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Nick V. Grishin2,3,4 and Yuh Min Chook1,*

1Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041,

USA, 2Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX

75390-9050, USA, 3Department of Biophysics and 4Department of Biochemistry, University of Texas Southwestern

Medical Center at Dallas, Dallas, TX 75390-9050, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on September 17, 2014; revised on December 8, 2014; accepted on December 9, 2014

Abstract

Motivation: Classical nuclear export signals (NESs) are short cognate peptides that direct proteins

out of the nucleus via the CRM1-mediated export pathway. CRM1 regulates the localization of hun-

dreds of macromolecules involved in various cellular functions and diseases. Due to the diverse

and complex nature of NESs, reliable prediction of the signal remains a challenge despite several

attempts made in the last decade.

Results: We present a new NES predictor, LocNES. LocNES scans query proteins for NES consensus-

fitting peptides and assigns these peptides probability scores using Support Vector Machine model,

whose feature set includes amino acid sequence, disorder propensity, and the rank of position-specific

scoring matrix score. LocNES demonstrates both higher sensitivity and precision over existing NES

prediction tools upon comparative analysis using experimentally identified NESs.

Availability and implementation: LocNES is freely available at http://prodata.swmed.edu/LocNES

Contact: yuhmin.chook@utsouthwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Active transport of macromolecules between the nucleus and the

cytoplasm controls the localization and functions of many proteins

and RNAs. The majority of nuclear-cytoplasmic transport of macro-

molecules is mediated by nuclear transport receptors of the

Karyopherin b (Kap) family, which bind nuclear localization or ex-

port signals (NLSs or NESs) in their cargoes (Conti and Izaurralde,

2001; Görlich and Kutay, 1999; Tran et al., 2007; Weis, 2003; Xu

et al., 2010). CRM1 (for Chromosome Region Maintenance 1, also

known as Exportin-1 or XPO1) is the best characterized export-Kap

or exportin (Fornerod et al., 1997; Fukuda et al., 1997; Neville

et al., 1997; Noske et al., 2008; Ossareh-Nazari et al., 1997; Stade

et al., 1997). Approximately 300 broadly functioning protein car-

goes for CRM1 have been experimentally identified and compiled

into three separate databases NESbase, NESdb, and ValidNESs

(la Cour et al., 2003; Xu et al., 2012; Fu et al., 2013). Many CRM1

cargoes participate in important cellular processes such as gene ex-

pression, signal transduction, immune response, and cell differenti-

ation. Aberrant CRM1-mediated nuclear export causes diseases

such as cancer, viral and inflammatory diseases (Etchin et al., 2013;

Fung and Chook, 2014; Lapalombella et al., 2012; Turner et al.,

2012; Zhou et al., 2013).

Cognate peptide segments in protein cargoes that bind CRM1

are known as classical nuclear export signals or NESs (previously

also known as leucine-rich NESs). NES peptides are usually 8–15

amino acids long with regularly spaced conserved hydrophobic resi-

dues. The first NES consensus of L-X2,3-[LIVFM]-X2,3-L-X-[LI] was

established from results of in vivo NES randomization-selection

assays (Bogerd et al., 1996). Subsequently, La Cour et al. re-defined

the NES consensus as U1-X2,3-U2-X2,3-U3-X-U4 (Un represents
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Leu, Val, Ile, Phe or Met; X stands for any amino acid) according to

alignment of 80 experimentally defined NESs (thereafter shortened

as experimental NESs) collected in NESbase (la Cour et al., 2004).

Inclusion of additional hydrophobic residues significantly increased

the NES consensus coverage. Kosugi et al. further expanded the

NES consensus through analysis of 101 distinct NES peptides ob-

tained from a random peptide library screen (Kosugi et al., 2008).

The Kosugi set of consensus sequences included four previously

defined patterns, termed NES Classes 1a-d (Class 1a: U1-X3-U2-X2-

U3-X-U4; Class 1b: U1-X2-U2-X2-U3-X-U4; Class 1c: U1-X3-U2-

X3-U3-X-U4; Class 1d: U1-X2-U2-X3-U3-X-U4;) and two new

patterns (Class 2: U1-X-U2-X2-U3-X-U4; Class 3: U1-X2-U2-X3-

U3-X2-U4), to describe additional spacings between key hydropho-

bic residues of their NES peptides. The set of consensus sequences

also allowed Ala, Thr, Cys or Trp to occur only once at hydrophobic

positions of an NES.

Crystal structures of CRM1 bound to NESs from PKIa,

Snurportin-1 and the HIV-1 Rev protein revealed that NESs bind

directly to a groove on the convex surface of CRM1. The NES

groove contains five hydrophobic pockets that accommodate con-

served hydrophobic NES residues (Dong et al., 2009; Güttler et al.,

2010; Monecke et al., 2009). The PKIa (LALKLAGLDI, Class 1a)

and Snurportin (MEELSQALASSFSV, Class 1c) NESs adopt

a-helical conformations at their N-termini and transition to loops at

the C-termini when bound to CRM1. In contrast, the CRM1-bound

Rev NES (LPPLERLTL, Class 2) adopts an extended conformation.

Examination of CRM1-NES interactions led to a structure-based

consensus, which adds a fifth hydrophobic position at the N-

terminus of the NES (U0) as modulator of CRM1-NES binding

affinities (Güttler et al., 2010).

