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HJV and HFE Play Distinct Roles in Regulating Hepcidin
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Abstract

Aims: Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV,
and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin
regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in
both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the
patho/genesrs of HH, we studied Hfe™"~, Hjv~’", and Hfe '~ Hjv~’~ double-knockout mouse models. Results:
Hfe '~ Hjv mice developed iron overload in multiple organs at levels comparable to Hjv ™/~ mice. After an
acute dehvery of iron, the expressron of hep01d1n (1 e., Hampl mRNA) was increased in the livers of wild-type
and Hfe ™~ mice, but not in either Hjv ™"~ or Hfe ™ H]v mrce Furthermore iron-induced phosphorylation
of Smad1/5/8 was not detected in the hvers of Hjv™"~ or Hfe ™’ va mice. Innovation: We generated and
phenotypically characterized Hfe '~ Hjv~’~ double-knockout mice. In addition, because they faithfully phe-
nocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE
and HJV regulate hepcidin expression. Conclusions: Based on our results, we conclude that HFE may depend
on HIV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE
suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HI'V or that HIV is

sufficient to maintain basal levels of hepcidin. Antioxid. Redox Signal. 22, 1325-1336.

Introduction

RON IS AN ESSENTIAL element for normal cellular function.

However, iron is also a pro-oxidant factor that causes ox-
idative stress by catalyzing a Fenton reaction, yielding re-
active oxygen species. Iron overload-induced oxidative
damage can cause cellular defects such as mitochondrial and
DNA damage, lipid peroxidation, and protein modification,
all of which subsequently cause damage to multiple organs,
including the liver, heart, and pancreas of patients with he-
mochromatosis (18).

Iron metabolism has been studied extensively during the
past decade. In particular, the hepcidin-ferroportin regulatory
axis has been investigated in an attempt to understand how

the body maintains iron homeostasis (2, 13, 16). Hepcidin
was initially identified as an antimicrobial peptide that is
secreted by the liver (20) and exerts negative effects on in-
testinal iron absorption and iron recycling in macrophages
(25). Moreover, classic hereditary hemochromatosis (HH)—
which is characterized by the progressive development of
severe iron overload in multiple organs—can result directly
from hepcidin deficiency (1, 6, 31).

Many proteins and pathways are involved in the regulation
of hepcidin. For example, changes in transferrin saturation
can cause conformational changes in HFE/TfR2 (transferrin
receptor 2), which modulates hepcidin expression (12, 15,
33). Several bone morphogenetic protein (BMP) family
members (including Bmp2, Bmp4, Bmp6, and Bmp9) can
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Innovation

For more than a decade, hepcidin has been studied as a
potential molecule for preventing iron overload. However,
although the proteins HJV and HFE are key modulators of
hepcidin expression, whether these two proteins act via
parallel or converging pathways remains unknown. We
therefore generated Hfe™’"Hjv~"~ mice and found that
these double-knockout mice develop an iron overload
phenotype that is strikingly similar to Hjv~’~ single-
knockout mice. Importantly, the response of hepcidin to
acute iron treatment was dominated by HIJV (but not
HFE), and the mitogen-activated protein kinase (MAPK)/
extracellular signal regulated kinase (Erk) pathway was
not mainly involved in this process. These findings sug-
gest that HJ'V is the key regulator of hepcidin and that HFE
acts in an HJV-dependent manner.

upregulate hepcidin expression via the BMP/Smad pathway
(3, 35). Moreover, inflammatory cytokines (e.g., IL-6) and
infectious stimuli can activate hepcidin via the IL-6/Stat3
pathway (4, 24, 36).

HFE plays a regulatory role in the hepcidin pathway (6,
41), and mutations in the HFE gene cause Type [ HH (10). In
addition, HFE-deficient mice develop an iron overload phe-
notype that is strikingly similar to Type I HH in patients (41),
and a study by Schmidt er al. revealed that HFE positively
modulates the expression of hepcidin (33). HFE interacts
with transferrin receptor 1 (TfR1) and competes with the
receptor’s transferrin (Tf) binding site (23), thereby activat-
ing downstream signaling pathways, including the mitogen-
activated protein kinase (MAPK) pathway. Because the
MAPK pathway can crosstalk with the BMP/Smad pathway,
this activation can upregulate hepcidin expression at the
transcriptional level (15, 33).

