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Abstract

Motivation: Spontaneous (de novo) mutations play an important role in the disease etiology of

a range of complex diseases. Identifying de novo mutations (DNMs) in sporadic cases provides

an effective strategy to find genes or genomic regions implicated in the genetics of disease.

High-throughput next-generation sequencing enables genome- or exome-wide detection of DNMs

by sequencing parents-proband trios. It is challenging to sift true mutations through massive

amount of noise due to sequencing error and alignment artifacts. One of the critical limitations of

existing methods is that for all genomic regions the same pre-specified mutation rate is assumed,

which has a significant impact on the DNM calling accuracy.

Results: In this study, we developed and implemented a novel Bayesian framework for DNM

calling in trios (TrioDeNovo), which overcomes these limitations by disentangling prior mutation

rates from evaluation of the likelihood of the data so that flexible priors can be adjusted post-hoc

at different genomic sites. Through extensively simulations and application to real data we

showed that this new method has improved sensitivity and specificity over existing methods,

and provides a flexible framework to further improve the efficiency by incorporating proper priors.

The accuracy is further improved using effective filtering based on sequence alignment

characteristics.

Availability and implementation: The Cþþ source code implementing TrioDeNovo is freely avail-

able at https://medschool.vanderbilt.edu/cgg.

Contact: bingshan.li@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional research in the field of genetics for human complex dis-

ease has focused largely on inherited variation. For sporadic cases

without family history, it is well known that de novo copy number

variants are implicated in autism (Levy et al., 2011; Sebat et al.,

2007) and other psychiatric disease (Hehir-Kwa et al., 2011; Maiti

et al., 2011). Cost-effective next-generation sequencing (NGS) tech-

nologies enable the identification of mutations at base-pair reso-

lution, and a flurry of recent studies revealed important roles of de

novo point mutations in the genetic etiology of complex disease,

including autism spectrum disorders (Iossifov et al., 2012; Neale

et al., 2012; O’Roak et al., 2011, 2012; Ronemus et al., 2014;
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Sanders et al., 2012), intellectual disability (Gregor et al., 2013;

Vissers et al., 2010), schizophrenia (Fromer et al., 2014; Gauthier

et al., 2010; Gulsuner et al., 2013). These findings showed prom-

ise of sequencing sporadic parents-proband trios for genetics

studies of human disease. Since de novo mutations (DNMs) have

not been subject to strong purifying selection, causal mutations

are expected to have large effects, enabling effective identification

of causal genes or pathways from a drastically reduced number of

candidates. We envision that this strategy will continuously be

used as an effective alternative to classical genetic studies to iden-

tify genetic factors through both exome and whole genome

sequencing.

A critical step in such studies is to accurately call DNMs from

sequencing. This is challenging due to sequencing error and align-

ment artifacts, which predominately outnumber true mutations. It is

therefore important to develop methods that can effectively sift real

mutations through massive amount of noise. Standard approaches

infer genotypes for each individual separately in a trio, usually using

GATK (DePristo et al., 2011; McKenna et al., 2010) or Samtools

(Li et al., 2009), and identify putative DNMs by comparing pro-

band’s and parental genotypes. More efficient joint calling methods

have been developed, including PolyMutt (Li et al., 2012) &

DeNovoGear (Ramu et al., 2013), and were shown to outperform

standard approaches dramatically. A major limitation of these joint-

calling methods is the entanglement of DNMs with Mendelian in-

heritance in the same model such that the joint likelihood of the

data depends on the pre-specified mutation rate, resulting in several

unappealing consequences. First, it requires specifying a prior muta-

tion rate, which has strong influence on the mutation calling (Ramu

et al., 2013), and therefore can result in loss of accuracy when in-

appropriate mutation rates are used. Second, it is well known that

mutation rates vary widely across the genome, and therefore any sin-

gle pre-specified mutation rate is not optimal. Third, the estimates

for complex mutations, such as short insertion and deletion (Indel)

and structural variations, are largely unknown, and an inappropri-

ate rate may result in dramatically reduced mutation calling

efficiency. Lastly, the evidence of mutations reported by these

callers has a less intuitive interpretation because of the entangle-

ment of the pre-specified mutation rate in the data likelihood

calculation.

