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Abstract

Motivation: Copy number variation (CNV) is a type of structural variation, usually defined as gen-

omic segments that are 1 kb or larger, which present variable copy numbers when compared with

a reference genome. The screening and ranking algorithm (SaRa) was recently proposed as an effi-

cient approach for multiple change-points detection, which can be applied to CNV detection.

However, some practical issues arise from application of SaRa to single nucleotide polymorphism

data.

Results: In this study, we propose a modified SaRa on CNV detection to address these issues. First,

we use the quantile normalization on the original intensities to guarantee that the normal mean

model-based SaRa is a robust method. Second, a novel normal mixture model coupled with a

modified Bayesian information criterion is proposed for candidate change-point selection and fur-

ther clustering the potential CNV segments to copy number states. Simulations revealed that the

modified SaRa became a robust method for identifying change-points and achieved better per-

formance than the circular binary segmentation (CBS) method. By applying the modified SaRa to

real data from the HapMap project, we illustrated its performance on detecting CNV segments. In

conclusion, our modified SaRa method improves SaRa theoretically and numerically, for identify-

ing CNVs with high-throughput genotyping data.

Availability and Implementation: The modSaRa package is implemented in R program and freely

available at http://c2s2.yale.edu/software/modSaRa.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single nucleotide polymorphisms (SNPs), structural variations (such

as deletion, duplication or insertion of a chromosome segment) and

epigenetic reasons account for the tremendous variability of human

genomics. Copy number variation (CNV) is a type of structural vari-

ation, which is usually defined as genomic segments that are 1 kb or

larger, presenting variable copy numbers when compared with a ref-

erence genome (Freeman et al., 2006). Duplication or deletion on

any of the two copies of genomic segments results in variation

of this region in human populations. CNVs are generated by recom-

bination-based or replication-based mechanisms, which can be in-

herited; their formation also occurs when de novo locus-specific

mutation happens (Zhang et al., 2009). With the new technologies

developed in recent years, smaller copy number variants that are

even in SNP level are detectable (Conrad et al., 2010).

Increasing evidence suggests that CNVs commonly exist and

have strong impact on disease risks. Through CNV mapping of

human genome from 270 individuals, researchers found that 12%

of human genome is subject to CNVs (Redon et al., 2006).

Meanwhile, other research revealed that the average number of

CNVs per individual in the 112 HapMap individuals was 27 (Wang

et al., 2007). Moreover, a large-scale CNV detection study in human

genome demonstrated that a large amount of the identified CNVs

overlapped with protein coding region (Sebat et al., 2004).

Changes of copy number influence the expression levels of genes

included in the corresponding DNA segments, which makes

VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1341

Bioinformatics, 31(9), 2015, 1341–1348

doi: 10.1093/bioinformatics/btu850

Advance Access Publication Date: 25 December 2014

Original Paper

http://c2s2.yale.edu/software/modSaRa
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu850/-/DC1
introduction
to 
SNP 
http://www.oxfordjournals.org/


transcription levels higher or lower than those that can be achieved

by control of transcripts of a single copy per haploid genome

(Hastings et al., 2009). Given this information, CNVs in human gen-

ome may significantly affect risks of not only Mendelian diseases

but also many common diseases. Great effort is being made to un-

cover a causal role of CNVs in pathogenesis of human common dis-

orders, such as pancreatic adenocarcinoma, autism, growth

retardation and HIV progression (Fanale et al., 2013; Poultney

et al., 2013; Shostakovich-Koretskaya et al., 2009; Zahnleiter et al.,

2013). Precisely identifying CNVs and studying their genetic func-

tions will greatly benefit the functional analysis of human genomics

and complement current GWASs, which measure genome-wide

genotype variations (Wang and Bucan, 2008).

Various techniques have been proposed for detecting DNA

CNVs in humans and mammalians. The advent of whole-genome

SNP genotyping array and the next generation sequencing which

assays hundreds of thousands of points in parallel permits kilobase-

resolution detection of CNVs. With the development of these high-

resolution techniques, many population-based statistical algorithms

have been developed for CNV studies including QuantiSNP (Colella

et al., 2007), CNVCALL(Cardin et al., 2011), CNVDetector (Chen

et al., 2008), CGHCall (van de Wiel et al., 2007), CNV-seq (Xie

and Tammi, 2009), CNVtools (Barnes et al., 2008), BirdSuite (Korn

et al., 2008) and CNVassoc (Subirana et al., 2011). PennCNV

(Wang and Bucan, 2008) is probably the most popular software for

CNV analysis, which implements hidden Markov model incorporat-

ing the Log R Ratio (LRR) values, B allele frequency (BAF) values

and also the distances between neighbouring SNPs.

