

HHS Public Access

Biochem Biophys Res Commun. Author manuscript; available in PMC 2015 April 27.

Published in final edited form as:

Biochem Biophys Res Commun. 2010 April 30; 395(2): 168-172. doi:10.1016/j.bbrc.2010.03.108.

The Prostaglandin Transporter PGT Transports PGH₂

Yuling Chia and Victor L. Schustera,b

Author manuscript

^aDepartment of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY

^bDepartment of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY

Abstract

Prostaglandin H₂ not only serves as the common precursor of all other PGs, but also directly triggers signals (eg. platelet aggregation), depending on its location and translocation. The prostaglandin carrier PGT mediates the transport of several prostanoids, such as PGE₂, and PGF_{2 α}. Here we used PGT in the plasma membrane as a model system to test the hypothesis that PGT also transports PGH₂. Using wild type and PGT-expressing MDCK cells, we show that PGH₂ uptake is mediated both by simple diffusion and by PGT. The PGH₂ influx permeability coefficient for diffusion is $(5.66 \pm 0.63) \times 10^{-6}$ cm/s. The kinetic parameters of PGH₂ transport by PGT are K_m = 376 ± 34 nM and V_{max} = 210.2 ± 11.4 fmoles/mg protein/s. PGH₂ transport by PGT can be inhibited by excess PGE₂ or by a PGT inhibitor. We conclude that PGT may play a role in transporting PGH₂ across cellular membranes.

Keywords

prostaglandin H₂; prostaglandin transporter

Introduction

Prostaglandin H₂ (PGH₂) is the common precursor of all other PGs (PGE₂, PGI₂, PGD₂ and PGF₂) and thromboxane A₂ (TxA₂). It is converted to these PGs by the specific terminal synthases in the cytoplasm (1-6). Besides serving as a common precursor, extracellular PGH₂ can directly trigger signals including Ca²⁺ release, serotonin release, vasoconstriction, and platelet aggregation (7-10). The signals induced by extracellular PGH₂ can therefore oppose the signals resulting from intracellular PGH₂, such as formation of PGI₂, the most potent endogenous inhibitor of platelet aggregation (11, 12). Thus the net result of PGH₂ depends on its localization of PGH₂. Of interest, Kent et al. (9) reported that endothelial cells exposed to PGH₂ produced PGI₂, suggesting that PGH₂ might be taken up into

^{© 2010} Elsevier Inc. All rights reserved.

Address Correspondence to Victor L. Schuster, Department of Medicine, Albert Einstein College of Medicine, NY 10461; Tel. 718 430-8560; Fax. 718 430-8963; victor.schuster@einstein.yu.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

endothelial cells and converted to PGI_2 by PGI_2 synthase. This raises the question of how PGH_2 translocation occurs.

The prostaglandin transporter (PGT) has been shown to transport several prostaglandins, including PGE₂ (13, 14). PGT mediates the active uptake of PGE₂ into the cell against a concentration gradient (15). Based on the structural similarity between PGH₂ and PGE₂, as shown in Fig. 2C and D, we hypothesized that PGT might also transport PGH₂. Using MDCK cells stably expressing PGT, as previously reported (16), we conducted a detailed investigation of the kinetics of PGH₂ transport by PGT. The competition of transport by PGT between PGH₂ and PGE₂, and the inhibition of PGH₂ transport by our newly identified PGT inhibitor, TGBz T34 (15), confirmed that PGH₂ is, indeed, a substrate of PGT.

Materials and methods

MDCK cells were stably transfected with the GFP-tagged PGT in our laboratory (16). Tritium labeled PGE_2 ([³H)PGE₂) and PGH_2 ([³H)PGH₂) were purchased from PerkinElmer and CaymanChem, respectively. Unlabeled PGE_2 was obtained from CaymanChem.

Time Course of PGH₂ or PGE₂ Transport

MDCK cells were seeded at 15-20% confluence on 24-well plates. The day on which the cells were seeded was considered day one. PGE₂ uptake experiments were conducted on day 4. All of the PGH₂ or PGE₂ uptake experiments were conducted at room temperature. On day 4, cells were washed twice with Waymouth buffer (135 mM NaCl, 13 mM H-Hepes, 13 mM Na-Hepes, 2.5 mM CaCl₂, 1.2 mM MgCl₂, 0.8 mM MgSO₄, 5 mM KCl, and 28 mM D-glucose). Then 200 μ L of Waymouth buffer containing 1 μ M [³H]PGH₂ or 1 nM [³H]PGE₂ was stopped by aspiration of uptake buffer, followed immediately by two washes with 500 μ L of chilled Waymouth buffer. Cells were then lysed with 100 μ L lysis buffer containing 0.25% SDS and 0.05 N NaOH. 1.5 mL of scintillation solution was added to each well, and intracellular [³H]PGH₂ or [³H]PGE₂ was counted by MicroBeta scintillation Counter.

