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Abstract

In response to progressive nephron loss, volume and humoral signals in the circulation have 

increasing relevance. These signals, including plasma sodium, angiotensin II and those related to 

volume status, activate a slow neuromodulatory pathway within the central nervous system (CNS). 

The slow CNS pathway includes specific receptors for angiotensin II, mineralocorticoids, and 

endogenous ouabain (EO). Stimulation of the pathway leads to elevated sympathetic nervous 

system activity (SNA) and increased circulating EO. The sustained elevation of circulating EO (or 

ouabain) stimulates central and peripheral mechanisms that amplify the impact of SNA on 

vascular tone. These include: changes in synaptic plasticity in the brain and sympathetic ganglia 

that increase preganglionic tone and amplify ganglionic transmission, amplification of the impact 

of SNA on arterial tone in the vascular wall, and the reprogramming of calcium signaling proteins 

in arterial myocytes. These increase SNA, raise basal and evoked arterial tone, and elevate blood 

pressure (BP). In the setting of chronic kidney disease, we suggest that sustained elevation of the 

slow CNS pathway, plasma EO and the cardiotonic steroid marinobufagenin (MBG), comprise a 

feed-forward system that raises BP and accelerates kidney and cardiac damage. Block of the slow 

CNS pathway and/or circulating EO and MBG may reduce BP and slow the progression to end 

stage renal disease.
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Volume Expansion, Natriuretic Hormones and Sodium Pump Inhibitors in 

Kidney Disease

The kidney is critical to long term salt and water balance. In addition to renal perfusion 

pressure and an adequate glomerular filtration rate (GFR), salt balance involves well 

recognized hormones including aldosterone, the atrial peptides and angiotensin II. 

Moreover, as the number of functional nephrons progressively declines, the behavior of 

volume regulating hormones and extracellular fluid volume (ECFV) status in general 

becomes of increasing significance.

A progressive increase in ECFV becomes apparent as the number of filtering nephrons 

declines to a critically low number and profound adjustments in sodium regulating 

mechanisms have been suggested. In response to acute or chronic expansion of ECFV, a 

“third” factor other than aldosterone or GFR (or renal perfusion pressure) is required to 

explain sodium balance1. Numerous studies showed that the third factor was humoral and it 

induced natriuresis2. This so called natriuretic hormone (NH) has long been associated with 

the efferent natriuretic response to elevated plasma and intracerebroventricular sodium as 

well as intravascular volume expansion3. Hence, a significant portion of the pioneering work 

in the search for NHs employed human or experimental animals with chronic kidney disease 

(CKD) in whom ECFV is expanded. Some examples are presented in Table 1. The working 

assumption was that, in the progression to CKD, circulating factors that inhibit the tubular 

sodium pump were a compensatory mechanism that might help offset the decline in 

GFR29–32. Further, elevated levels of an NH might, as a side effect, augment vascular tone 

and raise blood pressure (BP). Indeed, increased circulating levels of a sodium pump 

inhibitor were readily detected in low renin (i.e., volume-expanded) hypertension33 and 

subsequent work demonstrated multiple natriuretic materials in the circulation and urine3. 

Moreover, in the last decade, several natriuretic materials have been isolated and identified. 

Some inhibit sodium transport and, like the classic cardiotonic steroids (CTS) ouabain and 

digoxin, inhibit sodium pumps. Yet other identified materials are natriuretic via secondary 

transport mechanisms3. Here, we focus on two endogenous CTS implicated in the 

pathogenesis of CKD and propose a feed-forward mechanism including specific elements by 

which one or both CTS become elevated in the circulation, raise BP, and promote renal and 

cardiac damage.

Endogenous Cardiotonic Steroids Implicated in Kidney Failure

Three endogenous CTS (eCTS) of relevance to ECFV balance and long-term BP control 

have been isolated and identified by analytical means in human plasma and/or urine24,34,35. 

The identified eCTS are ouabain, marinobufagenin (MBG), and telocinobufagin. In addition, 

there are strong indications that small amounts of digoxin, in addition to one or more 

digoxin-immunoreactive materials, are present in the circulation, urine and peritoneal 

dialysate of humans18,22,25,28,37. The presence of these multiple eCTS in mammals implies 

different signaling systems and functional effects38–45. The general evidence supporting the 

biosynthesis of eCTS is clear46–51 even though the specific details of the various pathway(s) 

remain to be elucidated. Nevertheless, as noted below, elevated circulating and or urinary 

levels of several eCTS are present in conditions associated with acute or chronic increases in 
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ECFV. Further, these eCTS appear to contribute significantly to the underlying renal and 

cardiac pathology in renal failure and recent animal studies show that methods to control the 

negative effects of the eCTS are valuable. Indeed, one or more of these methods may 

warrant investigation as possible new therapeutic modalities in humans to delay dialysis 

and/or transplantation.