To overcome these limitations, we developed a new de novo

calling algorithm, TrioDeNovo, which is a Bayesian framework that

evaluates evidence of DNM mainly based on the data and adjusts

post-hoc the effect of mutation rates on the calling through prior

odds. This is achieved through a Bayesian model selection approach,

in which it calculates the Bayes Factor (BF) of two models, namely

M1 that the offspring harbors at least one mutation in the two al-

leles, and M0 that the offspring’s genotype follows Mendelian trans-

mission. This approach of calculating de novo evidence (i.e. BF)

avoids the need for accurate specification of prior mutation rates

and has a natural interpretation as the relative likelihood of data

under two competing and mutually exclusive models. After evaluat-

ing BF, flexible prior mutation rates can be adjusted post-hoc to get

posterior odds of DNMs for different sites and different mutation

types according to prior knowledge. Through extensively simula-

tions and real datasets, we showed that the new framework im-

proves sensitivity and specificity over existing methods in detection

of DNMs, especially for moderate depth of coverage (e.g. 20�).

Coupled with our recently developed method for effective filtering

of alignment artifacts, we hope that this new framework is useful to

the research community for accurate DNM calling to facilitate the

identification of genetic factors for human disease.

2 Methods

2.1 DNM calling algorithm
TrioDeNovo uses a Bayesian model selection framework for DNM

calling. The input to TrioDeNovo is a variant calling format (VCF)

(Danecek et al., 2011) file, which can be generated using widely

used tools such as GATK (DePristo et al., 2011; McKenna et al.,

2010) and Samtools (Li et al., 2009). TrioDeNovo extracts genotype

likelihood (GL) values stored in the VCF file for mutation modeling.

GL is defined as the probability of observing aligned reads, denoted

as R, at a specific position given a specific underlying genotype G,

i.e. P(RjG). The basic idea is to consider all bases aligned at a

specific position on the genome as a series of Bernoulli trials, each

with an empirically calibrated error rate specifying the probability

that the observed base is different from the true allele. The simplest

calculation of the GL assumes that sequencing errors are independ-

ent and more sophisticated error models incorporate inter-

dependency of sequencing errors (see Li et al., 2009, 2012 for

details). The benefit of utilizing pre-calculated GL values stored

in VCF files is to take advantage of accurate GL values generated

by highly specialized tools such as GATK and Samtools. It is stand-

ard for state-of-the-art variant calling methods to output GLs in

VCF files and therefore TrioDeNovo can continue to benefit from

the improvement made to the GL calculation by these specialized

tools.

For each site in the sequence data, we define two models, M1,

which represents the model that there is at least one mutation in

the offspring, and M0, which specifies the model that the genotypes

of the parent-offspring trio are consistent with Mendelian trans-

mission law. Define an allelic mutation model, j, as a matrix of

relative probabilities from parental alleles to mutant alleles,

conditional on that a mutation occurred. A simple model for single

nucleotide variant (SNV) mutations is illustrated in the matrix

below.

A C G T

A

C

G

T

t x t

t t x

x t t

t x t

2
666666664

3
777777775

In this simplified model mutations are symmetric, all transitions

have the same mutation rate (x) as well as transversions (t), and

2tþ x ¼ 1. Given a mutation rate, denoted as l and assumed to

be the same for all parental alleles, the absolute allelic mutation

rates can be calculated by multiplying l in the above matrix.

Other flexible mutation models can be provided to TrioDeNovo

by the user if desired. In the allelic mutation model only one param-

eter is free and we let the transition x be the parameter of the

model.