Of the different proposed NES consensus patterns, the Kosugi

set of consensus sequences has the highest sensitivity, with 89%

coverage of experimental NESs versus 65% for the la Cour consen-

sus. However, the precision rate of the Kosugi consensus is low (4%

compared to 12% for the la Cour consensus). The generally low

precision rates of the different consensus are probably due to degen-

eracy of the consensus patterns, which describe the 2-turn amphi-

pathic helix that is ubiquitous in the proteome. We refined the

Kosugi consensus sequences based on analysis of 234 experimental

NESs collected in NESdb (Xu et al., 2012). The refined consensus

only marginally improved the prediction precision (6%), suggesting

that NES consensus sequences alone are insufficient to accurately

locate NESs in CRM1 cargoes.

Several computational tools have been developed to predict clas-

sical NESs. A predictor named NES-Finder (http://research.nki.nl/

fornerodlab/NES-Finder.htm) was the first available web-server to

identify sequence motifs that fit a subset of NES consensus (Classes

1a, 1b, and 1d). ELM is another pattern matching method although

it uses different regular expressions to define NESs (Gould et al.,

2010). NetNES, developed in 2004, is the first NES predictor that

does not explicitly use consensus patterns (la Cour et al., 2004).

Instead, it employs machine-learning algorithms like Neural

Networks (NN) and Hidden Markov Models (HMM) and relies

only on protein sequence as features. NetNES integrates the outputs

of NN and HMM trained with experimental NESs in NESbase to

assign a score to each residue in the input protein. NetNES increased

prediction precision to �30% at the cost of lowering the maximum

recall rate to �40% (Fu et al., 2011). More recently, the NES pre-

dictor NESsential applied simplified consensus patterns to the query

sequence as a pre-filter followed by Support Vector Machine (SVM)

classification that incorporates both sequence and biophysical fea-

tures such as predicted intrinsic disorder, secondary structure and

solvent accessibilities (Fu et al., 2011). NESsential achieved better

precision at lower recall levels when tested with 85 experimental

NESs collected in ValidNESs. For example, at 20% recall level,

NESsential increased precision by 17% compared with NetNES (Fu

et al., 2011). In 2014, a NES prediction tool named Wregex was

published (Prieto et al., 2014). Like NESsential, Wregex scans the

query with regular expressions to generate a list of NES candidates.

A position-specific scoring matrix (PSSM) is then used to compute a

score for these candidates. Comparison between NESsential and

Wregex using NES motifs in human deubiquitinases (DUBs) showed

that Wregex produces fewer NES candidates than NESsential.

However, since Wregex does not incorporate predicted biophysical

features, it takes less time to predict NESs.

In this study, we present a new computational tool named

LocNES to locate classical NESs in CRM1 cargoes. LocNES first

ranks the NES consensus fitting peptides according to its PSSM

score. The PSSM score rank, protein sequence, consensus pattern,

and disorder propensity are used as feature set of a SVM model.

LocNES was tested with a large set of experimental NESs and

showed improved performance over existing NES prediction

methods.

2 Methods

2.1 NES datasets
Entries in two of the most recent NES databases, NESdb and

ValidNESs, were examined and compared. At the time of manu-

script preparation, NESdb and ValidNESs contain 253 and 221 ex-

perimental CRM1 cargoes, respectively. Entries in both databases

were combined and 36 entries with contradicting experimental evi-

dence (listed as ‘NESs in doubt’ in NESdb) were removed. Sequence

similarities among the remaining proteins were detected using pro-

grams CD-HIT (Li and Godzik, 2006; clustering threshold 40%)

and BLASTClust (Altschul et al., 1997; similarity threshold 10%)

and identified homologs were removed. 246 non-redundant proteins

containing 290 experimental NESs were compiled in a dataset

named the Dbase dataset and listed in Supplementary Table S1.

Thirty-two functional NES motifs and 78 non-functional NES

motifs from 56 DUBs were identified using a nuclear export assay

(Garcia-Santisteban et al., 2012). A second dataset (DUB dataset)

was constructed with these 110 DUB NES motifs (functional and

non-functional). The DUB NES motifs used in the export assay are

peptides with 19–22 amino acids.

2.2 NES candidates in the Dbase dataset
LocNES scans CRM1 cargoes in both the Dbase and DUB datasets

with a sliding window protocol to retrieve NES candidates (peptides

that conform to NES consensus patterns). The NES consensus

sequences used by LocNES are a modified version of the Kosugi

consensus sequences (Xu et al., 2012): U1-X1,2,3-U2-[^W]2-U3-

[^W]-U4; U1-X2,3-U2-[^W]3-U3-[^W]-U4; or U1-X2-U2-X[^W]2-

U3-[^W]2-U4 ([^W] is any of the 20 amino acids except Trp; Ala or

Thr can be used once at U1 or U2; X stands for any amino acid).

Each NES candidate consists of 15 amino acids (shorter if located at

the protein N-terminus). The C-terminal amino acid of each peptide

is U4 in the NES consensus. If the U2-U4 portion of an NES candi-

date overlaps with an experimental NES, it is deemed as a real NES.

