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Abstract

Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately
28% of all food-related deaths each year in the United States. L. monocytogenes infections are
linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese,
deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly
encountered in the food-processing environment, including low pH, high salinity, oxygen content,
and various temperatures. The purpose of this study was to determine if cells habituated at low
temperatures would result in cross-protective effects against osmotic stress. We found that cells
exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in
NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold
temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was
performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross
protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular
processes, such as penicillin binding proteins and osmolyte transporters, and processes involving
amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the
greatest increase in expression when cells were exposed to cold temperatures prior to salt. By
gaining a better understanding of how this pathogen adapts physiologically to various
environmental conditions, improvements can be made in detection and mitigation strategies.
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Listeria monocytogenes is a deadly foodborne pathogen of vital importance to public health

and the food industry. Infections with L. monocytogenes are more common among the

elderly, pregnant women, infants, or immunocompromised individuals and are primarily
associated with ingestion of contaminated food products.! Much care is taken to ensure the

safety of ready-to-eat products and proper preservation of these products, including the

application of salts and low temperature to improve shelf life.2 However, the psychrophilic

and halophilic nature of this pathogen enables it to persist and grow at refrigerated

temperatures and moderate salt concentrations.!
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It has previously been shown through transcriptome analysis that acclimation of L.
monocytogenes to low temperatures induces cross protection to high salt concentrations.34
The ability of L. monocytogenes to adapt to osmotic stress has been proposed to be lineage-
specific, with lineages | and 111 exhibiting survival advantages at 37 °C over lineage 11
strains under osmotic stress.® The adaptation of L. monocytogenes to cold or osmotic stress
revealed an overlap in adaptive mechanisms used by the pathogen, including increased
expression genes and proteins related to the transport of compatible solutes (betL, opuC, and
gbu operons®-8), alterations in cell membrane fluidity,® and sequestration and storage of iron
by ferritin.1911 The expression of cold shock proteins (Csps) has also been found to be
essential for the growth of L. monocytogenes at both low temperatures and high salt
concentrations,*12 suggesting cold stress induces cross protection against high osmotic
conditions. Additionally, osmotic resistance is enhanced in cold temperatures, with
resistance being potentially mediated by enhanced expression of peptidoglycan synthesis
genes, general stress response genes, and cation transporter genes.3

However, the increase in survival due to cross-protective mechanisms may differ between
lineages. A previous study identified that variations exist in the survival of L.
monocytogenes and L. innocua following sequential exposure to stressors that were not
necessarily related to genetic lineages.!3 In this previous study, the genetic lineage Il strain
EGDe actually had increased survival following sequential exposure to several stressors,
including cold temperatures and 6% NaCl. Therefore, the purpose of this current study was
to expand upon these previous findings by determining the mechanisms that enhance the
adaptation of L. monocytogenes to a minimal osmotic stress (3% NacCl) following exposure
to low temperatures utilizing a proteomics-based approach. These mechanisms were found
to involve variations in the expression of several proteins associated with cell wall
architecture and synthesis. Gaining a better understanding of the mechanisms involved in
adaptation to stresses typically encountered in the food-processing environment could
potentially aid in the development of mitigation strategies to reduce or eliminate this
pathogen in ready-to-eat products.

MATERIALS AND METHODS

Bacterial Growth Conditions and Survival Analysis

The L. monocytogenes strain EGDe (serovar 1/2a) was routinely cultured in brain heart
infusion (BHI) medium at 37 °C. Fresh cultures were incubated overnight at 37 °C in BHI
broth, after which cultures were diluted 1:100 (~1 x 108 CFU/mL) in 10 mL of BHI (pH 7.4)
and incubated at either 4 or 37 °C. A 1 mL aliquot of cells was removed each hour for up to
6 h, pelleted at 10,000 x g for 2 min, and then resuspended in BHI supplemented with 3%
NaCl. Cultures were then incubated at 37 °C for 4 h. Aliquots were removed for viable plate
analysis hourly following resuspension in media supplemented with 3% NaCl. At least three
independent replicates were performed.