Endogenous CTS, Kidney Damage and Cardiac Fibrosis

Renal damage

The circulating levels of EO, MBG and telocinobufagin are increased dramatically in 

virtually all patients undergoing dialysis for kidney disease15,23,24. Further, in the rat, partial 

nephrectomy raises MBG52 and EO53. There is renal fibrosis associated with elevated 

MBG54 whereas the sustained elevation of circulating EO or ouabain causes podocyte 

damage and proteinuria and these effects can be blocked by the ouabain receptor antagonist, 

rostafuroxin55,56 which blocks ouabain binding to the Na+ pump without causing inhibition 

of ion transport. Thus far, there appear to be no large differences in circulating EO in CKD 

patients with or without HTN which may be explained by differences in the types and 

dosages of therapeutic agents. Further, as noted below, the relationship between EO and BP 

is complicated by lag phases and there are no studies that address these issues.

The mineralocorticoid receptor (MR) antagonists, long recognized for their beneficial effect 

in heart failure57 have, together with inhibitors of aldosterone biosynthesis, been suggested 

as a way to minimize renal fibrosis58,59. Indeed, spironolactone attenuates experimental 

uremic cardiomyopathy where MBG and EO are elevated60. It has been suggested that the 

basis for the beneficial effect of spironolactone is not solely related to MR blockade, but 

may also involve their ability to compete with MBG and EO and possibly other CTS for 

binding to the sodium pump61,62. Yet other mechanisms have been suggested for the 

beneficial actions of spironolactone63. Further, when given into the CNS in tiny amounts 

that have no effect when given peripherally, MR antagonists reduce sympathetic outflow, 

are antihypertensive64, and have a dramatic beneficial impact on cardiac function in heart 

failure65. Further, as an MR-dependent pathway in the brain controls circulating EO66, the 

CNS, not ordinarily recognized as a key factor in CKF, is likely to play an important role in 

the progression to end-stage renal disease (ESRD). In the latter context, nothing is known 

about the potential benefits of CNS MR blockade in experimental models of chronic renal 

failure. However, spironolactone is beneficial for the long-term treatment of resistant 

hypertension in patients with CKF and may improve kidney function67,68. The improved 

outcomes are reminiscent of the unanticipated beneficial effect of MR blockers in severe 

heart failure57; i.e., a condition where ECFV is often expanded, and there are also elevated 

levels of circulating EO and other CTS69–71.

Cardiac fibrosis

Patients with CKF progressively lose cardiac diastolic function and develop ventricular 

hypertrophy with various geometric manifestations72. Systolic dysfunction impacts 10–20% 

of patients with ESRD. It appears that the diastolic dysfunction and ventricular hypertrophy 

are not simply secondary to the hypertension and anemia observed in CKF73. Partially 
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nephrectomized rats also develop diastolic dysfunction, ventricular hypertrophy, and cardiac 

fibrosis41,74,75. Further in rats, the prolonged infusion of MBG reproduces many features of 

uremic cardiomyopathy and MBG per se stimulates collagen formation in cardiac fibroblasts 

in cell culture41. More significantly, in partially nephrectomized rats, both active and 

passive immunization against MBG attenuates most of the cardiomyopathy75,76.

Recent insights into how EO raises vascular tone and blood pressure

Hypertension is a frequent and early component in CKF. Expansion of ECFV is associated 

with hypertension in ~75% of patients with chronic renal failure and typically can be 

controlled with hemodialysis; i.e., benefit reflects removal of fluid and not dialyzable 

vasopressor agents. Another significant cause of hypertension in uremic patients is 

hyperreninemia. The hypertension tends to be more severe, unresponsive to volume 

manipulation, and likely will require bilateral nephrectomy and/or transplant. There is a 

clear need for better control of hypertension in CRF. But what are the pressor pathway(s) in 

the volume- and renin-dependent patients?

EO, MBG and telocinobufagin are three known eCTS that circulate in elevated amounts in 

patients with CKF23,24,38. Although elevated EO is often observed in conditions where fluid 

volume is chronically expanded, it does not explain the acute “salt-sensitive” variations in 

BP that follow short term changes in salt intake77. However, the chronic elevation of EO 

and MBG typically generate sustained increases in BP in rodents75,78,79. It was initially 

suggested that the long-term pressor effect of EO involved interactions between the brain, 

arterial vasculature and the kidneys80. Subsequent studies in rats and transgenic mice have 

confirmed this hypothesis and elucidated many key events in the pressor mechanism of 

EO81, and also highlight the numerous gaps in knowledge that remain. The vasopressor 

effect of EO has acute and chronic facets. The acute pressor effect is generally believed to 

be mediated by inhibition of the Na+ pump and an indirect action that involves calcium entry 

mediated via the sodium-calcium exchanger that elevates myogenic and evoked tone82,83. 