Otherwise, the NES candidate is defined as a negative NES. By these

criteria, LocNES located 4201 NES candidates in the Dbase dataset.

Among them, 493 NES candidates are real NESs and the remaining

3708 are negative NESs. LocNES found no NES candidate for 42 of
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the 290 experimental NESs in the Dbase dataset. LocNES assigns a

zero probability score to these 42 NESs.

2.3 NES candidates in the DUB dataset
NES motifs in the DUB dataset are longer than existing NES consen-

sus patterns. Consequently, LocNES typically retrieves 2–3 NES

candidates from each DUB NES motif. Since experimental testing of

the DUB dataset was conducted at the motif level, LocNES assigns a

probability score to each motif in DUB dataset in the following man-

ner. First, LocNES calculates the probability score for each NES

candidate in the DUB dataset. Then the highest probability score

among NES candidates from the same DUB NES motif is designated

as the probability score of the motif.

Both NESsential and Wregex (the two most recent NES pre-

dictors used in our performance comparison) retrieve NES candi-

dates from query proteins in a similar manner as LocNES. However,

since the three predictors use different NES consensus patterns, the

number of NES candidates retrieved varies among them.

2.4 Calculation of PSSM score
The PSSM used to score peptides in each testing set was constructed

with the NES peptides (aligned at the U4 position) in its correspond-

ing training set. The element in the matrix is calculated as log likeli-

hood ratio of the position-specific probability and uniform

background probability (0.05). A pseudocount of 1 is added for

each position. The PSSM score for a given sequence is calculated as

the sum of log likelihood ratio of every residue.

2.5 Prediction pipeline of LocNES
LocNES first retrieves NES candidates from a query protein (see the

previous section for details). Next, the PSSM score is computed for

each NES candidate and all candidates are ranked according to its

PSSM score. The feature set for SVM model is then constructed,

which includes PSSM score rank, peptide sequence represented by a

vector containing twenty-one indicator variables (one for each

amino acid plus a blank position) for each residue, and the types of

consensus (Classes 1a, 1b, 1c, 1d, 2, or 3) for the NES candidate.

The feature set also contains disorder propensities, computed with

DISOPRED (Ward et al., 2004) for every residue of the NES candi-

date and for the 15 residues of both N- and C-terminal peptides

flanking the NES candidate. In addition, LocNES includes an indica-

tor variable that is set to 1 if the NES candidate is located within six

residues of another NES candidate with higher PSSM score rank

(0 if otherwise). To ensure a fair comparison between LocNES and

other NES predictors, our SVM model was trained with 124 NESs,

which are a subset of the 154 experimental NESs that trained

NESsential and Wregex. SVM algorithm was implemented by

LIBSVM integrated in Scikit-learn python package (Chang and Lin,

2011; Pedregosa et al., 2011). The output of the SVM model is the

probability score of the NES candidate.

2.6 Performance evaluation
Both Dbase and DUB datasets were used to compare LocNES with

NESsential and Wregex. If the probability score of a real NES is

above a pre-defined threshold, it is counted as a true positive.

Otherwise, it is a false negative. If the probability score of a negative

NES is below the pre-defined threshold, it will be counted as a true

negative. Otherwise, it is a false positive. Receiver Operating

Characteristic (ROC) curve and its area under the curve (AUC) are

computed to evaluate NES predictors’ performance. Precision-recall

(PR) curves are also generated. Recall is defined as the fraction of

real NESs whose probability score is higher than a threshold value.

Precision measures the percentage of real NESs among NES candi-

dates with probability score higher than a threshold value.

2.7 Availability of LocNES
LocNES is freely available at http://prodata.swmed.edu/LocNES.

The web interface was developed using PHP. The only required in-

put is the query protein sequence in FASTA format. A standalone

Linux version of LocNES is available upon request.

2.8 In vitro CRM1-NES binding assays
Expression constructs for 11 different Class 3 NES peptides were

generated by ligation of annealed oligonucleotides into the pGEX-

Tev vector and verified by sequencing. GST-NESs were expressed

and purified as previously reported (Dong et al., 2009).

Approximately 60mg of GST-NESs were immobilized on glutathi-

one sepharose beads and incubated with excess human CRM1 in a

total volume of 100ml for 30 min at 4�C in the presence or absence

of RanGTP. After extensive washing with buffer containing 20 mM

Hepes, pH 7.3, 110 mM potassium acetate, 15% glycerol, 2 mM

magnesium acetate, and 2 mM DTT, bound proteins were separated

by SDS/PAGE and visualized by Coomassie staining. GST-NESs

were analysed by mass spectroscopy to detect potential protease

degradation or truncation of the fusion peptides. GST-NESs were

also subjected to gel filtration analysis using the Superdex 200 col-

umn (GE Healthcare) to detect potential aggregation.