Let R denote the aligned reads at a genome position for all indi-

viduals in a trio. The goal is to calculate the posterior odds of the

two models, given R and j, as the following:

P M1 j Rð Þ
P M0 j Rð Þ ¼

P R j M1ð Þ
P R j M0ð Þ �

PðM1Þ
PðM0Þ

In the above, P R j M1ð Þ
P R j M0ð Þ is the BF of the two models, and PðM1Þ

PðM0Þ is the

prior odds of the two models. A confident DNM is called when the

posterior odds is greater than a threshold, e.g. 1, indicating that mu-

tations are more likely than Mendelian transmission, a posterior.
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Another way is to rank the candidates according to the posterior

odds and select the top candidates for further evaluation. In

TrioDeNovo, instead of reporting the posterior odds, which depends

on both BF and prior odds, we define de novo quality (DQ) based

on the BF only, i.e., DQ ¼ log 10
P R j M1ð Þ
P R j M0ð Þ

� �
. The benefit of this strat-

egy is that TrioDeNovo concentrates on model evaluation, which

is essentially unaffected by the prior mutation rate (see below), and

the prior odds PðM1Þ
PðM0Þ can be specified post-hoc so that different priors

can be used for different genomic regions. If there is a need to re-

adjust the prior for some candidates when better estimates of priors

are available this can be easily done without re-calling DNMs. To

adjust the prior odds, if we know the estimated mutation rate at a

locus, e.g. P(M1), we can use that to approximate the prior odds as

P(M0) is close to 1. Often times we have the relative estimate of the

mutation rate of a particular locus relative to the genome average

mutation rate, denoted as Pg(M1). For example, if a locus is 10 times

more (or less) mutable than the genome average, a simple adjust-

ment is to add (or subtract) log10(10)¼1 to (or from) the DQ to get

adjusted DQ (DQadj). The ranking of the DQadj values incorporates

the differential prior odds of different genomic loci. The posterior

odds are obtained as 10DQadjþlog10PgðM1Þ when knowledge is available

for Pg(M1). Regardless of the accuracy of Pg(M1) the order of poster-

ior odds remains the same as long as the relative mutability is prop-

erly specified.

The key component of the framework is the calculation of the

BF. Let p denote the alternative allele frequency in the population

at a specific genomic position, and others be defined as before. BF is

calculated as

BF ¼ P R j M1ð Þ
P R j M0ð Þ

¼

ððð
PðRjp;l;x;M1ÞPðpjM1ÞPðljM1ÞPðxjM1Þdpdldx

ð
PðRjp;M0ÞPðpjM0Þdp

In the above we assumed that a priori the allele frequency in parents,

the mutation rate and the transition probability are independent.

Instead of taking numerical integrations in calculating the BF, we

describe our rationales to simplify the model to increase computa-

tion efficiency.

2.1.1 Simplification of the prior of parameter p

Given the availability of an extensive catalog of genetic variation

with accurate estimates of allele frequencies by the 1000 Genomes

Project (1000GP), we can greatly simplify the calculation by con-

sidering only a single value in the prior distribution of the allele fre-

quency. At known variant sites we assign PðpjM1Þ and PðpjM0Þ to

1 for p that equals to the 1000GP estimate and 0 for others.

For non-variant sites we assign the corresponding prior probability

to 1 for p¼0.001 and to 0 for others; although estimates of actual

frequencies are not available, this assignment is expected to be close

to true values given that alternative alleles were not observed at

these sites in the 1000GP data. This simplification is expected to not

only increase the computation speed but also improve the accuracy

owing to the comprehensiveness of the current catalog of genetic

variation. Let p0 denote the allele frequency in the 1000GP for

known variant sites, and p0¼0.001 for others. The BF can be sim-

plified as

BF ¼

ðð
P R j p0; l;x;M1ð ÞPðljM1ÞPðxjM1Þdldx

PðRjp0;M0Þ
(1)

2.1.2 Simplification of the prior of parameter l

For a given estimate p¼p0 as above, we calculate PðRjp0; l;x;M1Þ
as the following:

P R j p0;l;x;M1ð Þ

¼
X

G
P R j Gð ÞPðG j p0;l;x;M1Þ

¼
X

Go ;Gf ;Gm
P R j Gð ÞP Gf ;Gm j p0

� �
PðGo j Gf ;Gm;l;x;M1Þ

(2)