Meanwhile, many change-point-based approaches have also

been developed and extensively applied to the detection of CNVs.

Existing change-point-based approaches use exhaustive searching,

such as binary segmentation method (Sen and Srivastava, 1975), cir-

cular binary segmentation (CBS; Olshen et al., 2004) and penalized

regression (Huang et al., 2005). These global searching approaches

present high computational complexity, given that the data points

are repeatedly used in the process of determining change-points

along the same sequence. As a result, finding multiple change-points

in massive SNP genotyping array data accurately and efficiently is

challenging.

The screening and ranking algorithm (SaRa) was recently

proposed as an alternative approach for multiple change-points

detection (Niu and Zhang, 2012). This algorithm hypothesizes that

determining whether a position at the DNA sequence is a change-

point or not does not depend on the information far away from this

position. The SaRa algorithm searches along the sequence in a series

of windows, and it finds the local maximizers for the scan statistic

as the most probable change-points locally. These local maximizers

are then ranked and chosen by a backward subset selection strategy

based on Bayesian information criterion (BIC), which yields final

change-points.

As discussed by Niu and Zhang (2012), it takes only OðnÞ oper-

ations to perform the screening and ranking steps. Therefore, SaRa

ensures low computational complexity down to OðnÞ, which makes

it more efficient than the existing iterative searching algorithms with

complexity at least Oðn2Þ. This statistical property makes SaRa

more suitable for high throughput datasets.

However, some practical issues arise from the application of

SaRa to SNP data for identifying CNVs. First, the distribution of

intensities in high-throughput Affymetrix SNP array, for example,

always presents heavy tails when compared with normal distribu-

tions, which violates the assumption of SaRa. Second, the change-

points identified by SaRa are not clustered to make final calling of

copy number states. In this article, to address the above two issues,

we propose several strategies to implement SaRa on CNV detection.

First, we use the quantile normalization (QN) on the original inten-

sities to alleviate the requirement of normality. Second, we propose

to use a novel normal mixture model and apply the BIC criterion for

candidate change-point selection and further cluster the potential

CNV segments to copy number states. After our modification,

the SaRa algorithm is robust to the violations of the normal as-

sumption and yields high sensitivity and specificity for identifying

change-points. Through intensive simulation studies, we evaluated

the validity of the modified SaRa on identifying change-points for

CNVs. Our simulation results demonstrated that the modified

SaRa achieved higher power than CBS (Venkatraman and Olshen,

2007). By applying it to real data from the HapMap project, we

illustrated the performance of the modified SaRa on detecting CNV

segments.

2 Methods

2.1 SaRa algorithm
First, we start with a brief review of the SaRa method. Let

Y ¼ ðY1;Y2; . . .;YnÞT be a long linear sequence of random variables,

for example, LRR values of an individual at one chromosome from

genotyping array. n is the length of the sequence presented by num-

ber of SNP and CNV markers. In SaRa, a high dimensional normal

mean model is applied as follows,

Yi ¼ li þ ei ; ei � Nð0; r2Þ; 1� i�n:

l ¼ ðl1; l2; . . .;lnÞT is the piecewise constant vector denoting the

unknown underlying mean of each point. ei’s are the independent

and identically distributed errors with normal distribution. We then

define a change-point vector s ¼ ðs1; s2; . . .; sJÞT where sjðj ¼ 1; . . .; JÞ
are the change-points in the model satisfying lsj

6¼ lsjþ1. The total

number of change-points J is assumed to be much smaller than the

total length n. As mentioned in the introduction section, on average,

approximately 50 change-points corresponding to either end of the

CNV regions, are sparsely dispersed among the hundreds of thou-

sands of SNP array points for each individual. The major task be-

comes searching for the number of change-points J and finding the

exact locations of s’s.
First, a window with bandwidth h is used to scan the long linear

sequence which we call the screening step. At each point of interest x

(1�x�n� 1), a simple diagnostic function DhðxÞ defined below is

used to reflect the probability of this position being a change-point.