HJV is another principal modulator of hepcidin expres-
sion, and mutations in the HJV gene cause Type II HH (27).
Membrane-bound HJV binds to BMPs, thereby acting as a
co-receptor along with the Bmp receptor (3). The expression
of Bmp6 is positively correlated with iron content in the liver
(19), and binding of Bmp6 to the Bmp receptor triggers Smad 1/
5/8 phosphorylation, thus upregulating hepcidin expression.
In vitro studies have shown that HJV is required for activation
of the BMP/Smad pathway (5, 26). Thus, HJV is considered a
necessary component of the Bmp6/Smad pathway.

The relationship between HFE and HJV has long been
debated. Studies suggest that HFE/TfR2 activates the MAPK
pathway (28, 29), although the extent of the crosstalk be-
tween the MAPK and BMP/Smad pathways remains unclear.
Recently, patients with mutations in both HFE and HJV have
been reported (22), revealing the complexity of mutations
and pathogenesis in HH patients. Understanding the roles
played by HFE and HJV in regulating hepcidin will help
unravel the genetic analyses and therapeutic diagnoses of
patients with HH.

To address these issues, we characterized the phenotypes,
hepcidin exyression levels, and Smad phosphorylation lev-
els in Hfe™’~, Hjv~'~ and Hfe '~ Hjv~’~ knockout mouse
models. Interestingly, the Hfe ’~Hjv~’~ double-knockout
mice developed the same iron overload phenotype as Hjv ™/~
single-knockout mice. Consistent with this finding, hepatic
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hepcidin expression and Smad protein phosphorylation levels
were similar between the Hfe '~ Hjv~’""and Hjv~’~ mice.
Furthermore, an acute oral bolus of iron significantly increased
hepcidin mRNA levels in the livers of Hfe ™~ mice, but was
without effect on the Hfe ™"~ Hjv~’~ and Hjv~/~ mice. Based
on these results, we hypothesize that HFE requires HIV to
activate downstream signal transduction pathways.

Results

Hfe knockout does not increase iron overload
in Hjv='~ mice

Eight-week-old wild-type, Hfe ™=, Hjv~’~, and Hfe /™
Hjv~"~ mice (three to four mice per group) were sacrificed,
and blood and tissue samples were collected for analysis. The
serum iron (Fig. 1A) and transferrin saturation (Fig. 1B)
levels were significantly elevated in all three knockout lines.
The hepatic iron content (HIC) was higher in both the Hjv ™"~
and Hfe '~ Hjv~’~ mice compared with the Hfe™’™ mice,
with no difference between the Hjv ™~ and Hfe ' Hjv~"~
mice (Fig. 1C). This trend was observed in both males and
females in each line, and we found no difference between male
and female in Hfe ™", Hjv™’~ and Hfe ™'~ Hjv~’~ mice with
respect to iron parameters, except that HIC in female wild-type
mice is higher than in male wild-type mice. Prussian blue
staining of liver sections revealed iron overload in the hepa-
tocytes of all three knockout lines, with the most intense
staining in Hjv~'~ and Hfe ™~ Hjv~’~ hepatocytes (Fig. 1G).

To examine the roles of Hjv and Hfe in iron homeostasis at
a younger age, we measured the serum and liver iron contents
in 3-week-old wild-type and knockout mice. At this age, the
serum iron and transferrin saturation levels did not differ
significantly between the Hjv™’~ and Hfe '~ Hjv~’~ mice
(Fig. 1D, E). Similar to the 8-week-old mice, all three
knockout lines had significant hepatic iron overload com-
pared with wild-type mice, with both the Hjv ™'~ and Hfe ™/~
Hjv~’~ mice having higher hepatic iron overload than the
Hfe™’~ mice (Fig. 1F). We found no difference between
males and females in Hjv ™'~ and Hfe ™~ Hjv~’~ mice with
respect to iron parameters.