The term P R j Gð Þ ¼ PðRojGoÞPðRf jGf ÞPðRmjGmÞ is the product

of the GLs of the trio, where Ro, Rf and Rm denote the reads for off-

spring, father and mother respectively, and similarly Go, Gf and Gm

represent the corresponding genotypes of the trio. P Gf ;Gm j p0

� �
is

the frequency of the parental genotypes which can be calculated

based on the allele frequency p0 assuming Hardy–Weinberg equilib-

rium, and PðGojGf ;Gm;l;x;M1Þ is the posterior probability of

observing the offspring’s mutant genotype from parental genotype

given mutation parameters l and x under model M1. The same like-

lihood under M0 can be similarly calculated following Mendelian

transmission. To give a concrete example for M1, assuming that Gf

and Gm have genotype A/A, there are nine possible mutant geno-

types (A/C, A/G, A/T, C/C, C/G, C/T, G/G, G/T and T/T), with a

total probability of 1� ð1� lÞ2. For mutant genotype Go¼A/G,

in which a transition mutation from A to G occurred in either

the transmitted paternal or maternal allele, we have

P Go ¼ A=G j Gf ¼ Gm ¼ A=A; l;x;M1

� �
¼ 2xl 1� lð Þ

1� 1� lð Þ2
(3)

Assuming l�1 so that 1�l�1 and l2�0, the above is approxi-

mately equal to x. For a reasonable range of l, the approximation is

very accurate. For example, when l ¼ 10�2, Equation (3) equals to

0.99497�x, and when the mutation rate changes to l ¼ 10�5, the

posterior is 0.999995�x. It gets closer to x when l gets lower.

This holds true for other scenarios in which a single mutation

occurred. For double mutants, however, the prior mutation rate has

a dramatic effect on the posterior probabilities. For example, the

posterior probability of Go¼G/G when parental genotypes are A/A

is (xl)2/(1� (1�l)2)�x2l/2, indicating that double mutants con-

tribute a priori less than l times of single mutations to Equation (2).

Since double mutants are extremely rare, apparent double mutants

in data are more likely to be artifactual than genuine mutations

given extensive sequencing and alignment error in current NGS plat-

forms. Therefore, our focus here is on single allele mutations. In this

setting it is clear that the BF is largely unaffected by the prior muta-

tion rate and we calculated BF using a fixed value of l¼l0 with the

default value of 10�8. If we redefine M1 as the model in which only

single mutations are allowed, the BF is completely independent of l
under M1. Either case will give essentially the same result.

2.1.3 Simplification of the prior of parameter x

We have less information about the prior of x on each genomic

region than other parameters and it may not be straightforward to

specify a realistic prior distribution. A natural option is to assume

that a priori x follows a Generalized Beta (GB) distribution

GB x; a; b; a;bð Þ ¼ 1

Bða; bÞðb� aÞaþb�1
ðx� aÞa�1ðb� xÞb�1

where a,b>0, a�x�b. The GB distribution handles the situation

where x is assumed to be within a sensible internal of [a,b].

When a¼0 and b¼1 it corresponds to the Beta distribution; when

a¼b¼1 it is uniform distribution in [a,b].
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On the other hand, we reasoned that transition mutation rates,

or equivalently the transition versus transversion (ti/tv) ratios,

defined as x/2�, do not vary dramatically across the genome. Fixing

a reasonable value, e.g. ti/tv¼2.0 for the genome level and

ti/tv¼3.0 for the exome level, has benefits of model simplification

and robustness. Assuming the pre-specified x¼x0, with the

default value of x0¼2/3 (corresponding to a ti/tv¼2.0), the BF is

calculated as follows:

BF ¼ P R j p0; l0;x0;M1ð Þ
PðRjp0;M0Þ

(3)

Since there is a one-to-one correspondence between x and the ti/tv

ratio under model j, we used the more interpretable ti/tv ratio to

represent the model parameter, and different values of ti/tv ratios

can be specified at the command line of our tool. We investigated

the robustness of this approach and observed similar results as those

obtained using GB distributions (see Section 3).

Considering all of the above, we used the simplified version of

the BF implemented as in Equation (3) in evaluating its performance

in this study.