The rise in intracellular calcium triggers increased contraction and, when short-term 

cardiovascular reflexes are blocked, raises BP. In response to sustained elevation of 

circulating EO, the chronic pressor effect is maintained by activation of a signaling pathway 

that upregulates expression of several key ion transport proteins in arterial myocytes. These 

proteins include the sodium calcium exchanger type 1 (NCX1), the sarcoplasmic reticulum 

calcium ATPase (SERCA) and the transient potential receptor canonical protein 6 (TRPC6). 

The upregulation of these proteins in arteries requires sustained occupation by circulating 

EO of the ouabain binding site on the alpha-2 isoform of the Na+ pump. The long-term 

binding of EO activates the protein kinase c-SRC and stimulates upregulation of the calcium 

transport proteins via unknown signaling events.

Further upstream, recent observations show that the CNS can control circulating EO. The 

CNS has a “slow neuromodulatory pathway”84 whose long term effects on BP and 

circulating EO can be blocked centrally by antagonists of aldosterone synthesis as well as 

MR66. The CNS slow pathway is overactive in salt- and volume- as well as angiotensin II-

dependent forms of experimental hypertension where EO is elevated, as well as in heart 

failure64,65,69,70,85,86. The slow pathway components appear to constitute a major 
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mechanism by which BP is elevated in many common disorders. Remarkably, the 

significance of this CNS pathway in renal failure is unknown. However, because the CNS 

receives volume, sodium and angiotensin II signals in various phases of CKF, we suggest 

that this brain pathway is likely to be fundamentally involved in raising BP and affecting 

progression. The overall pathway is summarized in Figure 1.

Implications for Therapy

Clearance of Cardiac Glycosides in ESRD

The clearance of cardiac glycosides is one significant determinant of their circulating levels. 

Although digoxin and digitoxin are cleared primarily by the liver, renal clearance is 

significant, especially for the more polar digoxin93. The clearance of the highly polar EO is 

mediated to a large extent by the kidneys.

Various transport mechanisms recover cardiac glycosides from the tubular fluid. At the 

basolateral membrane of the proximal tubular cell, an organic anion transporting 

polypeptide (SLCO4C1) mediates recovery of digoxin and ouabain94. In addition, the apical 

secretion of cardiac glycosides is mediated by the P-glycoprotein (PGP) efflux transporter, a 

protein encoded by the multidrug resistance 1 gene (MDR1)95. Furthermore, among patients 

with EH, the MDR1 locus is related to elevated circulating EO and may reflect diminished 

apical secretion of EO96. In addition, those hypertensives with elevated circulating EO also 

exhibit estimated glomerular filtration rates (eGFR) that are reduced97.

In terms of cardiac glycoside therapy, exogenous ouabain is no longer widely used. Thus, a 

primary concern is when the declining renal function will impact circulating EO. Plasma EO 

rises with the progression of CKF and especially in ESRD. The early rise in EO is evident 

with stages III and IV (Fig 2) although the impact of the lower GFR is surprisingly modest 

at this level of impairment. One likely reason is that only a small fraction (<1–3%) of the 

normal filtered load of EO ordinarily appears in the urine92. Another reason is that as 

hyperfiltration develops, the increase in proximal tubular flow rate will diminish tubular 

recovery of EO and offset a large portion of the decline in the filtered load53. However, with 

the advent of end stage failure and near zero urinary excretion, plasma EO rises substantially 

into the low nanomolar range23. This scenario, analogous to unwanted and uncontrollable 

digitalization, is worrisome in terms of the potential for undesirable cardiac and vasopressor 

effects, and because neither hemodialysis nor peritoneal dialysis are effective in removing 

EO23,98. Further, among patients with ESRD in dialysis, plasma EO was strongly associated 

with left ventricular mass and geometry23. This association was independent of arterial 

pressure and other well-established determinants of left ventricular mass. Thus, in ESRD, 

left ventricular hypertrophy and high cardiovascular risk, including that from hypertension, 

represent additional multifactorial problems potentially related to EO.

In addition to raising BP, the elevated EO in kidney failure may directly damage 

podocytes55. In rats, the chronic elevation of circulating ouabain reduced creatinine 

clearance, increased urinary protein excretion, and reduced the expression of podocyte 

nephrin, a selective podocyte marker protein. This last finding was replicated ex vivo by 

incubating podocyte primary cell cultures with low-dose ouabain. Notably, the ouabain/EO 
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antagonist rostafuroxin prevented the podocyte lesions and proteinuria56. These results 

suggest that rostafuroxin should be evaluated in patients that have progressive glomerular 

disease.