2.9 Nuclear-cytoplasmic cellular localization assay
Nuclear-cytoplasmic distribution of EYFP2-NLS-NES fusion

proteins was observed in HeLa cells. Expresion constructs for

EYFP2-NLS-NES fusion proteins were generated by ligation of an-

nealed oligonucleotides into a pEYFP2-NLS(SV40) vector and veri-

fied by sequencing 11 different Class 3 NES peptides. The plasmids

were transfected using Lipofectamine 2000 (Invitrogen, Life

Technologies) into HeLa cells that were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS), penicillin-streptomycin and amphotericin B,

seeded onto glass-bottom 24-well culture plates (MatTek) and

grown to 50–70% confluency. Live cells were imaged 24 h after

transfection. To determine whether CRM1 mediates the nuclear ex-

port of EYFP2-NLS-NES fusion proteins, transfected cells were also

incubated with 2 nM leptomycin B (LMB) for 16 h. Live cell image

acquisition was performed at 37�C in a 5% CO2 atmosphere using a

spinning disk confocal microscope system (Nikon-Andor), the

MetaMorph software and analysed using ImageJ software (National

Institutes of Health, Bethesda, MD, USA).

3 Results

3.1 The Dbase and DUB datasets
Two datasets, named Dbase and DUB, were compiled for training

and evaluating LocNES. The Dbase dataset contains 246 non-

redundant CRM1 cargoes with 290 experimental NESs culled from

the NESdb and ValidNESs databases (Fu et al., 2013; Xu et al.,

2012). LocNES retrieved 4201 NES candidates from the Dbase

dataset (see Section 2.2 for details). Among them, 493 are real NESs

and 3708 are negative NESs.

The DUB dataset was constructed using 32 functional and 78

nonfunctional NES motifs (each 19–22 amino acids long) in 56

human DUBs proteins. Performance comparison using the DUB
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dataset was conducted at the motif level with prediction scores

determined as described in Section 2.3.

3.2 Cross-validation of LocNES
NES candidates retrieved by LocNES from the Dbase dataset were

partitioned into a five-fold cross-validation dataset to search for the

optimal parameters for SVM models. Each training set includes

378–409 real NESs and 2828–3076 negative NESs. Each test set

contains 84–115 real NESs and 728–986 negative NESs. Each test

set also includes 6–11 experimental NESs that do not match the

refined Kosgui consensus (details in Section 2.2).

Extensive search of parameter space for both linear and RBF ker-

nel of SVM models were conducted. The penalty parameter (C) for

the linear kernel was sampled from 2�15 to 210. The penalty param-

eter and radius (C, c) for the RBF kernel were sampled from 2�4 to

215 and from 2�15 to 210, respectively. We identified that a linear

SVM model with C¼0.01 produced the largest average AUC value

(0.76) and was used in subsequent performance comparisons. ROC

curves for cross-validation using the linear SVM classifier are shown

in Figure 1.

3.3 Features in the SVM model of LocNES
LocNES incorporates four categories of features in its SVM feature

space to capture both the biophysical and sequence properties of

NES candidate: PSSM score rank, peptide sequence, disorder pro-

pensity and the types of consensus pattern (Classes 1a, 1b, 1c, 1d, 2,

or 3) for the NES candidate. In addition to these four feature catego-

ries, LocNES also includes a feature that indicates whether the NES

candidate is located within six residues of another NES candidate

with higher PSSM score rank. We name this feature the neighboring

feature. The neighboring feature is introduced based on the observa-

tion that occasionally several NES candidates overlap with a real

NES. We computed the F-scores for LocNES features using

LIBSVM’s feature selection tool on the combined Dbase dataset

(Chen and Lin, 2006). Results showed that among all the features

tested, PSSM score rank has the highest discriminative power and

the neighboring feature ranks the second among all the single fea-

tures by F-score (Supplementary Table S2). An SVM model whose

feature set includes just PSSM score rank and the neighboring

feature produced an average AUC value of 0.71 when tested with

Dbase cross-validation sets. PSSM score is less effective than the

rank of PSSM score (AUC¼0.65). Peptide sequence has a slightly

lower discriminative power than PSSM score rank (AUC¼0.70).

Although disorder propensity is less discriminative than PSSM score

rank or peptide sequence, it is still much better than random guess-

ing as an SVM model with disorder propensity as its only feature

gave an AUC value of 0.60 (versus AUC¼0.5). This is consistent

with previous findings that NES regions tend to have higher disorder

propensity than false positive matches (Fu et al., 2011; Xu et al.,

2012). Information on NES consensus sequence types is the least dis-

criminative feature (AUC¼0.55). Finally, although NESs found in

available 3D structures tend to adopt a-helix-loop conformations

and disfavor b-sheet conformations (Xu et al., 2012), an SVM

model incorporating predicted secondary structure provided no per-

formance improvement beyond an SVM model using disorder pro-

pensity (AUC¼0.58). It is likely that other features in our SVM

model already implicitly represent secondary structural information.

3.4 Comparison of LocNES with NESsential and Wregex

using the Dbase dataset
In order to compare the performance of LocNES with NES pre-

dictors NESsential and Wregex, we divided the Dbase dataset into

training and test sets. The Dbase training set contains 124 experi-

mental NESs from 103 CRM1 cargoes. The Dbase training set is a

subset of the NESsential training set, which contains 154 NESs.

Wregex used the same training set as NESsential. The remaining

143 CRM1 cargoes (containing 166 experimental NESs) in Dbase

formed the test set. LocNES retrieved 1847 NES candidates from

Dbase training set: 226 are real NESs (consensus matching peptides

overlapping with experimental NESs) and 1621 are negative NESs

(consensus matching peptides not overlapping with experimental

NESs). A LocNES model was first trained using the parameters iden-

tified in cross-validation with this training set and then the model

was used to locate NESs in the test set.