2.2 Genotype calling
After evaluating the evidence of DNM, individual genotypes are

inferred under M1. We calculate the likelihood of reads for each

father–mother–offspring genotype configuration in a trio, and take

the configuration with the highest likelihood as the inferred geno-

types for the trio. This can be achieved in Equation (2) in which the

summands correspond to the likelihoods of reads for individual joint

trio genotypes. Denote the mostly likely genotype configuration as

Gbest. The quality of the joint genotype calling under M1 is calcu-

lated as GQ¼�10log10
PðRjGbestÞPðGbestjp0 ;l0 ;x0 ;M1Þ

PðRjp0 ;l0 ;x0 ;M1Þ , where all terms are

calculated in Equation (2).

2.3 Simulated datasets
To simulate realistic sequencing data so that we can mimic both

sequencing and alignment errors, we used two CEU samples,

NA06984 and NA06986, from the 1000GP data to simulate paren-

tal genomes. We first constructed parental genomes based on the

haplotypes stored in the VCF files (March 16, 2012 Phase I release)

and the reference genome GRCh37; in this way we reconstructed in-

dividual genomes with both polymorphic and monomorphic sites.

SNV mutations were randomly placed on each of the parental

haplotypes according to a mutation rate of 5�10�7 with equal

probability of mutating into any of the other three alleles from the

reference allele. The simulated parental haplotypes were randomly

transmitted to offspring to generate the offspring genome. We then

generated 75 bp paired-end sequence reads with an error rate of 1%

for each base. Reads were randomly drawn from the two haplotypes

in individual genomes. We repeated the simulation process until

the desired coverage was reached. In this study we simulated whole

genome data at approximately 17�, 34�, 51� and 68�.

Simulated paired-end reads were aligned to the reference genome

GRCh37 using BWA (Li and Durbin, 2009) (version 0.7.4) and the

BAM files were processed following best practice procedures includ-

ing duplicate removal by picard-tools-1.92 (http://picard.source-

forge.net/index.shtml), local Indel-realignment and base-quality

recalibration by GATK (DePristo et al., 2011; McKenna et al.,

2010) (version 2.5.2). Since DeNovoGear takes as input BCF files

generated by Samtools, we also used Samtools (version 0.1.19) to

generate the VCF files as input to TrioDeNovo so that both tools

use exactly the same GLs for a fair comparison; in this way the per-

formance difference is solely due to calling algorithms.

To assess the impact of the prior odds of the two models, PðM1Þ
PðM0Þ,

on the performance of DNM calling, we also simulated mutations

with different mutation rates based on the parental alleles.

Specifically, we arbitrarily assumed a mutation rate of 5�10�7 for

parental alleles A and C, and 5�10�9 otherwise. The corresponding

prior odds of mutation for the two scenarios are PðM1Þ
PðM0Þ ¼

5:0�10�7

1�5:0�10�7

and PðM1Þ
PðM0Þ ¼

5:0�10�9

1�5:0�10�9, respectively. In TrioDeNovo we use these

prior odds when calculating the posterior odds on this dataset.

2.4 Real datasets
We downloaded the 1000GP CEU trio high coverage whole genome

sequencing data (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.

WGS.b37_decoy.*.clean.dedup.recal.20120117.bam). This trio was

studied for DNMs by the 1000GP and extensive experimental valid-

ation was performed on a large candidate mutation set (Conrad

et al., 2011; Ramu et al., 2013). The sequencing was done on cell

lines that also harbor somatic mutations. There are 48 germline mu-

tations and 888 cell line somatic mutations on autosomes that were

experimentally confirmed. The depth of coverage is 60�, 60� and

66� for father, mother and offspring, respectively. We followed

the same procedure as in the simulation to process the sequencing

data. We investigated the calling accuracy for germline and cell line

somatic mutations separately.

2.5 Performance evaluation
We evaluated the performance of TrioDenovo and DeNovoGear

(version 0.5.2) on both simulated and real data. DeNovoGear

(Ramu et al., 2013) is a recently developed DNM caller that was

shown to outperform existing methods such as PolyMutt (Li et al.,

2012) and Samtools (Li et al., 2009). We ranked the candidate

mutations according to the posterior probabilities for both

TrioDeNovo and DeNovoGear and used receiver operating charac-

teristic (ROC) curves to compare the sensitivity and specificity of

the candidates. For simulated data the metrics are easily calculated

since the true mutations are known. For the 1000GP trio whole gen-

ome sequencing data, although a large set of candidate mutations

was experimentally validated, the true false negatives are unknown.