Purification of Proteins

Cultures of L. monocytogenes EGDe were incubated for 4 h at either 4 or 37 °C in BHI, after
which cells were pelleted by centrifugation at 10,000 x g for 10 min and resuspended in an
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equal volume of BHI supplemented with 3% NaCl and incubated at 37 °C for another 4 h.
Methods previously described by our group were used to isolate proteins after growth at 4
and 37 °C for 4 h and the subsequent exposure to 3% NaCl for 4 h.14.15.16 Briefly, aliquots
collected were pelleted by centrifugation at 10,000 x g for 10 min, and resulting pellets were
resuspended in 4 mL of a lysis solution [2% Triton X-100, 2.6 mg/mL sodium azide, 0.1 M
Tris pH 8.0, and 8 mM phenylmethanesulfonyl fluoride (PMSF)]. Cells were incubated at 37
°C for 20 min with the addition of 20 mg/mL of lysozyme and sonicated (Fisher Scientific
Model 100 Sonic Dismembrator, setting 3) for four 30 s pulses on ice, with 1 min cooling
between pulses. Following the addition of 85 pg/mL DNase | and 20 pg/mL RNase A,
samples were incubated at 37 °C for 30 min and centrifuged at 6,200 x g for 10 min at 10 °C
to pellet the cell debris. An equal volume of 50% trichloroacetic acid (TCA) was added to
the supernatant of each sample, and proteins were precipitated at —20 °C overnight. The
precipitated proteins were pelleted by centrifugation at 6,200 x g for 10 min at 10 °C,
washed with ice-cold acetone (Chromosolv for HPLC, Sigma Aldrich), and dried at room
temperature.

The proteins were subsequently resuspended in 0.5 mL of solubilization solution (7 M urea,
20 mM Tris-Cl, pH 8.0, 5 mM EDTA, 5 mM MgCl,, 4% CHAPS, 1 mM PMSF) and
quantitated using the 2-D Quant Kit (GE Healthcare Life Sciences). An aliquot of 0.1 mg of
proteins was precipitated once more with 50% TCA at —20 °C, followed by centrifugation
and a wash with ice-cold acetone. Samples were resuspended in 0.1 mL of 100 mM
ammonium bicarbonate and 5% acetonitrile, then treated with 5 mM dithiothreitol for 10
min at 65 °C, 10 mM iodoacetamide for 30 min at 30 °C, and finally digested with 2 g of
sequencing-grade trypsin at 37 °C for 16 h. Peptides were desalted using a peptide
macrotrap (Michrom Bioresources, Inc.), dried at room temperature, and stored at —80 °C
until further processing. Proteins were isolated from three independent experiments.

Protein Analysis

Desalted peptides were resuspended in 250 puL of 5 mM monosodium phosphate in 25%
acetonitrile adjusted to a pH of 3 using formic acid and processed using a strong cation
exchange (SCX) macrotrap (Michrom Bioresources, Inc.) according to the manufacturer’s
instructions. Cleaned samples were dried and resuspended in 40 uL of 2% acetonitrile and
0.1% formic acid; ~50 pg of each sample was transferred to low retention HPLC vials for
analysis using mass spectrometry.

Peptide mass spectrometry was accomplished using an EASY-nLC (Thermo Scientific) high
performance liquid chromatography machine (HPLC) coupled with an LTQ Velos (Thermo
Scientific) linear ion trap mass spectrometer. The Easy-nLC was configured for reverse
phase chromatography using a Hypersil Gold KAPPA C18 column (Thermo Scientific) with
a flow rate of 333 nL/min. Peptides were separated for mass spectrometry analysis using an
acetonitrile gradient starting at 2% ACN, 0.1% FA and reaching 50% ACN, 0.1% FA in 120
min, followed by a 15 min wash of 95% ACN, 0.1% FA. Column equilibration was handled
automatically using the EASY-nLC. The eluate from the HPLC was fed directly to the LTQ
Velos for nanospray ionization followed by MS/MS analysis of detected peptides. The LTQ
Velos was configured to perform 1 ms scan followed by 20 MS/MS scans of the 20 most
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intense peaks repeatedly over the 135 min duration of each HPLC run. Dynamic exclusion
was enabled with a duration of 5 min, repeat count of 1, and a list length of 500. The
collected spectra were subsequently analyzed using the X!tandem search algorithm.17