To obtain the time course of PGE₂ transport in the presence of PGH₂ or TGBz T34, MDCK cells were incubated in Waymouth buffer containing 1 nM [³H]PGE₂ at room temperature for 9 minutes to reach the maximum intracellular level. Thereafter, either PGH₂ or TGBz T34 was added to the uptake buffer at a final concentration of 2.5 μ M or 25 μ M. At the designated time, the uptake of [³H]PGE₂ was stopped and uptake was assessed as described above. For the time course of PGH₂ uptake in the presence of TGBz T34, MDCK cells were incubated in Waymouth buffer containing 1 μ M [³H]PGH₂ at room temperature for 120 minutes to reach the maximum intracellular level. At 120 minutes, TGBz T34 was added to the uptake buffer at a final concentration of 25 μ M.

Measurements of Kinetic Parameters of PGE₂ and PGH₂

We repeated the time courses of PGE_2 or PGH_2 uptake in the presence or absence of 25 μ M TGBz T34 at various initial extracellular concentrations of PGE_2 (0, 20, 40, 80, 120, 160, and 300 nM) or PGH_2 (0, 10, 25, 50, 100, 250, 500, and 1000 nM). In the case of PGE_2 , at

low concentrations, the extracellular concentrations were taken as ³H labeled PGE₂, which has a specific activity of 500 μ Ci/mol. At high concentrations of PGE₂, we made a mixture of ³H labeled and unlabeled PGE₂ to a final specific activity of 25 μ Ci/mol.

The initial velocities at various extracellular concentrations of PGE_2 or PGH_2 were determined from the PGE_2 uptake in the first 2 minutes or the PGH_2 uptake in the first 3 minutes, in the presence or absence of TGBz T34; these were linear over the early time course of PGE_2 or PGH_2 uptake. The permeability coefficient of PGH_2 or PGE_2 influx (P_{in}) was obtained by linear regression fit of the initial rate in the presence of TGBz T34 *versus* extracellular PGE_2 or PGH_2 concentration.

We subtracted the initial velocities in the presence of TGBz T34 from those in the absence of TGBz T34. These resulted initial velocities were used to obtain K_m and V_{max} values by nonlinear regression fit of the initial rate *versus* extracellular PGE₂ or PGH₂ concentration to the Michaelis-Menten equation ($V_i = V_{max} [S] / ([S] + K_m)$).

Results

Time Course of PGH₂ Uptake

The time course of PGH₂ uptake by MDCK cells expressing PGT is shown in Fig. 1A. The circles represent the total PGH₂ uptake when the cells were incubated with 1 μ M [³H]PGH₂. Squares indicate experiments in which cells were incubated with 1 μ M [³H]PGH₂ in the presence of 25 μ M TGBz T34, our newly identified PGT inhibitor (15). The line with diamonds represents PGH₂ total uptake minus PGH₂ influx when the PGT inhibitor was applied, which is equivalent to PGT-mediated uptake. The "overshoot" is characteristic of PGT (17).

Fig. 1B shows PGH₂ uptake by wild-type MDCK cells. The inset of Fig. 1B shows the time course of PGH₂ uptake by wild-type MDCK cells for the first 15 minutes. It is evident that PGH₂ influx in PGT-expressing cells plus the inhibitor TGBZ T34 (squares in Fig. 1A) is almost identical to the data of Fig. 1B; each of these represents PGH₂ influx by simple diffusion. Since the pattern of total PGH₂ uptake was similar to that of PGT-mediated uptake, we conclude that PGT mediates the majority of PGH₂ uptake.

Kinetics of PGH₂ Uptake in Comparison with PGE₂ Uptake

To obtain detailed kinetic parameters of PGH₂ influx, we measured initial rates of PGH₂ uptake at various extracellular PGH₂ concentrations in the presence and absence of TGBz T34. In the presence of PGT inhibitor, the plot of the initial rates of PGH₂ uptake versus concentration could be fitted with a straight line (squares in Fig. 2A), indicating that this part of influx was caused by simple diffusion. We calculated the permeability coefficient of PGH₂ influx (P_{in}) by diffusion by dividing the slope of this linear line by the total cell surface. P_{in} for PGH₂ was $(5.66 \pm 0.63) \times 10^{-6}$ (Table 1).

In the absence of TGBZ T34, the plot with circles depicts the total PGH_2 uptake (Fig. 2A). The PGT mediated rates (diamonds) from Fig. 2A were obtained by subtracting the influx by diffusion (squares) from the total influx (circles). When plotted against PGH_2

concentration, they could be fitted by the Michaelis-Menton equation (Fig. 2A). The binding constant of PGH₂ to PGT, K_m , and the maximum velocity, V_{max} , are listed in Table 1. PGT-mediated transport constituted 80% of PGH₂ influx; the remainder was mediated by diffusion.