Reduced hepcidin expression in Hfe™’~, Hjv™"",
and Hfe™'~ Hjv="~ mice

Next, we used real-time polymerase chain reaction (PCR)
to measure the basal hepatic expression levels of Hamp1, Id1,
Smad7, and Bmp6 in wild-type mice and all three knockout
mouse lines of both genders. Compared with wild-type mice,
all three knockout lines had significantly lower Hampl ex-
pression; specifically, the Hampl mRNA level in Hfe /™
mice was 35% of wild-type levels, and Hampl mRNA levels
in both Hjv ™"~ and Hfe ™"~ Hjv ™'~ mice was < 2.5% of wild-
type levels (Fig. 2A). There was no significant difference
between the Hjv~"~ and Hfe ™~ Hjv ™~ mice with respect to
Hampl expression. Similarly, the expression levels of both
Id1 and Smad7 were lower in the Hjy~’~ and Hfe ™'~ Hjv ™/~
compared with the wild-type and Hfe '~ mice, and there was
no significance difference between the Hjv ™~ and Hfe /™
va_/ ~ mice (Fig. 2B, C). This trend was observed for both
genders in every line. In general, Hampl mRNA levels are
higher in females than those in males in wild-type, Hjv ™"~
and Hfe ™~ Hjv~’~ mice.
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Compared with the wild-type and Hfe ™'~ mice, the hepatic
expression of Bmp6 was significantly higher in both the
Hjv~"~ and Hfe '~ Hjv~’~ mice (Fig. 2D). Bmp6 expression
was positively correlated to Hampl (and other Smad1/5/8
targeting genes, including Id/ and Smad?7) levels when the
Bmp/Smad pathway was intact; thus, we used the ratios of
Hamp1/Bmp6, 1d1/Bmp6, and Smad7/Bmp6 expression to
assess the integrity of the Bmp/Smad pathway. We next
measured the ratio of Hampl/Bmp6 mRNA levels in all
mouse lines (Fig. 2E). Hampl/Bmp6 ratio was lower in all
three knockout mice when compared with wild-type mice;
the ratios in the Hjv ™'~ and Hfe ’~Hjv~’~ mice were even

lower compared with the Hfe ™~ mice, although there was no
significant difference between the Hjy~’~ and Hfe /= Hjv ™/~
mice. In addition, Hamp 1/Bmp6 ratio was higher in females
than in males in both Hjv ~’~ and Hfe ™'~ Hjv~’~ mice but not
in wild-type or Hfe ™'~ mice. The ratios of Id1/Bmp6 mRNA
and Smad7/Bmp6 mRNA (Fig. 2F, G) showed similar pattern
as the ratio of Hampl/Bmp6 in all mouse lines. We also
measured the levels of phosphorylated Smad1/5/8 (P-Smad1/
5/8) in each gender using Western blot analysis. In compar-
ison to WT mice, all three knockout lines showed attenuated
P-Smad1/5/8. When three knockout lines were compared, we
found that P-Smad1/5/8 levels in the Hjv~’~ and Hfe '~
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Notably, there was no apparent difference between Hjv ™/~
mice (Fig. 3A, B).

and Hfe ™'~ Hjv™'~

Acute iron delivery alters hepcidin expression

in an Hjv-dependent manner

We next delivered an acute bolus of iron to the mice and
measured the effect on hepcidin expression. All three
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FIG. 2. Hampl, Idl, and
Smad7  expression, and
Bmp6/Smad signaling
in Hfe™ _, Hjv~~, and
Hfe "Hjv='~ double-
knockout mice. Hepatic (A)
Hampl, (B) Id1, (C) Smad7,
and (D) Bmp6 mRNA levels
were measured in 8-week-old
wild-type (elght male, eight
female), er (elght male,
eight female), Hjv (eight
male eight female), and
Hjv~'"Hfe™’~ (eight male,
eight female) mice that were
fed a standard diet; the mRNA
levels were normalized to -
actin mRNA and are ex-
pressed relative to the mean
value of wild-type males. The
(E) Hampl/Bmp6, (F) Idl/
Bmp6, and (G) Smad7/Bmp6
ratios were calculated for
each mouse and relative to the
mean value of wild-type
males. Statistical analyses
were conducted by using log-
transformed values to meet
homogenous variances, and
then all data were compared
using an ANOVA with Tu-
key’s test. Labeled without a
common letter (a, b, c, d, ore)
indicates significant differ-
ence among tested groups
(p<0.05).