EO as a Biomarker for Acute Kidney Injury

The observation that ouabain foments kidney damage in the rat suggested a possible role of 

EO in acute kidney injury (AKI). Indeed, circulating EO rises with an interesting time 

course during the induction of anesthesia in patients about to undergo elective cardiac 

surgery98. In a follow up cross-sectional study, the preoperative plasma levels of EO were 

measured in 407 patients admitted for cardiac surgery and in a second (validation) 

population of 219 patients. Among the first group of patients, the incidence of acute kidney 

injury (2.8%, 8.3%, 20.3%, p<0.001) increased with each incremental preoperative EO 

tertile. Regression analyses revealed that preoperative circulating EO (and not the peak 

levels achieved during surgery) was the strongest predictor of AKI and this was confirmed 

also in the validation cohort. Most recently, we demonstrated the power of two clinical risk 

score models to predict AKI. Strikingly, the predictive power of both models was further 

and significantly improved by the addition of preoperative plasma EO levels99. Thus, 

preoperative EO appears to be a marker for preexisting renal injury and, as shown by the 

experimental studies, can be a direct cause of kidney damage. Accordingly, we have 

suggested that among patients that will need cardiac surgery, those with high EO have 

preexisting (subclinical) renal injury that is likely to be exacerbated by the stress of 

anesthesia and/or surgery. It appears that it is the combination of these stressors that 

augments the probability that the patient will develop AKI following cardiac surgery55. 

Fortunately, methods that lower circulating EO and/or that block its interaction with the 

Na,K-ATPase are available (see below) for clinical use and these should be tested for their 

potential to ameliorate or prevent AKI.

Rostafuroxin, a novel antihypertensive compound

Nanomolar concentrations of EO increase renotubular reabsorption of sodium and increase 

myogenic tone and arterial resistance81,83. Structure-activity relationships indicate that the 

chronic pressor effect is prominent for ouabain and ouabain-like steroids; the chronic 

infusion of digitalis preparations including digoxin and digitoxin does not lead to sustained 

increases in BP. Furthermore, in ouabain-dependent hypertension, the infusion of digitalis 

CTS such as digoxin or digitoxin normalized blood pressure77 and the effect with digitoxin, 

a more lipophilic agent likely to penetrate the CNS, was especially marked. Thus, digitalis 

glycosides have antihypertensive activity under conditions where the circulating levels of 

EO are elevated. These and other observations100 led to the development of rostafuroxin 

(formerly PST2238) (17β-(3-furyl)-5β-androstan-3β,14β,17α-triol), a digitoxigenin 

derivative that displaces ouabain from its binding sites on the Na+ pump (Na,K-ATPase) 

(IC50 1.7 × 10−6 M) without interacting with other receptors involved in blood pressure 

regulation or hormonal control101. In ouabain (and EO)-dependent models of hypertension, 

rostafuroxin dose-dependently (0.1 to 100 μg/kg p.o.,) lowers BP, and normalizes renal 

Na,K-ATPase activity101. In renal caveolae, subnanomolar ouabain concentrations switch on 

latent Na,K-ATPase units in the proximal tubular plasma membrane and activate a signaling 

pathway that involves the tyrosine-phosphorylation of c-Src, transactivation of the epidermal 
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growth factor receptor103 and activation of cytosolic p42/44 MAPKl. Rostafuroxin at 

nanomolar concentrations antagonizes the ouabain-Na+ pump interaction and normalizes the 

above signaling events. Moreover, rostafuroxin (PST2238) blocked the ouabain activation of 

the cSRC-EGFr-ERK pathway and prevented ouabain-induced cardiac and renal 

hypertrophy103. Rostafuroxin is able to correct the abnormal upregulation of renal Na+ 

pump number in the plasma membrane without inhibiting renotubular transporters involved 

in sodium transport, as the diuretics do. The significance of this effect in terms of its ability 

to reduce BP is not known. It should be recalled that the kidney typically does not affect 

vascular tone directly. The mechanisms that generate most all of the vascular tone and that 

are responsible for increases in long-term increases in blood pressure reside in the central 

nervous system, the adrenal glands and in the vascular wall itself. Further, rostafuroxin 

blocks the vasopressor effect of ouabain in arteries104 and ameliorates endothelial 

dysfunction and oxidative stress in resistance arteries from deoxycorticosterone acetate-salt 

hypertensive rats105. As a digitalis derivative, rostafuroxin is likely (although not yet tested) 

to be an effective antagonist in the CNS at sites where brain EO augments sympathetic 

outflow85.

Clinical studies with Rostafuroxin

More than one-third of patients with essential hypertension (EH), most all patients with 

chronic renal failure, and a large portion of patients with heart failure have increased 

circulating levels of EO23,69,96,97,106,107. These are primary target populations for 

rostafuroxin therapy. However, in a trial of unselected patients with EH (i.e., in which ~70% 

of the patients would not have elevated EO), rostafuroxin had no overall impact on BP108. 

Instead, the BP lowering activity of rostafuroxin depended on genomic variation in factors 

related to the synthesis and clearance of EO and to cytoskeletal polymorphisms. In 

rostafuroxin-sensitive patients, the systolic BP declined 14 mm Hg after 4 weeks of 

treatment relative to controls108. The gene variants encode enzymes in steroid biosynthesis, 

transmembrane EO(ouabain) transport, and the cell cytoskeleton. This combination of gene 

variants occurred in 23% of the 196 (never treated) hypertensives in the study.