We adopted a similar strategy used in the DeNovoGear article

(Ramu et al., 2013) for performance evaluation on real data.

Specifically, sensitivity was calculated relative to the number of

validated true mutations, and false discovery rates (FDRs) were

calculated as described in Ramu et al. (2013) and Supplementary

Figure S1. The metrics were calculated for germline and cell-line

somatic DNMs separately.

3 Results

3.1 Performance evaluation on simulation data
First we evaluated the impact of sequencing coverage on the sensitiv-

ity and specificity of TrioDeNovo. We carried out mutation calling

on simulated data with flat prior odds. Figure 1 shows the ROC

curves at sequencing coverage of 17�, 34�, 51� and 68�. As ex-

pected, the power and accuracy improve as coverage increases

(Fig. 1). However, the gain of increasing coverage diminishes at

coverage of 34� or above, as manifested by similar ROC curves

(Fig. 1). For example, at false positive rate of 50, the sensitivity is

89.5% at 34�, and is increased to 93.4 and 94.3% for coverage

of 51� and 68�, respectively. On the other hand, the performance
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is dramatically reduced at 17�, and to reach a sensitivity of 80%

the false positive rate is several times higher than that at 34�
(Fig. 1), indicating the importance of having sufficient coverage for

efficient DNM calling.

Next we compared the performance of TrioDeNovo with the

state-of-the-art DNM caller, DeNovoGear, on the same simulated

data as above. Due to the dependence of DeNovoGear on the prior

mutation rate (Ramu et al., 2013), we ran DeNovoGear using

three mutation rates, 10�4, 10�8 and 10�12, and compared the

results with that from TrioDeNovo. It is clear that the performance

of DeNovoGear significantly depends on the prior mutation rate

(Fig. 2A–C). For example, at 17�, the maximum achievable sensi-

tivity is 40.2% when 10�12 was used as the prior mutation rate,

and at 51� and 68� the false positive rates increased when a prior

mutation rate of 10�4 was used. On the contrary, TrioDeNovo is

insensitive to the prior mutation rate, and for all coverage investi-

gated it achieved better ROC curves than DeNovoGear even

though a wide range of mutation rates were used for DeNovoGear

(Fig. 2A–C).

TrioDeNovo is not only insensitive to the prior mutation rate

but also flexible in assigning varying prior odds of mutations across

the genome. To evaluate the impact of prior odds, we ran both

TrioDeNovo and DeNovoGear on the simulated data in which

mutations were generated assuming different mutation rates (see

Section2). For TrioDeNovo calls we ranked the candidates accord-

ing to the posterior odds incorporating prior odds used in the simu-

lation. With proper priors, we observe that TrioDeNovo achieved

further improvement, and is superior to DeNovoGear for all three

prior mutations used (Fig. 2D–F). This improvement is evident

for all coverage investigated (Fig. 2D–F), making TrioDeNovo not

only robust but also flexible in assigning proper priors post hoc to

increase power.

We further evaluated the impact of the pre-specified transition

mutation rate, or equivalently ti/tv ratio on DNM calling.

Specifically we ran TrioDeNovo using a fixed prior ti/tv ratio of 2.0

on different datasets with true mutation ti/tv ratios in the rage of

1.0–6.0. For various sequencing coverage the ROC curves with dif-

ferent ti/tv ratios are very close (Supplementary Fig. S2), indicating

that the pre-specified ti/tv ratio has little impact on the mutation

calling. We also compared the results with those obtained using GB

distributions on x. For example, the correlation coefficient between

the DQ values using a fixed ti/tv ratio of 2.0 and the DQ values

using a uniform distribution of x between 0 and 1 is over 0.99;

the correlation is higher when a¼4 and b¼2 were used in the GB

distribution, corresponding to a GB with mean ti/tv of 2.0 and

smaller variance. This holds true as well for GB distributions when

x was confined in reasonable intervals such as [0.1,0.9].