DhðxÞ ¼

Xh

t¼1

Yxþt �
Xh

t¼1

Yxþ1�t

 !

h
:

This is the average difference between the right-hand side and the

left-hand side local observations of the point of interest. Therefore,

the larger deviation from zero that DhðxÞ presents, the more likely

that x is a change-point. A positive value of DhðxÞ means an

increased mean, and a negative DhðxÞ is related to a decreased

mean. Local maximizers of jDhðxÞj are selected as the most probable

candidates of change-points. For these local maximizers, the

P-values corresponding to the test statistics are obtained by simula-

tion from a sequence with no change-point. Then, by choosing a sig-

nificance level, the local maximizers with the smallest P-values are

selected to obtain a list for further selection, which has a much

smaller size than the total length n. After these screening and rank-

ing procedures, we find a pool of candidates that are most likely to
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be at or near the change-points. The next step is to remove the pos-

sible false-positive ones, which we will discuss in the following

section.

Based on the basic idea of the SaRa algorithm described above,

we illustrate the following strategies to optimize the performance of

SaRa on detecting CNVs accurately and precisely.

2.2 QN of the original intensities
To alleviate the influence of the violation of normal assumption on

the SaRa algorithm, we propose to perform QN on the original

intensities in the preprocessing step. First, we rank the intensities of

the whole dataset. Then we simulate a sample of the same size as the

original datasets from the standard normal distribution Nð0; 1Þ. At

last, we replace the original intensities by the simulated sample from

Nð0; 1Þ according to their ranks.

2.3 Multiple bandwidths in identifying local maximizers

to optimize sensitivity
In the SaRa procedure, the bandwidth h is an important parameter

for accurately identifying the change-points. Choosing the optimal

one is challenging and tricky. If a small bandwidth value h is used,

the CNVs with relatively small span sizes can be covered. However,

the output will be noisy with an inflated number of false positives.

Oppositely, if a relatively large bandwidth is used, the power will be

low since small copy number segments will be missed. Obviously,

the single bandwidth strategy is not satisfactory given the variable

span size of CNVs in human population.

We attempt to increase the power or sensitivity of SaRa using

multiple bandwidths as suggested in Niu and Zhang (2012). We se-

lect k bandwidths h1; h2; . . .;hk, and perform the screening and

ranking steps with each bandwidth respectively. A total of k sets of

local maximizers will be obtained and combined to form a candidate

pool of change-points. By default, three bandwidths are used for

identifying CNVs in the current modSaRa package. Note that the es-

timation by different bandwidths will provide different sets of local

maximizers, thus the combination of the k sets of local maximizers

allows better power than single bandwidth strategy. This was con-

firmed by our pilot study in simulated datasets (results not shown).

Although the power is increased by adopting multiple band-

widths, there are many redundant change-points since multiple can-

didates may be found in the close neighbourhoods. To find CNVs,

we need to remove the seemingly repeated as well as the false-

positive change-points effectively. In the next section, we will dis-

cuss the strategy of combining the previously published method and

our new implementation.

2.4 Normal mixture model-based clustering and BIC

criterion subset selection
Eliminating false positive or redundant points from the candidate

change-points is a challenging and critical step for the SaRa algo-

rithm. As suggested in Niu and Zhang (2012), a classic model selec-

tion approach, modified BIC, can be applied to the pooled

maximizers for backward stepwise deletion. First, all the candidates

are incorporated and the BIC score is calculated. Then, each candi-

date is evaluated one by one by checking the BIC values with and

without this maximizer. The one candidate whose removal would

lead to the largest BIC decrease will be removed. The same proced-

ure is carried out recursively on the remaining candidates until the

BIC score does not decrease. This approach is effective in deleting

the redundant candidate change-points identified by different

bandwidths according to our pilot study. However, according to

simulations in our pilot study, we found that this BIC step was not

satisfactory in eliminating the false positives. We noticed that these

false positives were usually located in short segments with slight de-

viations from the normal copy number state. In this situation, SaRa

seems to be over sensitive and detects a slight change, which may be

an advantage in other applications but not ideal when only a limited

number of states are of interest in the identification of CNVs.