Raw spectral data from the LTQ Velos were converted to mzML format using the
msConvert tool form the ProteoWizard software project because X!tandem cannot read the
Thermo raw format directly.18 The FASTA database used for peptide spectrum matching
(target database) was the Listeria monocytogenes strain EGD-e RefSeq protein database
from the National Center for Biotechnology Information (accession no. 61583). X!tandem
was configured to use tryptic cleavage sites with up to two missed cleavages. Precursor and
fragment mass tolerance were set to 1000 and 500 ppm, respectively. Four amino acid
modifications were included in the database search: single and double oxidation of
methionine and both carboxymethylation and carboxamidomethylation of cysteine. A decoy
search was also performed using a randomized version of the target database with the same
search parameters as above. The search results were filtered using previously described
methods.1920 A decoy score distribution was created and each match from the target
database was evaluated as a possible outlier and assigned a probability of being correct.
Peptides from the target database were accepted if the probability of being correct was 95%
or higher. A list of proteins and identified peptides was generated for each replicate of a
given treatment.

Protein Comparison

RESULTS

Protein differential expression between treatments was evaluated on the basis of peptide
spectral intensity. The raw spectral data were converted to the MS1 tab delimited format
using the MakeMS2 tool available from the MacCoss lab at the University of Washington.2
The intensities for each peptide elution peak were identified from the associated MS1 file
using Perl script and summed. For each identified protein, the peptide intensities were
combined and organized by experimental replicate. Differential expression was evaluated
using Monte Carlo resampling techniques to compare the replicate intensities between
treatments. Each comparison used 1 million iterations and was assigned a p-value based on
the number of times each test favored one treatment over another (p < 0.05 indicated
significance). Functional classifications were assigned based on ListiList categories (http://
genolist.pasteur.fr/ListiList/).

Prolonged Exposure to Low Temperatures Increases Resistance to 3% NacCl

To determine if exposure to cold temperatures could enhance osmotic protection, we
analyzed the viability of EGDe after exposure at 4 °C and a subsequent salt exposure. EGDe
exposed to cold temperatures had increased resistance to osmotic stress in comparison to
cells incubated at 37 °C (Figure 1). Exposure to cold temperatures resulted in a significant
increase in the fold change (p < 0.0001) of EGDe’s growth in 3% NaCl within the 6 h time
period tested (Figure 1).
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Cold and Osmotic Stress Protein Expression Profile of EGDe

In order to investigate how exposure to cold temperatures can induce cross protection
against salt stress, the protein expression of EGDe incubated at either 4 or 37 °C for 4 h
prior to exposure to 3% NaCl for 4 h was analyzed by LTQ mass spectrometry in triplicate.
ListiList categories were used to classify each of the differentially expressed proteins into
functional groups.1518 A total of 299 significantly differentially expressed proteins were
identified.

Differentially Expressed Proteins Associated with Cell Envelope and Cellular Processes

(Category 1)

Cell wall associated proteins and proteins involved in membrane bioenergetics that
increased in expression following exposure to cold temperatures prior to salt included the
invasion associated protein (gi: 16802625) and the H+ transporting ATP synthase chain
subunits a and ¢ (gi: 16412019 and 16412022). The cell division protein FtsA (gi:
16411503) also increased in expression, while the cell division proteins FtsZ and FtsW (gi:
16411502 and 16804724) decreased in expression in cold-stressed cells exposed to osmotic
stress (Table 1).

The acquisition of nutrients, as well as osmoprotectants, from the environment requires
proteins involved in binding and transporting substrates. Such proteins that increased in
expression when cold-stressed cells were exposed to salt were those similar to the
pheromone ABC transporter binding protein OppA (gi: 16411666), phosphotransferase
system (PTS) fructose-specific enzyme IIABC component (gi: 16411823), a putative
fructose-like permease EIIC subunit 2 (gi: 16802674), PTS mannose-specific enzyme [1AB
(gi: 18140806), cellobiose phosphotransferase enzyme I1B (gi: 16804720), and an ABC
transporter/ATP-binding protein and permease (gi: 16803545 and 16803102) (Table 1).

Cells exposed to cold stress prior to osmotic stress had an increase in expression of proteins
involved in secretion, such as foldase protein PrsA 2 (gi: 16804258). Cell surface proteins,
such as ActA (gi: 16409569), InIC (gi: 16411240), a hypothetical cell wall associated
protein (gi: 16409952), a peptidoglycan binding protein (gi: 16802207), and a protein
similar to internalin (gi: 16803329) also increased in expression.