LocNES retrieved 267 real NESs and 2087 negative NESs from

the Dbase test set. 31 experimental NESs in the test set do not match

the refined Kosugi consensus patterns and hence were not retrieved

by LocNES. Like LocNES, NESsential employs a pre-filter to iden-

tify NES candidates. NESsential found 232 real NESs and 1888

negative NESs from the Dbase test set. NESsential also failed to re-

trieve 41 experimental NESs in the Dbase test set. LocNES is able to

retrieve a few more NES candidates than NESsential because the

consensus sequences used by LocNES is more tolerant than the pre-

filter used by NESsential (U-X2,3-U-X-U). Performances of LocNES

and NESsential were evaluated with both the ROC and PR curves.

As shown in Figure 2a, LocNES increases AUC values by 0.1 and

0.14 compared to NESsential’s flat and split modes, respectively.

The PR curves in Figure 2b show that LocNES achieves higher preci-

sion than NESsential at most recall levels.

Wregex is the most recently published NES predictor. The pro-

gram combines regular expression matching and PSSM score.

Several configurations are available in Wregex depending on the

choice of regular expression and PSSM. Here, we used the Wregex

A configuration, which was trained with the NESsential training set.

Since Wregex uses a more restrictive regular expression ([DEQ].

{0,1})([LIM])(.{2,3})([LIVMF])([^P]{2,3})([LMVF])([^P])([LMIV])(.

{0,3}[DEQ]) than both LocNES and NESsential, it retrieved only 27

real NESs and 78 negative NESs from the Dbase test set. To com-

pensate for the large discrepancy of real negative NESs between

Wregex and LocNES, we added 2009 true negative NES candidates

Fig. 1. Receiver operating characteristic (ROC) curves of LocNES. ROC curves

were generated using the five-way cross-validation (cv) set of Dbase. Each cv

test set includes approximately 90 real and 900 negative NESs. The black dot-

ted line represents random guessing
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when we evaluate the performance of Wregex (i.e. Wregex always

correctly predicts these 2009 NES candidates; 2087-78¼2009).

However, since Wregex found no matches for 139 experimental

NESs in the test set, its maximum recall rate is only 16% compared

to 90% for LocNES and 85% for NESsential. Consequently, the

AUC value of Wregex is considerably smaller than that of LocNES

and NESsential (Fig. 2a).

3.5 Comparison of LocNES with NESsential and Wregex

using the DUB dataset
The DUB dataset includes 32 functional and 78 non-functional NES

motifs (Garcia-Santisteban et al., 2012). Each NES motif in the

DUB dataset is 19–22 amino acids long. Since NESs of the DUB

dataset were tested at the motif level, performance comparison was

conducted only at the same motif level (described in Section 2.3) to

ensure that all predictors have the same numbers of real positives

and real negatives.

LocNES was able to retrieve at least one NES candidate for each

of the 32 functional and 71 nonfunctional DUB motifs. NESsential

found matches for 32 functional motifs and 75 nonfunctional

motifs. LocNES and NESsential found no matches for 7 and 3 non-

functional DUB motifs, respectively, and the prediction score of

these motifs were set to zero. Wregex failed to find NES candidates

for 10 functional and 56 nonfunctional DUB motifs. Thus, the max-

imum recall rate for Wregex is only 69% compared to 100% for

LocNES and NESsential. Figure 3a shows that LocNES gives the

best AUC value among the three predictors. On the other hand,

Wregex achieves the best precision when the recall rate is lower than

40% (Fig. 3b). A meta-predictor that combines LocNES with

Wregex improves the prediction performance on the DUB dataset

compared with individual predictors (see Supplementary Figure S1).

However, such a meta-predictor shows no performance improve-

ment on the Dbase dataset.

3.6 Prediction of Class 3 NESs by LocNES
The NES consensus pattern U1-X2-U2-X3-U3-X2-U4 for Class 3

NESs was introduced in 2008 (Kosugi et al., 2008). Of the six NES

patterns, only the Class 3 pattern contains two residues between U3

and U4. �10% of experimental NESs match the Class 3 pattern.

Signals classified as Class 1b, 1c, 1d, and 2 NESs also have similar

levels of occurrences (Kosugi et al., 2008). Among the 166 experi-

mental NESs in the Dbase test set, 11 contain exclusively Class 3

NES candidates (Table 1). None of the class 3 NESs had been tested

for CRM1 binding. Therefore, we tested these Class 3 NESs for dir-

ect CRM1 binding in pull-down binding assays using recombinant

Fig. 2. Performance of LocNES compared with NESsential and Wregex, using

the Dbase test set. (a) ROC curve. The black dotted line represents random

guessing. (b) Precision-Recall (PR) curve

Fig. 3. Performance of LocNES compared with NESsential and Wregex using

the DUB data set. (a) ROC curve. The black dotted line represents random

guessing. (b) PR curve. The DUB test set includes 32 functional and 78 non-

functional NES motifs
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GST-NESs, CRM1 and RanGTP. Figure 4 shows that seven Class 3

NESs (Rio2, Mad1, CDC7, X11L2, CPEB4, mDia2, and Trip6)

bind CRM1 in stoichiometric manner, further validating them as

real NESs.