Using the same method, we conducted a similar investigation of the kinetics of PGE₂ uptake. As shown in Fig. 2B, circles depict the total PGE₂ uptake in the absence of TGBz T34, and squares depict the PGE₂ influx in the presence of TGBz T34. The plot of the latter is linear and shows the component of PGE₂ influx caused by diffusion. P_{in} for PGE₂, was $(1.06 \pm 0.13) \times 10^{-6}$ cm/s (Table 1). Using the same methods as for analyzing PGH₂ kinetics, we generated the PGT-mediated uptake component (diamonds), which could be fitted by the Michaelis-Menton equation. The binding constant of PGE₂ to PGT, K_m, and the maximum velocity, V_{max}, are listed in Table 1. As opposed to the case with PGH₂, PGT-mediated PGE₂ transport was almost identical to total PGE₂ uptake, suggesting that PGE₂ influx is mainly mediated by PGT. Comparison of the kinetic parameters of PGE₂ to PGH₂ uptake shows that P_{in} for PGH₂ was 5-fold that for PGE₂; K_m of PGH₂ was 4.1-fold that of PGE₂; and V_{max} of PGH₂ was 2.7-fold that of PGE₂.

To address the possibility that ³H-PGH₂ was metabolized to ³H-PGE₂ and that the measured tracer influx therefore represented ³H-PGE₂, and not ³H-PGH₂, we added 0, 0.5, or 1.0 μ M unlabeled PGH₂ to the medium overlaying WT MDCK cells at 37°C, waited 3 minutes, and determined the resulting PGE₂ concentrations by enzyme-linked immunoassay. The resulting medium PGE₂ concentrations were 0.159 ± 0.014, 0.166 ± 0.014, and 0.156 ± 0.017 nM (n = 3), respectively. These trivial levels of PGE₂ are well below the affinity of PGT (Table 1), indicating that conversion of PGH₂ to PGE₂ cannot account for our uptake results.

PGH₂ serves as a PGT anion exchange substrate

In the absence of an extracellular substrate for PGT, PGE₂ efflux occurs exclusively by diffusion (15, 17). However, when a PGT substrate is present in the extracellular medium, PGE₂ efflux is accelerated via PGT acting as an obligate anion exchanger (17). In the following experiments, we examined whether unlabeled extracellular PGH₂, like unlabeled extracellular PGE₂, can serve as a "trans" exchange partner to drive tracer PGE₂ efflux.

As shown in Fig. 3 (circles), under control conditions the cells could be rapidly loaded with ³H-PGE₂ such that intracellular ³H-PGE₂ reached a peak at 9 min and leveled off thereafter. This biphasic pattern results from a "pump-leak" system in which PGT-mediated uptake ("pump") initially exceeds the diffusion-mediated efflux ("leak") rate (18). As expected from our prior work (15), application of 25 μ M TGBz T34 at 9 minutes abruptly stopped further PGT-mediated ³H-PGE₂ uptake. The subsequent rate of ³HPGE₂ efflux represents the background diffusional leak (dots in Fig. 3).

We repeated the experiment, but this time added 2.5 μ M unlabeled extracellular PGH₂ during the ³H-PGE₂ uptake. Intracellular ³H-PGE₂ fell to baseline within 5 minutes and remained at that level for the rest of the time course. Of note, extracellular PGH₂ induced a

faster efflux of intracellular ³H-PGE₂ than TGBz T34, indicating that PGH₂ exchanges with ³H-PGE₂ on PGT.

Diffusional efflux of PGH₂

Because PGH_2 influx can occur to some extent by diffusion (Fig. 2 and Table 1), we examined the degree to which PGH_2 also effluxes from cells by diffusion. Toward this end, we loaded cells via PGT for 120 minutes with ³H- PGH₂ to a peak level, and then stopped further uptake with 25 μ M TGBz T34. As shown in Fig. 4, this block of carrier-mediated PGH₂ uptake was followed by a rapid depletion of intracellular ³H-PGH₂. This pattern is qualitatively the same as for PGE₂ (Fig. 3), and indicates that pre-loaded ³H-PGH₂ exits cells by diffusion in the same fashion as pre-loaded PGE₂.

Discussion

 PGH_2 serves as the common precursor of all other prostaglandins inside cells. It is also rapidly released into the extracellular compartment (Fig. 3) where it can trigger Ca²⁺ release and platelet aggregation by activating its receptor (7-10, 19). These signals could be reduced as PGH₂ was taken back up into cells and converted into other PGs, including PGI₂, which inhibits platelet aggregation. It appears that PGH₂ plays different roles and may trigger opposing signals, directly or indirectly, from different cellular compartments. Therefore, its translocation is critical for its level in either the intracellular or extracellular compartments. Here, we show that PGH₂ efflux is mainly mediated by diffusion and its influx is mediated by both passive diffusion and by a carrier, PGT.