To resolve this problem, we apply a mixture model-based

clustering approach following the subset selection with BIC criter-

ion to further delete the false positives in the candidate change-

points. The basic idea is to assign the potential CNV segments be-

tween two neighbour candidate change-points to different copy

number states according to the average intensity in the segment

interval. In our study, we use three clusters including duplication,

normal and deletion states. Each cluster is presented by a Gaussian

distribution with unknown mean and variance. We then applied

Expectation–Maximization algorithm for the mixture of Gaussians

to assign each segment to the most probable cluster/state (details

described in Supplementary Text). After this clustering procedure, if

two physically linked candidate CNV segments are assigned to the

same group, we treat them as one unique CNV segment.

Using this method, the segments obtained from SaRa are clus-

tered and the neighbouring change-points with close jump sizes are

grouped together. One advantage is that the short and false-positive

segments with minor change can be removed. Additionally, the copy

number state for each segment can be straightforwardly obtained.

2.5 modSaRa software
The modSaRa software has been implemented in R and is available

online at http://c2s2.yale.edu/software/modSaRa. The general flow-

chart of the modified SaRa algorithm is shown in Figure 1. For a se-

quence of intensity values, the modified SaRa will process them by

QN, search for local maximizers, eliminate unlikely change-points,

and then output the potential CNV segments by presenting the start

point and end point by SNP or CNV marker. The lengths of the

Fig. 1. A general flowchart for CNV calling algorithm by the modified SaRa
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copy number aberrant are also in the output. Users can change the

significance level in the programming commands.

2.6 Simulation studies
We performed simulation studies to investigate the performance of

the modified SaRa method for CNV detection and comparing it to

CBS. First, to provide evidence of the necessity of the QN strategy in

our modification, we evaluated the performance of the original

SaRa method in non-Gaussian errors with and without QN strategy.

We then simulated intensities mimicking real datasets and examined

the performance of the modified SaRa on change-point detection.

2.6.1 Simulation with noise from t distributions

As stated above, SaRa was proposed based on a normal distribution

assumption. Thus, it might present poor performance if the intensity

data violate this assumption. Therefore, we first evaluated the ro-

bustness of SaRa method on detecting change-points when the noise

was from non-Gaussian distributions, for example, t-distributions.

Two independent scenarios were considered in which the errors

were simulated from t-distributions with degrees of freedom as one

and two, respectively. In each scenario, 100 sequences of length

10,000 were simulated. Ten change segments were inserted to each

sequence with jump sizes (2.56, �3.47, 3.02, 3.26, �3.92, �3.12,

1.74, 3.05, �3.09, �2.69). The lengths of the segments were 35, 18,

79, 62, 51, 27, 84, 32, 26, 19. We then applied the SaRa diagnostic

statistic with bandwidth h ¼ 15 to identify the local maximizers.

The modified BIC criterion was applied for backward deletion of re-

dundant points.

In parallel, we also applied SaRa after QN of the simulated data-

sets. The performance of SaRa on identifying the change-points with

application of QN was compared with that without QN by evaluat-

ing the sensitivity and specificity.

2.6.2 Simulation studies of the modified SaRa

In this section, we propose a novel simulation approach to generate

LRR values along DNA sequences mimicking real Affymetrix array

data. Rather than generating from an artificial distribution, we used

the LRR values from non-CNV SNPs in a “blank” region shared by

multiple individuals. Simulations were based on the blank region to

evaluate the performance of the modified SaRa versus existing meth-

ods. The general flowchart for simulating LRR sequences is shown

in Figure 2.

Step 1: Generating DNA sequences mimicking real data

To mimic the real high-throughput genotyping array dataset, we

searched for a relatively long blank (i.e., no CNV detected) sequence

in real data according to the CNV identification results from

PennCNV software. The details of the procedure for finding the

blank region are illustrated in Supplementary Methods Section 1.

We used 302 individuals from the international HapMap Phase 3

dataset (The International HapMap Consortium, 2003). Two hun-

dred and seventy-two subjects sharing a blank region were then used

for the following simulation (Fig. 2).