The antihypertensive effect of rostafuroxin was tested in never-treated, recently discovered 

hypertensive patients. The use of naïve patients may be important as even a 4-week period is 

not sufficient to wash-out the effects of prior treatment,107,109,110. For example, the 

stimulatory effect of diuretic treatment on the RAAS can last 6 months109,111. Thus, 

different enrollment criteria are required in pharmacogenomics studies. In addition, as one 

of us has noted elsewhere104, the maximal dose of rostafuroxin used thus far in clinical 

studies, even with drug-sensitive patients, may have been suboptimal by at least an order of 

magnitude or more. Data regarding the impact of rostafuroxin in treating heart failure and 

the hypertension in patients with end stage renal failure are not available. In the latter 

settings, circulating EO levels are considerably higher23,69 than in EH, and dramatically 

larger doses of rostafuroxin than those used in prior trials may be needed to demonstrate 

efficacy.

In view of the close structural similarity of rostafuroxin with the digitalis CTS, it is of 

interest that digoxin is associated with increased mortality in ESRD in one study112 but not 
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another113. The potential for life-threatening effects of digitalis preparations is readily 

apparent in the setting of ESRD. However, rostafuroxin has no overt arrhythmogenic 

activity101 and thus is worth evaluating for its antihypertensive activity in the setting of 

CKD and in ESRD.

Volume Management in ESRD, CTS Levels and the Lag Phenomenon

It has been restated persuasively that the effective management of volume to “dry weight” is 

sufficient to restore normotension in the majority of dialysis patients114,115 and improve 

survival116. However, overly rapid fluid removal is not invariably synonymous with the 

restoration of normotension perhaps because it triggers short-term neurohumoral reflexes 

that attempt to maintain BP. More prolonged dialysis times with less abrupt fluid removal 

would be expected to minimize short-term reflex sympathetic responses117,118.

To our knowledge, there are no studies that address the impact of defined changes in volume 

in ESRD on the circulating levels of eCTS and their relationship with BP. And the design 

and execution of such studies is not trivial for reasons related to clearance and lag effects. 

For example, in rodents given steady infusions of ouabain, the elevated plasma ouabain 

takes nearly a week to begin to elevate BP, and several weeks are needed to achieve the 

maximal pressor effect78. In other words, ouabain (EO) is a slow pressor hormone and, 

therefore steady-state measurements are needed to reveal the relationship between 

circulating ouabain (EO) and BP. The slow pressor effect of ouabain involves peripheral and 

central components. In the periphery, there is functional reprogramming of the sympathetic 

ganglia and the arterial vasculature (2–3 days in the rat). With regard to the CNS, ouabain 

enters the brain slowly and is believed to contribute to the EO pool in the slow 

neuromodulatory pathway (Figure 1); this is thought to drive the sustained increase in 

sympathetic outflow. When ouabain administration is discontinued, plasma EO normalizes 

within in hours in the normal rodent119 while it takes ~3–7 days before BP normalizes78,79. 

Thus, the drop in BP is delayed relative to plasma ouabain and, again, the absence of a 

steady state obscures the relationship between ouabain (EO) and BP. But how is the delay in 

the normalization of BP explained, and does it have relevance to the “lag hypothesis” in the 

setting of the hemodialysis patient?

It is apparent that the slow reversal of ouabain-dependent hypertension is not necessarily 

explained by the clearance of ouabain from the circulation per se. In normal rats, the half 

time for the clearance of ouabain (EO) is < 5 hours120, whereas in normal humans it is ~23 

hours and ~50 hours in patients with renal failure120,121. As dialysis per se is unable to 

effectively remove EO from the circulation, we may ask whether dialysis can remove the 

volume (or other) stimulus to EO secretion and reduce BP by that mechanism? There are 

numerous considerations: 1). With short-term rapid dialysis, the answer is probably no. Even 

if we assume that the chronic volume stimulus to EO secretion could be effectively switched 

off by a single dry weight dialysis, then in patients with renal failure, the decline in 

circulating EO would be simply too slow to allow for a significant decline in BP through an 

EO-dependent pressor mechanism. 2). Even presuming hemodialysis as an effective way to 

remove EO, it is clear based upon the above half times for clearance, that no significant BP 

drop would be expected for several days and, by then, the patient’s (re)expanded volume 

