1093/beheco/4.1.36


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140111

10
11. Nunn CL, Gittleman JL, Antonovics J. 2000
Promiscuity and the primate immune system.
Science 290, 1168 – 1170. (doi:10.1126/science.290.
5494.1168)

12. Nunn CL. 2002 A comparative study of leukocyte
counts and disease risk in primates. Evolution
56, 177 – 190. (doi:10.1111/j.0014-3820.2002.
tb00859.x)

13. Semple S, Cowlishaw G, Bennett PM. 2002 Immune
system evolution among anthropoid primates:
parasites, injuries and predators. Proc. R. Soc. Lond.
B 269, 1031 – 1037. (doi:10.1098/rspb.2001.1950)

14. Naug D, Camazine S. 2002 The role of colony
organization on pathogen transmission in social
insects. J. Theor. Biol. 215, 427 – 439. (doi:10.1006/
jtbi.2001.2524)

15. Schmid-Hempel P. 1998 Parasites in social insects.
Princeton, NJ: Princeton University Press.

16. Meunier J. 2015 Social immunity and the evolution
of group living in insects. Phil. Trans. R. Soc. B 370,
20140102. (doi:10.1098/rstb.2014.0102)

17. Theis FJ, Ugelvig LV, Marr C, Cremer S. 2015
Opposing effects of allogrooming on disease
transmission in ant societies. Phil. Trans. R. Soc. B
370, 20140108. (doi:10.1098/rstb.2014.0108)

18. Otterstatter MC, Thomson JD. 2007 Contact
networks and transmission of an intestinal
pathogen in bumble bee (Bombus impatiens)
colonies. Oecologia 154, 411 – 421. (doi:10.1007/
s00442-007-0834-8)

19. Rosengaus RB, Maxmen AB, Coates LE, Traniello JF.
1998 Disease resistance: a benefit of sociality in the
dampwood termite Zootermopsis angusticollis
(Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 44,
125 – 134. (doi:10.1007/s002650050523)

20. Eischen FA. 1987 Overwintering performance of
honey bee colonies heavily infested with Acarapis
woodi (Rennie). Apidologie 18, 293 – 304. (doi:10.
1051/apido:19870401)

21. Jeffree E, Allen D. 1956 The influence of colony size
and of nosema disease on the rate of population
loss in honey bee colonies in winter 1. J. Econ.
Entomol. 49, 831 – 834. (doi:10.1093/jee/49.6.831)

22. Mooring MS, Hart BL. 1992 Animal grouping for
protection from parasites: selfish herd and
encounter-dilution effects. Behaviour 123,
173 – 193. (doi:10.1163/156853992X00011)
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