We also performed nuclear–cytoplasmic localization assays in

HeLa cells to probe NES activities of the same eleven Class 3 NESs.

As shown in Figure 5 and Supplementary Figure S2, eight of the

eleven NESs (Rio2, Mad1, CDC7, X11L2, CPEB4, mDia2, Trip6

and Nap1) were able to target the EYFP2-NLS reporter to the cyto-

plasm. Among these Class 3 NESs, which show positive nuclear ex-

port activity, the Nap1 NES is the only one that did not bind

CRM1. Interestingly, we observed cytoplasmic localization of

EYFP2-NLS-NES(Nap1) in only 55% of HeLa cells which were

transfected with the plasmid as compared to 100% of cells trans-

fected with the seven CRM1 binders (see Supplementary Table S3).

These results suggest that the Nap1 NES is a very weak NES. The re-

maining three Class 3 NESs (COMMD1, GagPro, and Deaf1)

showed no detectable CRM1 binding nor cytoplasmic localization

in HeLa cells, suggesting that they may have been incorrectly identi-

fied and are likely negative NESs.

NESsential and Wregex were able to identify all four Class 3

non-binders as negative NESs. However, both predictors have 0%

recall rate for the seven Class 3 CRM1 binders since they filter out

peptides with U3-X2-U4 spacing at the initial stage of prediction.

NES-Finder also does not predict any Class 3 NESs binders since it

only finds NES candidates that fit Class 1a, 1b or 1d patterns.

LocNES is able to retrieve four Class 3 CRM1 binders (mDia2,

Trip6, X11L2, and CPEB4; recall rate 57%) at the default threshold

value of 0.1 (Table 1). LocNES also correctly identified one non-

binder (GagPro) but mislabeled the remaining three non-binders as

NESs. The older NetNES predictor does not employ pre-filtering

and therefore is also able to find some Class 3 NESs. Of the seven

Class 3 CRM1 binders, NetNES identified Class 3 NESs only in

Mad1 and CDC7 (recall rate 28%) using its default cutoff of 0.5.

All four non-binders were correctly identified as such at the same

cutoff. NetNES may have a low recall rate for Class 3 NESs because

few Class 3 NES peptides were identified before 2004. Class 3 NESs

do not fit the traditional NES consensus patterns and were probably

overlooked during experimental searches for NESs. Therefore, the

machine learning algorithms in NetNES (and to a lesser extent

LocNES) may not be optimally trained to recognize Class 3 NESs.

Recall rate for Class 3 NESs will likely increase as more Class 3

NESs are identified and reported.

4 Discussion

4.1 Features that improved LocNES performance
Among all the features employed by the LocNES SVM model, the

rank of PSSM score has the highest discriminative power.

Interestingly, PSSM score is less effective than PSSM score rank

(AUC 0.65 versus 0.71). The enhanced effectiveness of PSSM score

rank may be due to over-representation of Class 1a NESs among ex-

perimental NESs (Xu et al., 2012). Since the PSSM score of a se-

quence measures how closely it resembles known NESs, a real NES

that doesn’t fit class 1a spacing may have a low PSSM score. For ex-

ample, the zebrafish protein Vsx1, a paired-like subclass of homeo-

domain protein, was shown to have a highly conserved Class 1b

NES (31GFRSKGFAITDLLGL45; Knauer et al., 2005). LocNES

gave the Vsx1 NES a rather low PSSM score of 0.56 but ranks it the

highest among all NES candidates within Vsx1. As expected, a SVM

model using PSSM score rank as a feature produced a higher predic-

tion score for the Vsx1 NES than a SVM model using the absolute

PSSM score as a feature (0.26 versus 0.09). The PSSM currently

used by LocNES may not be large or diverse enough to completely

Table 1. Results of CRM1-NES pull down binding assays, NES activity assay, and LocNES prediction scores for Class 3 NESs in Dbase test

set.

NES ID Protein Name Uniprot ID NES sequence Bind CRM1 NES activity Score

77 mDia2 Q9Z207 1157SVPEVEALLARLRAL1171 Yes Yes 0.38

104 Mad1 P40957 558AQTTIQLLQEKLEKL572 Yes Yes 0.07

117 COMMD1 Q8N668 171ILKTLSEVEESISTL185 No No 0.36

137 Trip6 Q9Z1Y4 93LDAEIDSLTSMLADL107 Yes Yes 0.21

141 X11L2 O96018 53DESSLQELVQQFEAL67 Yes Yes 0.28

153 Rio2 Q9BVS4 389RSFEMTEFNQALEEI403 Yes Yes 0.04

197 CDC7 O00311 454PAQDLRKLCERLRGM468 Yes Yes 0.09

198 CPEB4 Q17RY0 379RTFDMHSLESSLIDI393 Yes Yes 0.14

254 Nap1 P25293 95KLLSLKTLQSELFEV109 No Yes 0.18

P147a Deaf1 O75398 459MVNSLLNTAQQLKTL473 No No 0.55

P148a GagPro P03322 225VREELASTGPPVVAM239 No No 0.01

aCargoes collected in ValidNESs.