Hamlyn and Manunta Page 8

Adv Chronic Kidney Dis. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and other stimuli to EO secretion would have returned. In other words, in the CKD setting 

where EO is chronically elevated, probing of its role in the lag phenomenon does not appear 

to be easily amenable to investigation by manipulation of dialysis protocols per se. 3). In the 

above context, the ability to specifically and chronically suppress EO secretion and/or 

physically remove it from the circulation is needed. Much work suggests that the adrenal 

cortex provides the majority of the circulating EO49 but currently there are no specific ways 

to block adrenal EO production that do not affect classical corticosteroid pathways. In 

experimental studies, MR blockers given into the CNS reduce circulating EO66 but this is 

not feasible in patients. However, another approach that may be practical involves the 

capture of EO by immobilized Fab fragments (Digifab™) during dialysis122. A well 

designed cartridge with Fab fragments inserted into the dialysis chain might also be 

amenable to regeneration and reusability over several weeks in the same patient. 4). The 

peripheral, and perhaps CNS, actions of EO on Na+ pumps might be blocked by 

rostafuroxin, but this has yet to be tested in CKD. While canrenone, a metabolite of 

spironolactone, may already perform a similar function, rostafuroxin may have the 

advantage in that it does not provoke hyperkalemia. 5). Another more radical approach is to 

actively immunize patients against EO. As EO is produced and secreted slowly (production 

is <10,000 times lower than angiotensin II), the production of endogenous antibodies would 

be more than fast enough to neutralize circulating EO. Indeed, in Dahl salt-sensitive rats 

where there is a renal abnormality driving chronic sodium retention and volume excess, the 

slow neuromodulatory pathway is overactive123–127, and active immunity against EO lowers 

BP significantly128.

Does circulating EO explain the slow decline in BP that accompanies prolonged dry weight 

dialysis? Figure 7 of Twardowski115 indicates that dry weight dialysis requires ~9 months to 

normalize BP and that the apparent half-time for the decline in BP is approximately one 

month. For EO to be the mediator of this prolonged BP lag, we suggest there are two 

potential mechanisms that may be relevant. In the first mechanism, the chronic elevation of 

plasma EO (ouabain) in CKD, and by analogy with ouabain administration in experimental 

studies, is expected to lead to prominent accumulation of this steroid in the hypothalamus, 

anterior pituitary, and especially the kidney78. Muscle and many another tissues (with the 

exception of the adrenal glands) also take up this CTS. Thus, a significant body burden of 

EO is likely in CKD. Once inside cells, the half times for the turnover of EO (ouabain) are 

slow, ranging from ~20 hr ex vivo to 4 weeks in vivo129,130. Turnover of body EO “stores” is 

likely to be especially slow in humans because the volume of distribution for EO (ouabain) 

is larger than rats. Thus, the BP lag might readily be explained by the slow loss of 

accumulated intracellular EO to the circulation and its subsequent clearance. As noted in 

point 3 above, the impact of increasing EO clearance on the lag time could be tested 

clinically. A second distinct mechanism for the lag phenomenon may involve the plasticity 

of synaptic connections within the CNS. In response to CKD, the prolonged activation of the 

electrical elements in the slow neuromodulatory pathway (Figure 1) will likely promote 

formation of new synaptic connections consistent with Hebbian theory131. Thus, in addition 

to pathway activation by signals from the renal failure, new synaptic connections will likely 

reinforce downstream signaling events (i.e., increased sympathetic outflow and plasma EO). 

When the stimulus to the slow neuromodulatory pathway is removed by sustained dry 
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weight dialysis, electrical activity in the pathway will decline but may not normalize until 

such time as synaptic pruning has reversed the new connections. Changes in synaptic 

plasticity occur in key slow pathway nuclei during hypertension132–134 as well as in the 

peripheral sympathetic ganglia86,135. The full reversal of these changes, and the impact of 

their electrical consequences on BP, may take several months.

But which of these two possibilities is more likely? Both appear to have general kinetic 

behavior that is quantitatively relevant to the lag phenomenon. However, there are some 

paradoxes. In normal humans, reducing total body sodium with diuretics raises EO92. This 

physiological increase in RAAS, EO, and activation of the slow neurohumoral pathway may 

help to support BP when total body sodium and/or sodium intake is low. Thus, the initial 

impact of dry weight dialysis seems more likely to us to stimulate the slow pathway, adding 

to the ongoing chronic CNS activation (stress), synaptic rewiring136, sympathetic activity, 

and circulating EO. The predicted time course of these factors would seem to fit the initial 

changes in total peripheral resistance according to Figure 3 of Twardowski115.

During chronic dry weight dialysis, removal of the volume stimulus to the slow CNS 

pathway would permit sympathetic activity and EO to decline secondary to changes in 

synaptic activity and wiring. If the above-noted ideas are correct, circulating EO and BP 

(i.e., indices of slow pathway activity) should decline more-or-less in parallel over many 

months of sustained dry weight dialysis. The importance of the slow neurohumoral pathway 

and synaptic plasticity is shown by the dramatic impact of hypothalamic lesions. Lesions 

that impact slow pathway nuclei prevent or reverse renal137–140, salt and volume-

dependent141–143, and ouabain144 forms of experimental hypertension. Thus, it is difficult to 

avoid the conclusion that the CNS exerts a dominant role in determining whether major 

deficits in renal function, sodium handling and volume excess can raise BP and sustain 

hypertension. Furthermore, it seems likely that altered synaptic activity and wiring have a 

fundamental influence on the lag phenomenon in CKD.