knockout lines were first fed an iron-deficient diet for 3-5
weeks, and the wild-type mice were fed a standard diet

containing normal levels of iron to achieve comparable iron
levels between wild-type mice and knockout mice. All four
groups were then given a single dose of iron by oral gavage to
perturb the serum iron levels without affecting HIC. Four
hours after treatment, the mice were sacrificed, and blood and

tissue samples were collected for analysis. In each line (in-
cluding the wild-type mice), the single delivery of iron
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significantly elevated the serum iron and transferrin satura-
tion levels (Fig. 4A, B). Furthermore, HIC (Fig. 4C) and
hepatic Bmp6 mRNA expression (Fig. 5A) were similar be-
tween the iron-treated and mock-treated groups. Interest-
ingly, both the wild-type and Hfe ™ mice had significantly
elevated hepatic Hampl mRNA expression (~ 2-fold higher
than the mock-treated mice); in contrast, hepatic Hampl
mRNA levels were not affected by acute iron treatment in
either the Hjv ™"~ or Hfe '~ Hjv~’~ mice (Fig. 5B). Similar
results were obtained with respect to hepatic Id1 and Smad7
mRNA levels (Fig. 5C, D). Hampl expression in the three
knockout lines that were fed an iron-deficient diet did not
differ; in contrast, the Hampl/Bmp6 ratios were similar to
the mice that were fed a normal diet (Fig. SE, F). Hepatic P-
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and transferrin saturation but not hepatic iron content
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iron content were measured in the mice shown in Figure 3,
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Smad1/5/8 levels were also significantly elevated in the iron-
treated wild-type and Hfe "/~ mice, whereas the P-Smad1/5/8
levels were not affected by iron treatment in either the
Hjv~"~ or Hfe”’~Hjv~’~ mice (Fig. 5G). These results were
consistent in both genders.

Crosstalk between the MAPK/Erk and Bmp/Smad
pathways upstream of hepcidin expression

Under basal iron conditions, no significant difference in P-
Erk1/2 levels was observed for either gender between the four
lines (Fig. 6A, B). After acute iron treatment, no significant
change in hepatic phosphorylated extracellular signal regu-
lated kinase (P-Erk) levels was observed in either the wild-
type mice or any of the three knockout lines (data not shown).
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Next, primary hepatocytes were isolated from all four mouse
lines and treated with both serum and holotransferrin for 0, 5,
or 15min, after which P-Erk levels were measured using
Western blot analysis. As shown in Figure 6C, Erk phos-
phorylation levels peaked at 5 min in all four lines, but only in
those of the Hjv /™, and the double knockout mice returned to
baseline at a 15-min time point when treated with se-
rum + holotransferrin. In the presence of the MAPK inhibitor
U0-126, Erk1/2 phosphorylation was completely blocked at

the 5-min time point (Fig. 6C). Finally, Hamp1 expression was
significantly upregulated in wild-type and Hfe '~ hepatocytes
after treatment with holotransferrin, but was not activated in
the Hjv '~ or Hfe ™~ Hjv~’~ hepatocytes (Fig. 6D).

Discussion

In this study, we generated Hfe " Hjv~’~ mice and
compared these double-knockout mice with wild-type and
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FIG. 6. The MAPK/Erk pathway is partial functional in er va , and er H]v /= mice. Basal P-Erk1/2
levels were measured in (A) male and (B) female wild-type, Hfe ™’ H]v , and Hfe /" Hjv_’~ mice and normalized to

total Erk1/2 protein levels. Primary hepatocytes were isolated from the 1nd1cated mouse lines, then treated with serum and
holotransferrin in the absence or presence of 10 uM U0-126 for the indicated times. (C) P-Erk1/2 was then measured using
Western blot analysis, and (D) Hampl mRNA was measured using real-time polymerase chain reaction. The bands were
quantified, and P-Erk1/2 levels were normalized to Erk1/2 levels. The primary culture experiments were repeated three
independent times. Statistical analyses were carried out by using log-transformed values to meet homogenous variances, and
then all data were compared using an ANOVA with Tukey’s test. Labeled without a common letter (a, b, c, d, e, or f)
indicates significant difference among tested groups (p <0.05). Erk, extracellular signal regulated kinase; MAPK, mitogen-