Differentially Expressed Proteins Associated with Metabolic Pathways (Category 2)

Adaptation to osmotic stress requires a shift in expression of proteins involved in specific
metabolic pathways and metabolism of amino acids and nucleic acids. Cells previously
exposed to low temperatures prior to osmotic stress increased in expression of proteins
involved in fermentation, such as -lactate dehydrogenase (gi: 16409575), bifunctional
acetaldehyde-CoA/alcohol dehydrogenase (gi:16803674), and phosphotransacetylase (gi:
16804142) (Table 2). Numerous glycolytic enzymes also increased in expression, such as
enolase (gi: 16411943), glyceraldehyde 3-phosphate dehydrogenase (gi: 16411947),
glucose-6-phosphate isomerase (gi: 16804405), phosphoglyceromutase (gi: 16804494),
phosphoglycerate kinase (gi: 16804496), and pyruvate formate-lyase (gi: 227478797). The
glycolytic enzyme pyruvate carboxylase (gi: 16803112) had reduced expression (Table 2)
following subsequent exposure to NaCl.
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Metabolism of alternative carbohydrates is advantageous during stress conditions. Proteins
involved in utilization of different sugars were increased in cold-adapted salt-stressed cells
and included a-mannosidase (gi: 16411468), phosphofructokinase (gi: 16411565),
fructose-1-phosphate kinase (gi: 16804374), sorbitol dehydrogenase (gi: 16804701), glucose
kinase (B-glucoside kinase) (gi: 16804801), and 6-phospho-p-glucosidase (gi: 16802579).

Numerous proteins important in the metabolism of nucleic acids increased in expression as
well, including a protein similar to phosphopentomutase Drm (gi: 16411407),
dihydroorotase PyrC (gi: 16803877), anaerobic ribonucleoside triphosphate reductase (gi:
16802325), and adenylate kinase (gi: 16804649). Cold-adapted salt-stressed cells also had
an increased expression of branched-chain a-keto acid dehydrogenase E3 subunit (gi:
16410787), a protein involved in the metabolism of lipids.

Differentially Expressed Proteins Associated with Information Pathways (Category 3) or
Other Functions (Category 4)

In order to adapt to stressful environments, bacteria must be able to efficiently repair
damaged DNA and synthesize mRNA and proteins. Proteins involved in mismatch repair,
homologous recombination, and the SOS response increased in expression in cold-stressed
cells when exposed to osmotic shock. These included single-stranded binding protein (gi:
16802093), DNA mismatch repair MutS (gi: 16410832), Holliday junction DNA helicase
RuvA (gi: 16410962), and ATP-dependent deoxyribonuclease (gi: 16804306) (Table 3).
Proteins involved in base excision repair and nucleotide excision repair decreased in
expression in cold-adapted salt-stressed cells: DNA polymerase | (gi: 16410994) and
putative DNA polymerase B similar to B. subtilis YshC (gi: 16803271). Proteins involved in
transcriptional regulation, such as the SOS response regulator LexA (gi: 16410718) and the
transcriptional regulator Lacl family (16804167), had a reduced expression in cold-adapted
salt-stressed cells (Table 3).

There was an increased expression of proteins involved in translation and ribosome
assembly in cold-adapted salt-stressed cells, such as the elongation factor Ts (gi: 16803697),
peptide chain release factor 1 (gi: 16804581), 50S ribosomal protein L30 (gi: 16412102),
50S ribosomal protein L31 type B (gi: 16804586), and 50S ribosomal protein L6 (gi:
16804655). In cold-adapted salt-stressed cells, the methionyl-tRNA-synthetase (gi:
16802223) and phenylalanyl-tRNA synthetase 3 subunit (gi: 16803647) increased in
expression, while the histidyl-tRNA synthetase (gi: 16410949) and threonyl-tRNA
synthetase (gi: 16410988) decreased in expression. Salt-stressed cells that received no cold
pretreatment had an increased expression of aspartyl/glutamyl-tRNA synthetase subunit B
(gi: 16411208) and a reduced expression of glycyl-tRNA synthetase  chain (gi: 16803498).