ESRD, Resistant Hypertension (rHT), Mineralocorticoid Receptor (MR) Antagonists and 
Renal Denervation

As defined by the eighth Joint National Committee (JNC 8), rHT is the inability to achieve a 

BP lower than 140/90 mm Hg despite optimal doses of 3 or more antihypertensive drugs, 

including a diuretic109. The prevalence of rHT varies from 10% to 15% among treated 

hypertensive patients145 after exclusion of pseudo-resistant hypertension from non-

adherence to medications or from the white coat syndrome. The etiology of rHT typically 

involves multiple factors, including obesity, older age, high dietary salt, renal artery 

stenosis, chronic kidney disease, and aldosterone excess146. Classical primary aldosteronism 

and lesser degrees of aldosterone excess, possibly originating from visceral adipocytes, 

contribute to rHT. Furthermore, many hypertensives with hyperaldosteronism have elevated 

circulating levels of EO.104

MR blockers decrease proteinuria in CKD subjects147 but their use in patients with low or 

minimal filtration is limited by the risk of life-threatening hyperkalemia. Novel non-

steroidal antagonists with high affinity and selectivity for the MR receptor (BR4628 and 

SM368229) are being developed 148,149 but it is not yet clear if these drugs will avoid the 
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negative impact on plasma potassium. MR antagonists are particularly effective for 

treatment of rHT regardless of circulating aldosterone levels. This raises the obvious 

question: what is their mechanism of action? Spironolactone and its major bioactive 

metabolite, canrenone, block aldosterone and cortisol binding to MR yet it is unlikely that 

their antihypertensive effect is mediated by renal MR in dialysis patients with rHT simply 

because tubular reabsorption becomes increasingly less relevant in the face of ever 

diminishing filtration. Therefore, powerful extrarenal sites of action of MR blockers are 

required. Instillation of MR blockers into the CNS, in amounts too small to have any 

peripheral effect, lowers sympathetic activity, plasma renin activity, BP, and reduces end 

organ damage in many experimental models of cardiovascular disease150–151. Further, the 

block of brain ouabain has correspondingly large effects in heart failure154–156 and appear to 

be mediated via slow pathway effects that are also amenable to central MR blockers125. The 

slow pathway is chronically activated by a number of signals (plasma angiotensin II, plasma 

sodium, volume), one or more of which are abnormal in CKD. It is important to note that the 

slow neuromodulatory pathway differs from the rapidly acting neural networks that govern 

the sympathetic response to flight or fight in that it is much slower to activate and 

deactivate, and that it involves a number of neuroendocrine elements (Ang II receptors, 

aldosterone generation, MR, epithelial sodium channels and EO) that are likely arrayed in a 

functional sequence in the CNS. Activation of the slow pathway by Ang II leads to sustained 

increases in circulating EO and BP, and all effects are blocked by central aldosterone 

antagonists66. Thus, the beneficial effect of MR antagonists in many patients with rHT is 

most likely related to block of slow CNS pathway effects (Figure 1).

In addition, to targeting MR, spironolactone and canrenone compete with EO (ouabain) and 

eCTS steroids for binding to Na+ pumps. One of the first clues that canrenone was a CTS 

receptor antagonist was the ability of therapeutic doses to reduce the effect of digitalis and 

ouabain on the heart157–162. Subsequent work showed canrenone suppressed ouabain 

binding to the Na+ pump163,164 and was antihypertensive in some experimental models of 

hypertension where ouabain-like factors were implicated165–168. In therapeutically relevant 

concentrations, canrenone blocked the effect of ouabain on basal aortic tone77 and myogenic 

tone in pressured mesenteric arteries169.

MR blockers also reduce the impact of EO in heart failure and severe hypertension.67–69 and 

reduce the fibrotic effect of MBG70. In other words, the clinical efficacy of MR blockers 

likely benefits from their polyspecific actions. Based on available dose-response 

relationships, and the therapeutic circulating levels of MR blockers (1–5 μM), their BP 

lowering effects in rHT are likely mediated by block of MR and/or competition with central 

and/or peripheral eCTS for binding to Na+ pumps. The negative inotropic effects of 

canrenone on cardiac and vascular contractility are due to block of L-type Ca2+ 

channels170,171. These latter effects occur at concentrations ~50–200 fold higher than those 

achieved in routine therapy and seem unlikely to be of clinical relevance.

There are no reports on the impact of renal denervation on EO or MBG in CKD. Only a 

minority of patients with apparent rHT may be eligible; the most frequent cause of 

ineligibility (46.9%) is BP normalization following optimization of therapy that included 

low-dose spironolactone172.
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Muscle fatigue in CKF and ESRD a role for eCTS?