activated protein kinase; P-Erk, phosphorylated Erk.
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single-knockout Hfe and Hjv mice to identify the
unique and/or synergistic roles that HFE and HJV play in
regulating hepcidin. We found that both 3- and 8-week-old
double-knockout mice develop an iron-related phenotype
that is similar to Hjv "~ single-knockout mice (Fig. 1). These
results were supported by our mRNA and protein level ana-
lyses, indicating that an additional deletion of HFE expres-
sion does not exacerbate the iron accumulation and hepcidin
deficiency caused by the loss of HJV alone (Figs. 2 and 3). To
evaluate the role of HFE and HJV in the hepcidin regulation
pathway during acute changes in iron status, we fed these
knockout mouse lines an iron-deficient diet to induce iron
levels that were similar to wild-type levels and then acutely
perturbed serum iron levels with a single oral treatment of
iron. We then compared Hampl mRNA and P-Smad1/5/8
levels between the iron-treated and mock-treated groups.
Interestingly, although iron treatment significantly increased
Hampl expression in the wild-type and Hfe ™ mice, iron
treatment had no effect on the Hjv ™"~ or Hfe ™'~ Hjv ™'~ mice
(Fig. 5). Thus, these results suggest that Hjv elicits a stronger
response to changes in serum iron levels than Hfe.

The basal iron parameters in the four mouse lines indicated
differing degrees of iron homeostatic imbalance. To explore the
underlying mechanisms, we measured Hampl expression and
the downstream signaling pathways in the liver. Hampl ex-
pression was markedly reduced in the double-knockout mice to

mice. In contrast, although Hamp1
expression was reduced in the Hfe ™/~ mice, the effect was
significantly weaker than in the Hjv~’~ and Hfe '~ Hjv ™/~
mice (Fig. 2A), indicating that this pathway is only partially
impaired in Hfe ™'~ mice, consistent with a previous report (1).
Furthermore, the different Hampl expression levels among
these lines are consistent with their differing iron statuses, and
the hepatic P-Smad1/5/8 levels support these results (Fig. 3A,
B). Thus, disrupting basal hepcidin expression causes iron ac-
cumulation in the knockout mice. Recently, digenic inheritance
of mutations in both HFE and HJV in patients was reported to
cause juvenile hemochromatosis with a phenotype similar to
patients with a single (monogenic inherited) HJV mutation
(22), which supports our findings in Hfe ™~ Hjv ™'~ mice.
Gender is an important modifying factor in iron homeo-
stasis. For example, HFE-HH hemochromatosis has higher
penetrance in men than in women, mostly likely because of
the physiological iron loss through menstruation and preg-
nancy (14). However, penetrance in HIV-HH was similar in
women and men. In our study, we found there are no dif-
ferences in measured iron parameters between female and
male Hjv~'~ or Hfe ™'~ Hjv~’~ mice. Interestingly, we ob-
served that hepatic Hamp1 expression levels in female mice
were higher than those in male mouse lines, and higher P-
Smad1/5/8 levels were found in females than in males in
terms of Hjv ™'~ and Hfe "~ Hjv~’" lines (Fig. 3C), in which

alevel similar to the Hjv ™~
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similar phenomena were also indicated in previous reports
(21). Finally, the mechanisms that underlie iron metabolism
differ between mice and humans (2). Therefore, the gender-
related effect on the penetrance of hemochromatosis in hu-
mans with combined HFE and HJV mutations might not
correlate directly with our animal studies.

Previous reports suggest that HFE and HJV regulate hep-
cidin expression via distinct pathways (5, 15, 17, 23, 26, 32, 33).
However, deleting both genes did not exacerbate the phe-
notype. Knocking out HJV alone effectively impairs the
BMP/Smad pathway, which may lead to reduced hepcidin
expression. However, whether this reduction in hepcidin
expression reaches a very low level in Hjv ™/~ mice is un-
clear. Studies have shown that hepcidin expression is still
detectable in vaf/ ~ mice (17), which is in agreement with
our findings. Moreover, inflammatory stimuli can modulate
hepcidin expression in Hjv ™'~ mice (17), which suggests that
deleting HJ'V does not block the entire hepcidin pathway, but
may block only the BMP/Smad pathway. In addition, when
Hjv~’~ mice were fed an iron-rich diet (30), hepcidin ex-
pression still responded to iron loading, indicating that the
mechanism by which iron modulates hepcidin is partially
functional even in the absence of HIV. On the other hand,
HJV might play an indispensable role in HFE-dependent
signaling. A recent study showed that HJV interacts with
HFE and the TfR2 (9); thus, deleting HI'V may abrogate both
Bmp and HFE/T{R?2 signaling, thereby masking the effect of