There was an increase in the expression of the general stress response protein Ctc (similar to
Bacillus subtilis) (gi: 16409576) and tRNA modification GTPase MnmE (gi: 16412311) in
cold-exposed salt-stressed cells. In cold-adapted salt-stressed cells phage related proteins,
such as gp20 bacteriophage A118 (gi: 16411753) and antigen A (gi: 16802166), increased in
expression, while proteins similar to a bacteriophage protein (gi: 16411783) and a
bacteriophage minor tail protein (16802169) had reduced expression.
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DISCUSSION

Previous studies have examined the mechanisms L. monocytogenes use to adapt to growth at
low temperatures or when exposed to osmotic stress.5-8 It has recently been proposed that
exposure to cold stress may induce cross protection against subsequent exposure to salt
stress,* yet the mechanisms that allow for this protection have not been fully elucidated. L.
monocytogenes is routinely subjected to multiple stresses within the food-processing
environment either concomitantly or sequentially; it is important to discern the mechanisms
this organism uses to withstand these conditions in order to eliminate its presence.
Therefore, the purpose of this study was to examine the relationship between mechanisms
involved in survival in cold temperatures in providing cross protection against osmotic
stress. A concentration of 3% NaCl was selected as this is typically the minimum
concentration that is used as brine in the food industry, particularly in the smoked finfish
industry. A low concentration of NaCl was therefore used in this study to characterize the
initial response to this condition while also minimizing cell death.

Though our time course was limited to 6 h of pretreatment to cold temperatures, it did
appear as though the longer cells were exposed to cold temperatures, the higher the degree
of cross protection against osmotic stress, therefore indicating that exposure to low
temperatures may induce cross protection against osmotic stress in L. monocytogenes. To
examine the physiological response, the variation in the expression of the proteome was
examined for cells preconditioned at either 4 or 37 °C for 4 h prior to exposure to the
minimal stress of 3% NaCl for an additional 4 h; this time point was chosen because this
was when cells that had received a cold-stress pretreatment began to exhibit an increase in
viability following osmotic stress. Adaptation to stressful conditions requires energy in the
form of ATP, and the increase in the expression of the H*-transporting ATP synthase chain
proteins indicates that the oxidative phosphorylation pathway is active. Increased expression
of enzymes involved in oxidative phosphorylation is a common component of the stress-
adaptation response of L. monocytogenes. The need for increased uptake of carbohydrates
and production of ATP are required to fuel the high-energy demands of the cell for repair of
damaged DNA, proteins, and lipids.

Another mechanism used by bacteria to adapt to growth at low temperatures and salt stress
is the accumulation of osmolytes from the surrounding environment. Transporters, such as
ABC transporter OppA, are involved in the uptake of oligopeptides as a means of
accumulating proline, isoleucine, and valine to serve as cryoprotectants or osmolytes.22:23
The fact that OppA is required for growth at low temperatures and its potential role in the
uptake of osmolytes strongly suggests that it is involved in cross protection of cold-stressed
L. monocytogenes against osmaotic stress.

The increased expression of PTS proteins involved in uptake of fructose, mannose, and
cellobiose in cold-exposed salt-stressed cells suggests their importance in energy production
or as osmoprotectants.8.24 This is interesting considering recent evidence that suggests that
salt-stressed L. monocytogenes cells have reduced cell growth as a result of decreased
expression of PTS genes. The decreased expression of PTS enzyme Il cytoplasmic
components associated with the uptake of glucose, fructose, mannose, and cellobiose were
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found to be dependent on the concentration of NaCl.2% This is congruent with the reduced
expression of PTS enzyme Il components responsible for the uptake of mannose and
fructose in cells exposed to salt stress without a cold pretreatment. Exposure of L.
monocytogenes to low temperatures has previously been shown to induce the expression of
PTS-associated proteins, indicating their need for production of complex macromolecules
and energy.’-8

There was an increase in the expression of proteins secreted by the Sec system (invasion
associated protein (lap) or autolysin, OppA, and enolase).2 lap has an important role in the
degradation of cell wall components and aids in the invasion of nonphagocytic cells.
Mutants exhibiting a rough phenotype have reduced expression of lap but are capable of
directional gliding motility toward uncolonized areas of agar media.2” This phenotype could
provide L. monocytogenes a competitive advantage in the environment, particularly those
associated with food-processing, allowing for increased acquisition of nutrients and
colonization of numerous niches in processing plants.