Step 2: Generating CNV regions

Based on the LRR values in the blank regions obtained from Step

1, we simulated CNV regions in three scenarios representing dele-

tion of one copy, deletion of double copies and a mixture of copy

number states, respectively. In each scenario, the LRR change

level was simulated according to the distributions and proportions

of the corresponding copy number states in the HapMap dataset

(Tables 1 and 2). According to the results from PennCNV at

chromosome 1, the average length of CNVs was larger in duplica-

tions compared with those from deletions (Table 1). The most fre-

quent CNV was deletion of a single copy (cn¼1) and the least

frequent one was duplication of double copies (cn¼4). Deletions

occurred more often than duplications. The length of CNVs for

changes of a single copy (either deletions or duplications) was obvi-

ously larger than those for double copies (Supplementary Fig. S1).

Most CNV segments with changes of double copies (cn¼0 or

cn¼4) were approximately 10–50 kb. Moreover, 94.97% of the

CNVs spanned less than 100 markers (Supplementary Fig. S2). The

details of the simulation can be found in Supplementary Methods

Section 2.

We used the modified SaRa on the simulated datasets as in the

flowchart in Figure 1. Its performance was compared with CBS algo-

rithm implemented in R package DNAcopy (version 1.38.1). To

make the comparison fair, we also performed QN on CBS.

We examined the sensitivity and specificity of the detection

results from the modified SaRa algorithm and CBS. Since the

local maximizers were identified in a window with length

2hm m ¼ 1; . . .;kð Þ, a change-point identified by SaRa was con-

sidered a true positive if it was within the 2hm neighbourhood of a

true change-point, whereas this acceptance range was set as 10

for CBS.

2.7 Real data analyses
Two hundred and ninety-nine individuals from HapMap project

were used to test the modified SaRa algorithm. To reduce the effect

from outliers, we first preprocessed the LRR sequence by smoothing

them (Chen et al., 2013). For position i in the sequence

Y ¼ ðY1;Y2; . . .;YnÞT , the smoothing region was defined as

fi� R; . . .; i; . . .; iþ Rg, where we set the R value as 10. If the inter-

vals were out of region, we chose the start or end point of the se-

quence as boundaries. Let âi be the mean and b̂ i be the standard

Fig. 2. A flowchart for our proposed simulation procedure by mimicking a

real dataset from the HapMap project
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deviation of the samples in the smoothing region. We replaced Yi

with the median of that region if Yi > âi þ t � b̂ i or Yi < âi � t � b̂i,

where the t value was set as 2. After smoothing the signal data, we

applied the SaRa software to the dataset to identify change-points.

For fast CBS, the original dataset was also smoothed by its built-in

command.

3 Results

3.1 Robustness of SaRa after QN
SaRa was developed based on normal assumption for error. In our

simulation, we evaluated the robustness of the original version of

SaRa in identifying change-points if the normal distribution assump-

tion was violated. It was obvious that SaRa presented very poor

power for change-points detection when the noises had t-distribu-

tions, especially when the degree of freedom was one (Fig. 3). After

applying QN in the preprocessing step, SaRa presented greatly

increased power when compared with that without QN in both

simulation scenarios. Therefore, with the extra QN step, SaRa pre-

sented robustness to the normal assumption. This simulation under-

scored the necessity of QN strategy of SaRa on change-points

detection with SNP genotyping array.

3.2 Simulation studies of the modified SaRa
To study the performance of the modified SaRa in more realistic set-

tings, we conducted simulations mimicking real SNP genotyping

data. Three scenarios were considered including: (1) CNV regions

with deletion of one copy; (2) CNV regions with deletion of double

copies and (3) CNV regions with a mixture of copy number states.

Figure 4 displays the histogram of the simulated data for

Scenario 1. Obviously, the original data were far from normal

distribution before QN. Though the assumption of the normal

errors for each state was still not guaranteed after QN, it was mostly

satisfied since a majority of the intensities were from the normal

state with two copies.

We compared the performance of the modified SaRa with that of

CBS on the simulated datasets. For Scenario 1 with deletion of a sin-

gle copy, the modified SaRa performed much better than CBS al-

though CBS was overall improved with QN (Table 3). The modified

SaRa usually identified much fewer false-positive change-points

than CBS under the similar true positive rates no matter if QN is

applied or not. For Scenario 2 with deletion of double copies

(Table 4), similarly, the modified SaRa significantly outperformed

CBS no matter if QN was applied or not. In conclusion, the modi-

fied SaRa achieved high sensitivity with much better filtering of the

false positives than CBS. The overall performance of the modified

SaRa was obviously better than CBS in detection of change-points

of deletions.