In both heart failure and CRD, the fatigability of skeletal muscle is increased173,174. The 

underlying mechanisms are unclear but may be common to both conditions. Elevated EO is 

present in both CKD and heart failure and it is of interest that ouabain induces muscle 

fatigue175,176. In skeletal muscle, the highly ouabain (and EO) sensitive α-2 isoform of the 

Na+ pump is expressed in the t-tubular system where it influences Ca2+ handling. Reduced 

expression (activity) of this isoform in the heart or skeletal muscle (i.e., mimicking the 

functional effects of the high EO state in CKD) leads to hypocontractility and the early onset 

of fatigue. Although the nephrologist is not ordinarily concerned with skeletal muscle 

performance in CKD, MR blockers and other agents that block eCTS may have the added 

benefit of improving exercise performance/tolerance in the kidney disease setting.

Summary

The brain, heart, circulation, and kidneys of patients with CKD are exposed to a potentially 

devastating mixture of neural and humoral agents, many of which appear to be activated by 

volume and other signals generated by, or in response to, poor kidney function. In the 

circulation alone, there is a toxic cocktail comprised of elevated levels of RAAS 

components, EO, MBG, endothelin, inhibitors of nitric oxide generation, and others. 

Carefully crafted, as well as bold and imaginative clinical and experimental studies are 

needed to test fundamental ideas and concepts in CKD, including the roles of the CNS and 

eCTS, and the potential impact of anti eCTS therapies.
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Clinical Summary

• The failing kidney enhances signals which activate a slow neurohumoral 

pathway in the brain that, in turn, controls the long term level (i.e., non-

reflexive) of sympathetic nerve activity and the circulating level of endogenous 

ouabain.

• Inappropriate activation of the brain pathway raises sympathetic activity, 

circulating endogenous ouabain and blood pressure, and all these effects are 

prevented by agents that block the binding of angiotensin II, mineralocorticoids, 

and endogenous ouabain with their respective receptors in the brain and 

periphery.

• In patients with end stage renal failure, two endogenous cardiotonic steroids 

(endogenous ouabain and marinobufagenin) circulate in elevated and clinically 

significant amounts and exacerbate cardiac hypertrophy and renal fibrosis. It 

may be possible to specifically remove these materials during dialysis.

• The “lag phenomenon”, i.e., the delayed return of blood pressure following 

dialysis to dry weight, may be related to plasticity changes in the brain and 

periphery, i.e., the slow rewiring of synaptic connections in the CNS and/or 

sympathetic ganglia that reduce sympathetic outflow to the vasculature.

• Research directed to improving therapy for chronic renal failure should consider 

the role of the CNS, humoral cardiotonic steroid mediators, and test methods 

that chronically reduce or neutralize these steroids.
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Figure 1. Proposed feed-forward pathway that raises vascular resistance and blood pressure in 
chronic kidney disease
In CKD, progressive loss of nephrons generates humoral signals that activate a slow 

neuromodulatory pathway in the brain. The slow pathway raises preganglionic SNA and 

circulating EO. The sustained elevation of circulating EO (red dashed lines) amplifies 

ganglionic function [1] and raises postganglionic sympathetic nerve activity86, enhances the 

effect of sympathetic nerve activity [2] in the vascular wall87, and directly amplifies Ca2+ 

signaling [3] in arterial myocytes88. Block of angiotensin II receptors, or MR66, or EO in the 

brain may normalize downstream events. Elements of the pathway have been demonstrated 

in rodents and portions have been shown in human tissue89. The mechanism by which 

activation of the CNS slow pathway raises plasma EO may involve ACTH. The relative 

contribution of adrenal and brain EO to the elevated circulating EO in CKD is not known. 
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Elevated circulating MBG is shown as secondary to volume expansion (no data demonstrate 

CNS control of MBG); renal ischemia may trigger MBG90. In the scheme presented, 

sustained increases in MBG and EO elevate BP and also promote renal and cardiac damage 

that enhances the progression of renal failure. The signaling pathways for the fibrotic effects 

have been described elsewhere41,91. This feed-forward mechanism provides further stimulus 

to circulating EO and MBG and may accelerate progression to complete failure. Maneuvers 

that block EO and MBG ameliorate this cycle of events56,60,75. Yellow horizontal bars: 

potential sites for acute antagonism by canrenone. White stars: sites of synaptic plasticity. 

The same overall pressor mechanism may be active among some patients with essential 

hypertension and in heart failure, and also where there are sustained increases in angiotensin 

II (e.g., low salt intake92).

Abbreviations: AT1R, angiotensin type I receptor. CKF, chronic kidney failure. CNS, 

central nervous system. EO, endogenous ouabain, GFR, glomerular filtration rate. MR, 

mineralocorticoid receptor. MT, myogenic tone. NCX1, sodium calcium exchanger type 1. 

SERCA, sarcoplasmic reticulum calcium ATPase. SNA, sympathetic nerve activity. TPVR, 

total peripheral vascular resistance. TRPC6, transient receptor potential cation channel, 

subfamily C, member 6.
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Figure 2. Circulating EO as a function of estimated GFR in CKD (Stage III to V)
The trend to increasing EO as GFR declines is significant. Simonini and Manunta, 

unpublished observations.
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