Smad Smad Smad Smad
‘I}EFB 1{5!8 1!5!8 \ISIS
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also deleting HFE in the Hfe '~ Hjv~’~ double-knockout
mice. Therefore, further studies are needed to determine
whether the HFE/TfR2 signaling complex still responds to
changes in transferrin in our knockout mice.

We also examined Hfe’s role in our knockout mice models,
as HFE was previously considered an iron sensor that con-
tributes to hepcidin regulation. Given that our knockout
mouse models develop iron overload (16, 38), it is conceiv-
able that the basal iron status of these mice might overcome
the changes in iron caused by acute iron treatment. Thus, we
accounted for this possibility by inducing dietary iron de-
ficiency (DID) in each knockout line. After consuming an
iron-deficient diet for 5 weeks, the serum iron, transferrin
saturation, and liver iron levels in the knockout mice were
similar to—or lower than—the levels in wild-type mice that
were fed a standard diet. Acutely treating the mice with oral
iron had no effect on liver iron content in any of the mouse
lines (Fig. 4C); therefore, we only considered the transferrin-
dependent pathway in our treatment. Accordingly, we as-
sessed the effect of acutely delivering iron to DID mice by
oral gavage (8), and we found that transferrin saturation
dramatically increased in all iron-treated groups (Fig. 4B).
We then measured hepatic expression in the iron-treated and
mock-treated groups. In the wild-type group, both Hampl
expression and Smadl/5/8 phosphorylation were signifi-
cantly increased, consistent with previous reports (8). Simi-
larly, we also observed a significant increase in hepatic

Hfe*Hjv*

-
Smad ° mRNA ~
¥ 1/5/8 | Ay

Promoter I

Hamp1

QY Holotransferrin
2 Apotransferrin

FIG. 7. Proposed model illustrating the relationship between HJV and HFE in regulating hepcidin expression in
response to an acute increase in serum iron levels. Elevated serum iron triggers the phosphorylation of Smad1/5/8, which
then binds to Smad4. The P-Smad1/5/8-Smad4 complex then translocates to the nucleus, where it drives the expression of
hepcidin (via the Hamp1 gene). HFE and TFR2 can sense an increase serum iron and transduce a signal that, ultimately, leads
to the phosphorylation of Smad1/5/8. Our results suggest that HIV predominantly controls the phosphorylation of Smad1/5/8,
and HFE activity is dependent on HJV. In our mouse models of hereditary hemochromatosis (i.e., the Hfe ™=, Hjv~’~, and
Hjv~/~Hfe™’~ mice), HFE deletion partially reduces P-Smad1/5/8 levels and hepcidin expression on stimulation with ho-
lotransferrin; in contrast, deleting HI'V blocks this pathway completely. Moreover, crosstalk between the Erk/MAPK and Bmp/
Smad pathways was previously believed to be necessary for holotransferrin-induced hepcidin expression (dashed arrows).
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Hamp1 expression and P-Smad1/5/8 levels in the iron-treated
Hfe™’~ DID group (Fig. 5B, G). Moreover, a similar fold
change in Hampl expression was induced by culturing pri-
mary Hfe™’~ and wild-type hepatocytes in holo-transferrin
(29), whereas HampI induction by transferrin was abrogated
in primary hepatocytes isolated from Hjv~’~ and double-
knockout mice (data not shown). These results suggest that
transferrin-dependent signaling is partially preserved in the
absence of HFE and is blocked completely by HJV deletion
(Fig. 7). An unknown component (e.g., TfR2)—or perhaps
HJV itself—would be sufficient for basal transferrin-induced
hepcidin expression.