Scenario 3 considered a mixture of four states of CNVs in each

subject. Although CBS reached high true positive rates when the

number of false positives was very high, the modified SaRa was

Table 2. Summary of the CNVs simulation in Scenarios 1 and 2

Simulation State l r2 Mean of

CNV

lengths

Median of

CNV

lengths

Scenario 1 cn¼ 1 � 0.51 0.18 31 30

Scenario 2 cn¼ 0 �1.28 0.65 32 32

To make the simulation mimic the real data, the mean and variance of the

LRR shifted values (l and r2) were computed in the original dataset accord-

ing to the results from PennCNV. The LRR change values of each CNV were

generated from N(l, r2). The mean and median of CNV lengths were meas-

ured by the number of markers

Table 1. Summary of identified CNVs by PennCNV software on

chromosome 1 for the 302 normal subjects from HapMap

State Mean of

CNV

lengths

(kb)

Median of

CNV lengths

(kb)

Total

number of

CNVs (%)

LRR

mean

LRR

variance

cn¼ 0 24.16 30.35 409(23) �1.28 0.65

cn¼ 1 56.22 28.60 820(46) �0.51 0.18

cn¼ 3 167.26 63.45 378(21) 0.31 0.08

cn¼ 4 35.42 31.07 181(10) 0.58 0.11

cn¼ 2 – – – �0.004 0.05

cn¼ 0: deletion of double copies; cn¼ 1: deletion of a single copy; cn¼ 3:

duplication of a single copy; cn¼ 4: duplication of double copies; cn¼ 2: nor-

mal state. LRR mean: the average value of LRR across all samples; LRR vari-

ance: the variance of the LRR across all samples

Fig. 4. Histogram of the simulated data with CNV segments (deletions)

Fig. 3. Performance of SaRa on simulated datasets with noise intensities fol-

lowing t-distributions. We simulated 100 signal sequences with length 10 000.

Ten change regions were chosen at each sample sequence. The jump sizes

for the change regions were (2.56, �3.47, 3.02, 3.26, �3.92, �3.12, 1.74, 3.05,

�3.09, �2.69). The change segment lengths were (35, 18, 79, 62, 51, 27, 84,

32, 26, 19). The true positive rate was the ratio of the number of observed

change-points to the total number of true change-points. The false-positive

rate was the ratio of the observed false change-points to the total number of

points. The dashed lines denote the performance of SaRa method on the

simulated dataset. The solid lines denote the performance of the SaRa

method after QN of the dataset. The simulated noise sequences were distrib-

uted as (a) t(1); and (b) t(2)
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more powerful than CBS when the number of false positive was at a

very low level (Supplementary Table 1). The modified SaRa still out-

performed CBS regardless if QN was or was not applied to CBS. In

summary, the modified SaRa was preferable to CBS.

3.3 Real data analyses
To demonstrate the performance of the modified SaRa in real data,

we applied the modified SaRa to the 299 individuals from HapMap

project. Before applying the change-point identification methods,

we smoothed the intensities to remove outliers (Supplementary Fig.

S3). By setting the significance level at 0.01, SaRa identified 11 254

change-points in total.

To evaluate the identified change-points, we checked the distri-

bution of lengths of segments between adjacent change-points across

all subjects. Ideally, approximately 50% of the segments were CNV

segments and the remaining were inter-CNV segments if the change-

points were detected perfectly. Most of the soundly identified CNV

segments are fewer than 100 markers as indicated in Section 2.6.2

and Supplementary Figure S2, whereas the inter-CNV segments are

usually much longer. As a consequence, ideally we would observe

around 50% short segments. On the contrary, both false positives

and false negatives would decrease this percentage. Therefore, a per-

centage of short segments closer to 50% implies better performance

in detecting change-points. To this aspect, we found that the propor-

tions of the segments identified by the modified SaRa which spanned

less than 60 and 100 markers were 39.82 and 43.24%, respectively

(Fig. 5), which were close to the expectation but suggested that there

still existed a certain number of false positive change-points.