There was an increase in expression of proteins involved in pyruvate metabolism, which
implies that the culture was exposed to oxygen-limited conditions and may in part be due to
the cultures being incubated statically. Under hypoxic conditions, glucose and other sugars
are processed by fermentation and the pentose phosphate pathways. Two enzymes important
in the non-oxidative branch of the pentose phosphate pathway were expressed in the cold-
adapted salt-stressed cells. The increased expression of 6-phosphogluconate dehydrogenase
indicates 6-phosphogluconate is converted into ribulose-5-phosphate, CO5, and NADPH.
Given that BHI is a complex medium, carbohydrates other than glucose are available to be
transported into the cell and metabolized. Turnover of glycoproteins such as mannose
glycopeptides and 2-O-a-mannosyl-glycerate (a-MG) by a-mannosidase allows release of
a-o-mannose residues that can be transported into the cell by PTS mannose-specific enzyme
I1ABC components and PTS fructose-specific enzyme I1ABC, respectively, and converted
into o-mannose-6-phosphate and shunted into glycolysis. It has previously been shown a-
MG serves as an important compatible solute in response to osmotic stress in algae,
cyanobacteria, aerobic heterotrophic bacteria, thermohalophilic bacteria, and
hyperthermophilic archaea.28-30 Most mesophilic bacteria utilize neutrally charged
compatible solutes, while thermophilic eubacteria and archaea utilize negatively charged
compatible solutes. It would be interesting to determine if L. monocytogenes is capable of
utilizing a-MG as a carbon source or as a compatible solute under temperature or osmotic
stress conditions.

An important metabolite utilized by L. monocytogenes cold-stressed cells is fructose.3
Cold-exposed salt-stressed cells had an increased expression of PTS fructose-specific
I1ABC, fructose-like permease EIIC subunit, and fructose-1-phosphate kinase responsible
for the uptake of o-fructose along with its shunting into central carbon metabolism.
Metabolism of sugar alcohols such as o-sorbitol by sorbitol dehydrogenase results in the
production of o-fructose (shunted into glycolysis as previously mentioned) and NADH.
Sorbitol could possibly serve as an osmoprotectant in Listeria given its roles as such in
various species of archaea, bacteria, plants, and fungi.32:33 Previous examination of the
metabolic profile of cold-adapted L. monocytogenes cells indicate a decrease in expression
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of sorbitol and sorbitol-6-phosphate in comparison to cells grown at 37 °C.31 Conversion of
sorbitol into fructose by sorbitol dehydrogenase could explain the reduced amount of
sorbitol and higher level of fructose present in cold-stressed cells. Cellobiose PTS enzyme
1B component and B-glucoside kinase are involved in the transport of the disaccharide
cellobiose into the cell, phosphorylated, and directed toward central carbon metabolism.

The increase in expression of proteins involved in the synthesis of precursors for nucleic
acids and the overexpression of double-strand break repair proteins supports the conclusion
that exposure of cells to salt stress induces some type of DNA damage.3* One possible
mechanism for repair of double-strand breaks is through the tethering of DNA fragments by
DNA polymerase X (B. subtilis YshC) as a means of preserving chromosomal integrity. This
mechanism of salt -induced DNA damage has been shown to occur in eukaryotic cells.35:36
The increased expression of the RecBCD homologue in B. subtilis AddAB, RuvA, SSB, and
RecA suggest homologous recombination is involved in repair of double stranded DNA
damage.3’ Increased expression of SufB supports the need for iron clusters because the
nuclease domain of AddAB contains an iron-sulfur cluster that is required for proper binding
and processing of broken DNA.38

Adaptation to stressful conditions requires proper synthesis of mMRNA and proteins,
increased stability of proteins, proper folding, and subsequent secretion of response proteins.
Transcription elongation factor GreA is required for the resumption of elongation following
transcriptional arrest.22 Translation elongation factors EF-TU and -G have been shown to
possess chaperone-like functions by aiding in proper protein folding and interacting with
improperly folded proteins.3%40 General stress protein Ctc in L. monocytogenes may interact
with ribosomes as a sensor for osmotic stress.*! It has also been shown to be required for
growth in media in the absence of any osmoprotectants.5:42

Numerous physiological mechanisms are involved in cold-stress-induced cross protection
against osmatic stress in L. monocytogenes. Expression of proteins involved in uptake of a
variety of organic molecules aids in shunting available nutrients toward central carbon
metabolism and the accumulation or synthesis of compatible solutes. Synthesis of fatty acids
from amino acid precursors is needed to adjust membrane fluidity and stabilize the integrity
of the cell. DNA repair mechanisms are also required to repair damaged DNA. A better
understanding of the physiological responses of this pathogen to adaptation to various
strategies in place in the food-processing environment will hopefully aid in implementing
feasible listericidal strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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