3.2 Performance evaluation on real data
We first evaluated the mutation calling accuracy on the confirmed

germline mutations in the 1000GP CEU trio using the same calling

strategies as for simulated data. When the same prior odds were

assumed, TrioDeNovo outperformed DeNovoGear for all prior mu-

tation rates used for DeNovoGear (Fig. 3C). For an FDR of 70%,

TrioDeNovo achieved a sensitivity of 100%, while the maximum

sensitivity for DeNovoGear is 95.8%, which is achieved when an

unrealistic mutation rate of 10�4 was used. We also investigated the

impact of sequencing coverage on mutation calling accuracy in this

trio, and carried out mutation calling with reduced coverage by sub-

sampling 75 and 25% of the reads from the original alignment files.

Although the overall patterns when 75% of the data were used are

similar to these in the full data, the impact of prior mutation rate

on DeNovoGear calls becomes more dramatic for lower coverage, as

indicated by a reduced sensitivity when a mutation rate of 10�12 was

used (Fig. 3B). When only 25% of the data were used, TrioDeNovo

Fig. 1. ROC curves of de novo SNV mutations called by TrioDeNovo in simu-

lated datasets with different coverage. Sensitivity and false positive rates

were calculated for sequencing coverage of 17� (black), 34� (green), 51�
(blue) and 68� (red) with flat prior odds for all candidates (color version of

this figure is available at Bioinformatics online.)

Fig. 2. Comparison of ROC curves of de novo SNV mutations called by

TrioDeNovo and DeNovoGear in the simulated datasets with coverage of 17X

(A, D), 51X (B, E) and 68X (C, F). (A–C) The ROC curves calculated based on

data simulated with the same mutation rate, and (D-F) the corresponding

ROC curves with different prior mutation rates. Black lines represent

TrioDeNovo calls with appropriate prior odds. Green, orange and red lines

represent DeNovoGear calls with specified mutation rates of 10�8 (default),

10�4 and 10�12, respectively (color version of this figure is available at

Bioinformatics online.)

Fig. 3. ROC curves of de novo germline SNV mutations called by TrioDeNovo

and DeNovoGear in the 1000GP CEU trio data with different coverage. ROC

curves were calculated on datasets with 25% (A), 75% (B) and 100% (C) of the

original whole genome data. Black lines represent TrioDeNovo calls with flat

prior odds. Green, orange and red lines represent DeNovoGear calls with

specified mutation rates of 10�8 (default), 10�4 and 10�12, respectively (color

version of this figure is available at Bioinformatics online.)
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showed its greater advantage over DeNovoGear (Fig. 3A). For ex-

ample, the maximum achievable sensitivity for DeNovoGear is

54.2%, and including more candidates does not recover real muta-

tions; on the other hand, TrioDeNovo achieves higher sensitivity

without sacrificing specificity, and more real mutations were dis-

covered when more candidates were included (Fig. 3A). We also car-

ried out the same evaluation on the cell line somatic mutations and

observed similar patterns (Supplementary Fig. S3).

False DNMs are often due to alignment artifacts, which are

often uncaptured by current calling methods. We recently developed

a machine-learning filtering tool, DNMFilter, which can effectively

capture alignment artifacts and filter false positives (Liu et al.,

2014). We investigated whether such a filtering scheme can be com-

bined with TrioDeNovo to provide the research community a reli-

able pipeline that can further improve the accuracy of DNM calling.

We re-calculated sensitivity and FDR of the candidates that passed

the DNMFilter cutoff of 0.6. We observe significant improvements

of germline mutation accuracy of TrioDeNovo calls on the full data

(Fig. 4C), and the improvement is more pronounced when 75 and

25% of the data were used (Fig. 4A and B). For example, to achieve

80% sensitivity with 25% of the data, the FDR is 83% without

filtering, and it is reduced to 63.6% when DNMFilter was used

(Fig. 4A), indicating the effectiveness of DNMFilter in capturing

false positives. For somatic mutations, we observed the same overall

patterns of improvements after application of DNMFilter, although

the effectiveness is not as dramatic as for germline mutations

(Supplementary Fig. S4), probably due to unusual characteristics

of cell line somatic mutations.