Fast CBS identified 16 002 change-points in total similar to the

output of modified SaRa. The proportions of the segments which

spanned less than 60 or 100 markers were 30.23 and 34.53%,

which were less than the modified SaRa. The fact that the modified

SaRa identified more segments with sound CNV lengths indicated

its better specificity in CNV detection to some extent.

Moreover, we also evaluated the overlapping proportion of the

change-points identified by PennCNV and the modified SaRa on

chromosome 1. Of the change-points identified by PennCNV,

78.41% were also identified by the modified SaRa when the accept-

ance range was set as 10. Only 37.64 and 31.18% of the change-

points identified by PennCNV were discovered by CBS with and

without QN, respectively. Admittedly, this comparison was not

ideal since the results from PennCNV could not be considered as

truth, but the fact that the modified SaRa presented large overlap-

ping proportions with PennCNV implied its high sensitivity in CNV

detection.

Figure 6 presents the change-points identified by the modified

SaRa for individual A01_183598 from CEU population on chromo-

some 1 between markers CN_452249 and CN_453517. Noticeably

the LRR values of the segment between 150.82 and 150.86 kb were

significantly less than 0.

4 Discussion

In this article, we proposed a modified SaRa method to improve the

power of SaRa by QN when the intensity is not normally distrib-

uted, and to reduce the false-positive errors by a clustering strategy.

Table 3. Performance of the modified SaRa and CBS on detecting

change-points in the simulated datasets in Scenario 1 with deletion

of a single copy

modSaRa CBS_QN CBS

TP FP TPR TP FP TPR TP FP TPR

4658 285 0.856 4816 30613 0.885 4624 10328 0.850

4839 324 0.890 4887 31405 0.898 4839 16603 0.890

4919 384 0.904 4925 32268 0.905 4909 21463 0.902

4986 438 0.917 4994 33593 0.918 4960 26598 0.912

5042 492 0.927 5021 34343 0.923 5023 40295 0.923

5074 563 0.933 5097 37114 0.937 5075 60575 0.933

5097 1059 0.937 5127 38404 0.943 5115 74956 0.940

5099 1410 0.937 5174 41476 0.951 5191 145771 0.954

CBS_QN: CBS performed after QN of the intensities; TP: number of de-

tected true positives; FP: number of detected false positives; TPR: true positive

rate.

Table 4. Performance of the modified SaRa and CBS on detecting

change-points in the simulated datasets in Scenario 2 with deletion

of double copies

modSaRa CBS_QN CBS

TP FP TPR TP FP TPR TP FP TPR

5401 49 0.993 5391 23042 0.991 5424 10977 0.997

5417 62 0.996 5415 32489 0.995 5432 12150 0.999

5423 68 0.997 5423 35505 0.997 5434 12709 0.999

5432 88 0.999 5432 60148 0.999 5435 13423 0.999

5436 99 0.999 5436 106448 0.999 5436 14565 0.999

5438 90 1 5437 208646 0.999 5438 16760 1

CBS_QN: CBS performed after QN of the intensities; TP: number of de-

tected true positives; FP: number of detected false positives; TPR: true positive

rate.

Fig. 5. The distribution of number of markers between two adjacent change-

points identified by the modified SaRa. The significance level was set as 0.01

Fig. 6. One identified CNV segment on chromosome 1 of individual

A01_183598 from CEU population. Each dot denotes a marker
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To evaluate the performance of our proposed method versus existing

ones, we developed a novel method to generate DNA sequences that

mimic real data for the purpose of evaluating CNV detection.

Our simulations with noises from t-distributions highlight the

necessity of preprocessing by QN on SaRa which renders its robust-

ness to the normal assumption (Fig. 3). Moreover, we propose to

use multiple bandwidths in identifying change-point candidates to

optimize the sensitivity, then a normal mixture model-based cluster-

ing strategy following BIC criterion in deletion of false positives to

optimize its specificity. By applying the modified SaRa on a simu-

lated dataset mimicking a real dataset from the HapMap project, we

illustrated the great performance of the modified SaRa on detecting

change-points with SNP genotyping arrays. In all the scenarios we

simulated, the modified SaRa achieved better performance than CBS

(Tables 3, 4 and Supplementary Table S1). QN also affected the per-

formance of CBS to some extent. In addition, real data analyses indi-

cated that the modified SaRa outperformed CBS in both sensitivity

and specificity although they identified similar number of change-

points. Our improvements emphasize the preference to use the

modified SaRa in identification of CNVs. In conclusion, we propose

a modified SaRa method by optimizing its performance in both the-

oretical and applicable aspects for identifying CNVs with high-

throughput genotyping arrays.