The Erk pathway has been reported to play a role in
transferrin-mediated signaling (29). However, we have not
observed any significant difference of Erk1/2 phosphoryla-
tion in four tested mouse lines (Fig. 6A, B). We found
P-Erk1/2 levels peaked at 5-min time point in holotransferrin-
treated primary cultured hepatocytes in all four mouse lines
(Fig. 6C). These observations indicate that the holotransferrin-
induced activation of MAPK-Erk pathway might not be the
main downstream pathways of either HFE or HJV, since the
pathway can be activated even without either HFE or HIV. To
avoid any potential artifacts due to transferrin, cytokines,
and/or iron in the serum, we used serum-free cell culture
medium as a control. As previously reported, P-Erk1/2
levels in serum-treated hepatocytes were also increased but
weaker than holotransferrin +serum-treated hepatocytes
(29). Nevertheless, this previous study also reported that an
MEK inhibitor reduced Smadl1/5/8 phosphorylation (29).
Thus, the activation of MAPK might occur via another
branch of the transferrin-TfR2 signaling pathway.

In this model (Fig. 7), when iron enters the circulation,
apo-transferrin binds to ferric ions, creating holotransferrin.
Holotransferrin then interacts with HFE/TFR2 (and possibly
with HIV as well), triggering the phosphorylation of MAPK/
Erk and Smad1/5/8. Our experiments show that MAPK/Erk
might not play a key regulatory role in Hampl expression,
whereas P-Smad1/5/8 forms a complex with Smad4, translo-
cates to the nucleus, and drives Hampl transcription. In the
Hfe-knockout line (depicted in the second model), the holo-
transferrin-induced signal remains less changed; however,
because of the loss of HFE, the P-Smad1/5/8 signal is con-
siderably weakened, and as a result, Hampl expression in
Hfe™’~ mice is lower than wild-type expression. In the Hjv-
knockout line (depicted in the third model), the holotransferrin
signal cannot reach downstream signaling events; thus, even in
the presence of HFE, Hampl expression cannot proceed nor-
mally. This finding that transferrin-dependent signaling is
absent in Hjv~’~ mice underscores the importance of HIV in
transferrin-dependent signaling. Finally, the HFE/HJV double-
knockout mice (depicted in the fourth model) have similar
signaling properties as the HJV single-knockout mice.
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In summary, our findings add to our current knowledge
with respect to the relationship between HFE and HJV. Al-
though additional studies are warranted, our in vivo studies
suggest that HIV is a key regulator that is necessary for HFE
to increase hepcidin expression.

Materials and Methods
Animals

Hfe™’~ mice and Hjv~’~ mice were kindly provided by
Dr. Nancy C. Andrews (11, 17). Both strains were maintained
on a 129/SvEvTac background. Hfe™’"Hjv™’~ mice were
generated by crossing the Hfe ™~ and Hjv ™/~ mice. Unless
stated otherwise, the mice were fed a standard rodent labo-
ratory diet (containing 232 mg iron/kg) obtained from SLRC
Laboratory Animal Co., Ltd. All experimental protocols were
approved by the Institutional Animal Care and Use Com-
mittee of the Institute for Nutritional Sciences, Chinese
Academy of Sciences.

Serum iron and tissue non-heme iron measurements

Serum iron and tissue non-heme iron were measured as
previously described (34, 39).

Tissue iron staining

Tissue iron was detected in Bouin’s solution-fixed liver
and spleen sections using Perls Prussian blue staining. Slides
were viewed using an Olympus IX51 microscope, and images
were captured using an Olympus DP70 digital camera (37).

Induction of a DID model and acute iron administration

Three-week-old Hfe ™~ mice were fed a standard diet for 2
weeks, after which they were fed an iron-deficient diet for 3
weeks. Hjv™~ and Hfe /" Hjv~’~ mice were fed an iron-
deficient diet for 5 weeks starting when they were weaned.
The iron-deficient diet (containing 0.9 mg iron/kg) was the
egg white-based AIN-76A-diet (Research Diets) (40). The
DID mice and control diet-fed mice then received either 2 mg
of elemental iron per kg body weight in the form of iron
sulfate (Sigma) in 200 pl distilled water (iron-treated groups)
or 200 ul distilled water alone (mock groups) by oral gavage;
the mice were sacrificed 4 h after gavage, and serum and
tissue samples were collected for analysis.