4 Discussion

Sequencing trios with sporadic-affected offspring has enabled the

demystification of certain rare diseases and identification of genes

implicated in complex disorders. Such a strategy will continue to be

employed to decipher the genetic basis of disease. In this study, we

developed an efficient and flexible framework to facilitate the DNM

calling in parents-proband trios. The key advantage of our new

method is the decoupling of mutation rates from evaluation of the

data and the flexibility of adjusting the prior mutation odds post-

hoc irrelevant of the data. This feature is important since DNM

rates vary widely across the genome, and different classes of muta-

tions exhibit varying mutation patterns. For example, the mutation

rate for CpG dinucleotides is 9.5-fold that of non-CpG bases

(Campbell et al., 2012). It is evident that mutation rates depend on

multiple factors in a complex fashion, and it is not clear how contri-

buting factors act together to influence the underlying mutations

rate. With more families being sequenced, knowledge of DNMs is

being accumulated quickly so that genome-wide mutation patterns

can be soon accurately assessed. With such knowledge of prior

mutation rates, TrioDeNovo is expected to further facilitate the

DNM calling for the research community. Users have flexibility

of adjusting the ranking of candidate mutations based on their

knowledge without re-calling the mutations. Even in its simplest

form with flat prior odds, TrioDeNovo outperformed existing state-

of-the-art methods. Although tested on whole genome sequencing,

TrioDeNovo can be equally applicable to exome sequencing data.

The information used in TrioDeNovo is the pileup of bases aligned

to each of the positions in the genome, and the alignment of reads

from whole genome and exome data has similar accuracy in that

regard.

The quality scores from TrioDeNovo have a natural interpret-

ability as a BF. For example, a DQ value of 9 indicates that the like-

lihood of mutation is 109 times of that without mutation. If a prior

mutation rate of 10�9 is assumed, the candidate shows reasonable

evidence of being a true mutation, and for a mutation rate of 10�8,

a 10-fold increase of likelihood is given to this candidate. Such an

interpretation is intuitive, and the adjustment does not require

re-calling. On the other hand, the posteriors from other methods,

e.g. DeNovoGear and Polymutt, do not have such a natural inter-

pretation. These algorithms calculate the likelihood of data by a

mixture of distributions of both Mendelian transmissions (M0) and

DNMs (M1) in the same model. The relative contribution of M1 and

M0 in the model is determined by the mutation rate, making the

model sensitive to the pre-specified prior. Moreover, the relative

ranking of candidates of DeNovoGear calls could change for the

same data when different priors were used, which is rather

undesirable.

Tools specialized for variant calling continue to improve the GL

calculation and it is standard that these tools output GLs in the VCF

file. By taking VCF files as input, TrioDeNovo can continuously bene-

fit from these improvements without changing the interface.

Furthermore, TrioDeNovo can be applied to VCF files generated by

different tools, e.g. GATK, Samtools, FreeBayes and others, so that a

consensus call set can be generated. The consensus approach has been

shown to generate high-quality calls (Nielsen et al., 2011),

and TrioDeNovo enables the consensus calling by integrating

GLs calculated from various tools through the standard VCF

input. In addition, TrioDeNovo runs very fast due to its efficient

implementation so that consensus calling can be carried out efficiently.

TrioDeNovo calculates the mutation evidence based on the

GLs at individual positions. Alignment artifacts are usually not well

captured in the GLs and therefore can introduce false positive calls.

Although VCF files contain some information about alignments, the

information is insufficient to effectively distinguish real and artifac-

tual mutations. We previously developed a machine-learning ap-

proach, DNMFilter, for filtering by incorporating rich features in

bam files. DNMFilter was initially trained using exome sequencing

data and showed improved accuracy on the 1000GP whole genome

sequencing. We will further exploiting a training set of whole

genome DNMs when more data are available. We hope that

TrioDeNovo equipped with DNMFilter provides a powerful tool

for mutation detection in trios for both targeted and whole genome

sequencing. The Cþþ source code implementing TrioDeNovo

and related resources are available on the authors’ website (https://

medschool.vanderbilt.edu/cgg).
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