Fig. 4. Interactions of Class 3 NESs with CRM1. Binding between recombinant

purified GST-NESs and CRM1 is shown by pull-down binding assays. Eleven

GST-Class 3 NESs were immobilized and incubated with CRM1 in the pres-

ence and absence of RanGTP. Bound proteins were resolved with SDS-PAGE

and visualized by Coomassie staining. All 11 NESs conform only to Class 3

patterns. (a) Class 3 NESs that bind CRM1. (b) Class 3 NESs that do not bind

CRM1
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sample the entire range of experimental NESs. It will be important

to update the PSSM as more NESs are identified experimentally, as

prediction performance will likely improve with a more balanced

and representative PSSM.

Although LocNES uses PSSM to represent sequence information,

incorporation of sequence into SVM model did produce a small but

obvious improvement to the prediction performance (AUC increased

by 0.04). There appears to be additional implicit information

encoded in the sequence that enhance CRM1 binding or export ac-

tivity of NESs but yet not detected by PSSM. Sequence analysis of

CRM1 cargoes collected in NESdb revealed that real NESs exhibit

distinct amino acid composition from negative NES candidates. In

particular, acidic residues such as Asp and Glu are more prevalent in

the non-conserved positions in real NESs (Xu et al., 2012). These

negatively charged residues may form electrostatic contact with the

basic amino acids that lined the NES binding groove as observed in

structures of CRM1-NES complexes, thus increasing the CRM1-

NES binding affinity. In addition, the presence of bulky amino acids

like tryptophan in negative NES candidates, which is absent from

the C-terminus of real NESs, can potentially cause steric clash with

the narrow groove at the C-terminal end of NES binding groove and

prevent binding of negative NES candidates.

Incorporation of disorder propensity noticeably increases

LocNES prediction performance. In fact, the disorder status of the

sequence on the C-terminal side of NESs is among the top-10 rank-

ing features (Supplementary Table 2). The developers of NESsential

also reported similar findings (Fu et al., 2011). It has been noticed

that intrinsically disordered region of a protein often contain func-

tionally important sites due to its flexibility and modularity.

Comparison of the disorder scores between real NESs and negative

NES candidates revealed that sequences flanking real NESs have

significantly higher disorder scores than sequences surrounding

negative NES candidates. In addition, examination of existing three-

dimensional structures containing real NESs or negative NES candi-

dates showed that real NESs are more likely to locate at the termini

of protein domains or flanked by long loops (Xu et al., 2012). The

location of real NESs near protein termini and within loops or dis-

ordered regions may increase their accessibility to CRM1 or enhance

their adaptability for suitable CRM1-binding conformations.

LocNES outperforms existing NES predictors in Class 3 NES

prediction. To explore which features of LocNES enhance Class 3

NES prediction, we computed the F-scores on Dbase dataset with

the Class 3 NESs removed (Supplementary Table S4). Comparison

between Supplementary Tables 2 and 4 showed that the neighboring

feature, which indicates if another NES candidate is in close proxim-

ity (details in Section 3.3), is not among the top-10 ranking features

when Class 3 NESs are not included in the dataset. Instead, amino

acid identity at positions 6 and 14 become top ranking features, as

well as the NES consensus type (if the NES candidate belongs to

Fig. 5. Nuclear-cytoplasmic distribution of EYFP2-NLS/NES fusion proteins in

HeLa cells. DIC, YFP (pseudocolored in yellow), Hoechst (pseudocolored in

blue) and YFP merged with Hoechst images were captured using a spinning

disk confocal microscope (60x). DIC images are shown in Supplementary

Figure S2. All 11 NESs conform only to Class 3 pattern. CRM1-dependence is

demonstrated by the nuclear accumulation after treatment with 2 nM lepto-

mycin B for 16 h. (a) Controls with a classical monopartite NLS (SV40) and a

classical NES (PKIa). (b) Class 3 NESs that presented positive in nuclear ex-

port activity. (c) Class 3 NESs that presented negative in nuclear export activ-

ity. Images shown here are representatives of at least three independent

experiments and over a total of 350 transfected cells. The percentage of trans-

fected cells showing cytoplasmic localization is listed in Supplementary Table

S3. (d) The average ratio of cytoplasmic/nuclear fluorescence intensity (C/N

ratio). Error bars indicate the standard deviations. For each EYFP2-NLS/NES

fusion protein, fluorescence intensities were measured in 10 independent

cells from different experiments using ImageJ software. AU, arbitrary units
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Class 1a). These feature changes when Class 3 NESs are removed from

dataset demonstrate the prevalence of Class 1a among all experimental

NESs. Furthermore, it indicates that the neighboring feature boosts

Class 3 NES prediction performance. If the weight of Class 3 NESs is

increased in the dataset (doubled or tripled), the F-score of the neigh-

boring feature becomes slightly higher than the corresponding value

calculated with the original Dbase dataset. Since the mean value of

neighboring feature of real Class 3 NESs is higher than that of the

negative Class 3 NES candidates, it seems that real Class 3 NESs

tend to locate close to other NESs of higher PSSM score rank.