The better performance of the modified SaRa on change-points

detection compared with CBS highlights the necessity and contribu-

tion of our modification. The combination of multiple bandwidths

and normal mixture model strategies allows optimized sensitivity

and specificity. On the one hand, using multiple bandwidths, the

modified SaRa achieves better power of the detection of change-

points. While, on the other hand, the implementation of the normal

mixture model-based clustering overcomes the over-sensitivity of

the original SaRa to small mean changes, which is undesirable for

CNV detection. Thus, the modified SaRa has more precise identifi-

cation of the change-points corresponding to true CNVs. Such ad-

vantages are exhibited in the real data analysis results, in which the

modified SaRa identified more realistic CNV segments than CBS.

One concern of our modification is that larger CNV segments may

be produced than the original version of SaRa. This is because we

cluster two adjacent CNV segments together at the clustering step,

when both have the same direction of change and similar jump sizes.

However, as noted in the real data analysis, the proportion of short

segments identified by SaRa was larger than CBS, which demon-

strated that our modification did not mistakenly group adjacent

change-points. We provide a reliable solution for the over-sensitivity

issue of the original SaRa method in this study.

To effectively filter false-positive change-points, our suggestion

is to apply normal mixture model-based clustering following subset

selection based on modified BIC. Other combinations of these two

strategies were also explored in the simulation studies: (i) selection

with modified BIC criterion only; (ii) normal mixture model-based

clustering only and (iii) selection with modified BIC criterion follow-

ing normal mixture model-based clustering were all applied to the

simulated datasets. However, our proposed combination exhibited

the best performance on subset selection of the candidate pool. The

underlying mechanism is of interest and will be further investigated

in our future study.

Investigating the association of CNVs with common quantitative

traits and human complex diseases is a challenging task in current

genetic community. Our implementation in the SaRa method

by optimizing its performance is of great value for CNV identifi-

cation, which ensures more accurate and valid CNV calls for

future association study. Compared with the originally developed

SaRa, the improvements are reflected in three aspects. First,

multiple bandwidths strategy assures better power. Second, the

backward deletion strategy incorporating BIC criterion and normal

mixture model allows better filtering of false positives and better

calling of CNV segments. Last, QN strategy in the preprocess step

makes the modified SaRa more robust for analyses of different data

types.

As we stated above, one of the disadvantages of the modified

SaRa is that it may incorrectly combine two neighbouring CNVs,

which have minor differences in jump sizes in reality. For example,

one segment presenting a large increase which may implicate dupli-

cation of double copies, and an adjacent one that has a smaller jump

which may indicate duplication of a single copy, may be grouped to

a single segment by our algorithm. This issue arises since we only

use three copy number states in the clustering step. One possible

solution is to introduce more states or clusters (e.g. five) in the clus-

tering step using a normal mixture model, but more issues may arise

such as the choices of initial parameters. Another solution is to in-

corporate the BAF values, which will further clarify the copy num-

ber states according to the distributions of BAF. This approach

warrants future research.

In this study, we focus mainly on the optimal segment identifica-

tion by local searching. Indeed, our proposed QN preprocessing pro-

cedure was initially motivated by evaluating the robustness of SaRa

to non-Gaussian distributions. Most change-point-based methods

assume normality for the noise intensities. In reality, the noise data

of the SNP array sequences are usually not normally distributed,

which makes the assumption of normal distribution invalid. In add-

ition to the CNV detection methods developed for SNP arrays, the

QN strategy can be extended to next generation sequencing data

whose intensities may present heavy tailed noises (Cheung et al.,

2011). Therefore, our study provides new insight on the CNV detec-

tion for next generation sequencing data. Moreover, it will be of

great interest to develop a population based approach using data

from multiple sequences or subjects for CNV identification, which

will potentially improve the power of CNV detection.
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