Primary hepatocyte culture and treatment

Hepatocytes were isolated from 8-week-old male wild-
type (129/SvEvTac), Hfe ’~, Hjv~'~, and Hfe ' Hjv~’'~
mice using the collagenase isolation method as previously
described (38). Hepatocytes were seeded in six-well plates at
1x10° cells per well. After the cells attached to the surface,

TABLE 1. SEQUENCES OF OLIGONUCLEOTIDE PRIMERS USED FOR REAL-TIME POLYMERASE CHAIN REACTION

Gene Forward primer Reverse primer

Actin 5’-AAA TCG TGC GTG ACA TCA AAG A-3’ 5’-GCC ATC TCC TGC TCG AAG TC-3’
Hampl 5’-GCA CCA CCT ATC TCC ATC AAC A-3 5’-TTC TTC CCC GTG CAA AGG-3’

Id1 5’-CGC AGC CAC CGG ACT CT-3' 5’-AAC CCC CTC CCC AAA GTC T-3’
Smad7 5’-TTC GGA CAA CAA GAG TCA GC-3’ 5’-GGT AAC TGC TGC GGT TGT AA-3’

Bmp6

5’-ATG GCA GGA CTG GAT CAT TGC-3’

5’-CCA TCA CAG TAG TTG GCA GCG-3’
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the media was changed to fresh serum-free M199 media, and
the cells were incubated for 42 h. Hepatocytes were then in-
cubated with fresh media containing no serum (control), 10%
fetal calf serum, 30 uM human holotransferrin (Sigma), or
both 10% fetal calf serum and 30 M human holotransferrin.
Where indicated, the Erk inhibitor U0-126 (Cell Signaling)
was added to a final concentration of 10 uM 1h before the
serum and/or holotransferrin treatment.

Real-time PCR analysis

Total RNA was isolated from the liver using Trizol (In-
vitrogen). Primer pairs were then used to detect iron-related
mRNA transcripts (Table 1). Real-time PCR was performed
using the two-step quantitative RT-PCR method as previ-
ously described (7), and target gene expression was nor-
malized to B-actin mRNA levels.

Western blot analysis

Samples were prepared and analyzed using Western blot as
previously described (39). Anti-phospho-Smad1/5/8 (1:1000;
Cell Signaling), anti-Smad1 (1:1000; Cell Signaling), anti-
phospho-Erk1/2  (1:1000; Cell Signaling), anti-Erk1/2
(1:1000; Cell Signaling), anti-TfR1 (1:500), and anti-f-actin
(1:2000; Sigma) were used as the primary antibodies.

Statistical analysis

All summary data are expressed as the mean = standard
error of the mean (n=_8-10 mice/group). To compare mul-
tiple groups (i.e., >2 groups), we first used Bartlett’s test to
check the homogeneity of variance. For multiple groups with
unequal variance, the data were logo-transformed to meet
the assumption of homogeneity of variance, and then an
analysis of variance (ANOVA) was performed, followed by
Tukey’s post hoc test. To compare two groups, differences
were analyzed using the Student’s #-test, and differences were
considered statistically significant when p <0.05. All statis-
tical analyses were performed using the R software package.
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Abbreviations Used

ANOVA =analysis of variance
BMP = bone morphogenetic protein
DID = dietary-induced iron deficiency
Erk = extracellular signal regulated kinase
Fpnl = ferroportinl
HAMP1 = hepcidin antimicrobial peptide 1
HFE = hemochromatosis protein
HH = hereditary hemochromatosis
HIC = hepatic iron content
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HJV =hemojuvelin
MAPK = mitogen-activated protein kinase
PCR = polymerase chain reaction
P-Erk = phosphorylated Erk
P-SMAD1/5/8 = phosphorylated Smad1/5/8
RBC =red blood cell
RT-PCR =reverse transcription polymerase
chain reaction
SMAD = mothers against decapentaplegic
homolog proteins
STAT3 =signal transducers and activators
of transcription 3
Tf = transferrin
TfR1 = transferrin receptor 1
TfR2 = transferrin receptor 2
WT = wild-type