Incorporation of neighboring feature likely helps to raise the prediction

score for these Class 3 NESs. One interesting feature of Class 3 NES is

that the spacing between its U2 and U4 (U2-X3-U3-X2-U4) is the same

as the spacing between U1 and U3 of a Class 1a NES (U1-X3-U2-X2-

U3). Therefore, there are some instances where a Class 3 NES and a

Class 1a NES overlap the same experimental NES. For example, it

was shown that human CPEB1 protein (Uniprot ID: Q9BZB8) harbors

an experimental NES 92ANDLCLGLQSLSL104 (Ernoult-Lange et al.,

2009). Two NES candidates can be found within this experimental

NES: ANDLCLGLQSL (Class 3) and LCLGLQSLSL (Class 1a). We

assume both NES candidates are real NESs since it is impossible to

pinpoint which NES candidate is functional without elaborate point

mutation studies. It is likely that both NES candidates are indeed func-

tional. They may possess different binding affinities to CRM1 or the

two NESs may act concertedly as a high-affinity NES with five hydro-

phobic residues (U1 in Class 3 NES acts as U0) as described by the

structural-based consensus (Güttler et al., 2010). In the case of the

CPEB1 protein, the prediction score of the Class 3 NES is almost the

same as the Class 1a NES despite of the lower PSSM score rank of the

Class 3 NES compared with the Class 1a NES.

4.2 Machine learning algorithms in NES prediction
Among the three NES predictors that we compared in performance

analysis, Wregex is the only predictor that does not rely on a super-

vised machine-learning algorithm. Instead, it relies on PSSM to cap-

ture the intrinsic contribution of each residue to NES activity. While

PSSM based methods have proven a useful tool for annotating func-

tional sites, the low recall rate of Wregex indicates that PSSM by itself

is insufficient in predicting NES. The major advantage of Wregex is

its speed. It only takes seconds for Wregex to process a large number

of proteins. Both NESsential and LocNES need time to generate fea-

tures (such as disorder propensity or solvent accessibility) for ma-

chine-learning methods. Typically, it takes two minutes for LocNES

to process a protein with �600 amino acids. However, since machine-

learning methods are especially suited for pattern recognition prob-

lems when the patterns are not easily described by a well-defined set

of rules, the potential improvement in prediction performance out-

weighs the extra cost in time. In NES prediction, machine-learning

methods may be a contributing factor to the significantly higher recall

rate of LocNES and NESsential. Furthermore, incorporation of PSSM

together with sequence and structural properties of NESs into the fea-

ture set of machine-learning algorithm may further boost LocNES

performance. Both NESsential and LocNES implemented machine-

learning algorithm using SVM. We also experimented with Random

forests, another popular machine learning classifier. When the same

feature sets were used, Random Forests performed similarly as SVM

models (data not shown).

4.3 Prediction at the protein level
In addition to determining NES locations within CRM1 cargoes,

NESsential also attempted classification of NES-containing proteins

versus non-NES-containing proteins. LocNES, on the other hand,

assumes that the query protein is a CRM1 cargo and focuses on

locating NES sites within the query. The lack of a large and reliable

negative training/testing data is the major reason for this decision.

NESsential selected 541 proteins annotated in Uniprot as located in

only one compartment, either the nucleus or the cytosol, as non-

NES containing proteins. There is concern that cellular localization

information in Uniprot may not be up-to-date due to the rapid dis-

covery of CRM1 cargoes. A quick search showed that among the 13

CRM1 cargoes from Saccharomyces cerevisiae collected in NESdb,

20% or three proteins (Hsp70, MCM3 and Map1), are annotated as

localized to either the nucleus or the cytosol thus fitting the

NESsential criteria of non-NES containing protein (Liku et al.,

2005; Scott et al., 2009; Shulga et al., 1999). Furthermore, nuclear

import and export processes are highly regulated. Many CRM1

cargos are modified and accessible to CRM1 only in specific cellular

or signaling states. Therefore, steady state subcellular localization of

protein may not reflect their status as CRM1 cargoes or inform on

their localization upon stimulation from external cues or change of

cellular states.

Enhanced performance of LocNES compared with NESsential

and Wregex resulted from a more tolerant pre-filter, a more repre-

sentative feature set for machine-learning models, a more accurate

training dataset, and the combined use of machine-learning method,

position specific scoring matrix and biophysical properties of NESs.

As more CRM1 cargoes/NESs are discovered, increased size, diver-

sity and accuracy of experimental NES databases will continue to

improve training/testing datasets for future NES predictors. The

rapid growth of high-resolution protein structures will also guide

identification of NES candidates that are inaccessible to CRM1 and

thus increase precision of NES prediction. Finally, advances in mod-

eling conformational changes induced by post-transcriptional modi-

fication or binding partners may facilitate the discovery of highly

regulated NESs and similarly increase the sensitivity of NES

prediction.

5 Conclusion

LocNES is a supervised machine-learning algorithm to predict NESs

in potential CRM1 cargoes. LocNES integrates the rank of PSSM

score, peptide sequence, disorder propensity and NES consensus

type into an SVM model. Performance comparison between

LocNES and two latest NES predictors, NESsential and Wregex

using two separate test datasets showed that LocNES achieved

higher precision at most recall levels with more than 0.1 increase of

AUC value than NESsential. LocNES produced at least 30% higher

maximum recall rate than Wregex. In addition, LocNES is the only

tool that can predict Class 3 NESs with over 60% recall rate at the

default threshold.
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