Compared to PGE_2 , PGH_2 is transported by PGT with a lower affinity, but at a higher rate. Using transport across the plasma membrane as a model system, we found that PGH_2 has a higher passive permeability than PGE_2 . The time course of PGH_2 uptake across the plasma membrane in our assay system is different from that of PGE_2 uptake (Fig. 1A and 3). It took about two hours for PGH_2 to reach a peak intracellular level, whereas it took only 10 minutes for PGE_2 to do so. This is in spite of the fact that about 20% of PGH_2 influx is caused by diffusion, whereas PGE_2 influx by diffusion is negligible. Correspondingly, the efflux of PGH_2 caused by simple diffusion is much greater than that of PGE_2 . Therefore, in the "pump-leak" system of PGT-mediated uptake and diffusional efflux, the latter component is much higher for PGH_2 than for PGE_2 .

The differences in transport kinetics between PGH_2 and PGE_2 are likely due to chemical structure differences. PGH_2 has a 7-member ring with two oxygens at the head of the molecule, whereas PGE_2 has a five-member ring with a hydroxyl group. Although there are two oxygens in the 7-membrane ring, PGH_2 is more hydrophobic than PGE_2 because of its lack of a hydroxyl group. This greater hydrophobicity probably accounts for the higher passive diffusion of PGH_2 relative to PGE_2 . The same structural difference probably accounts for the weaker binding of PGH_2 to PGT, as compared to PGE_2 , implying that it is the head of the fatty acid that is interacting with PGT. The -OH group on the ring of PGE_2 is important for the interaction, and it is likely to be a proton donor instead of an acceptor, in order for PGE_2 to be differentiated from PGH_2 .

Although PGH₂ binds to PGT more weakly than PGE₂, the V_{max} of PGH₂ is higher than that of PGE₂, indicating that PGT turns over PGH₂ faster than PGE₂. The V_{max} of PGH₂ is 2.7-fold that of PGE₂. Given the same amount of PGT, k_{cat} of PGH₂ will be 2.7 folds of that of PGE₂. The ratio of K_m of PGH₂ to that of PGE₂ is 4.1. The specificity of PGT for a substrate is defined by k_{cat}/K_m. Since k_{cat}/K_m for PGE₂ is 1.5 fold that for PGH₂, we conclude that PGT slightly prefers PGE₂ over PGH₂.

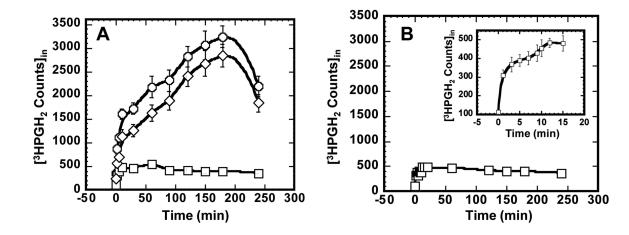
As shown in Fig. 3B and 4, TGBz T34 exerted full inhibition of PGE_2 transport, implying that almost 100% of PGE_2 influx was mediated by PGT. In the case of PGH_2 uptake, TGBz T34 inhibited 80% of PGH_2 transport, consistent with the conclusion that about 80% of PGH_2 uptake was mediated by PGT and about 20% by diffusion (Fig. 2A and 4).

PGH₂ is synthesized by two enzymes cyclooxygenase (COX)-1 or -2, which have been localized to the luminal surfaces of the endoplasmic reticulum (ER) (20), at specific activities of 25 – 40 nmoles/min/mg protein (21-23). PGH₂ is consumed in the cytoplasm by the prostaglandin synthases (PGDS, PGES, PGFS, PGIS), at specific activities of 1 – 4000 nmoles/min/mg protein (1; 2; 4-6; 24-30). The luminal surface of the ER is topologically similar to the exofacial surface of the plasma membrane. Thus, present studies shed light on the kinetics of PGH₂ transport across the ER membrane. The specific transport activity of PGT for PGH₂ is in the range of 0.012 - 1 nmoles/min/mg protein. If PGH₂ translocation from the ER lumen to the cytoplasm is rate-limiting for prostaglandin synthesis, PGT might control the translocation of PGH₂ across the ER, and therefore the accessibility of PGH₂ to the terminal prostaglandin synthases.

In any event, PGT-mediated uptake of PGH_2 may regulate the net signaling that PGH_2 triggers. PGT is strongly expressed in endothelial cells and its expression is induced when endothelial cells are under sheer stress (31-33). PGH_2 -induced platelet aggregation would be counteracted by the anti-coagulation effect of PGI_2 , formed after PGH_2 is transported into endothelial cells by PGT.

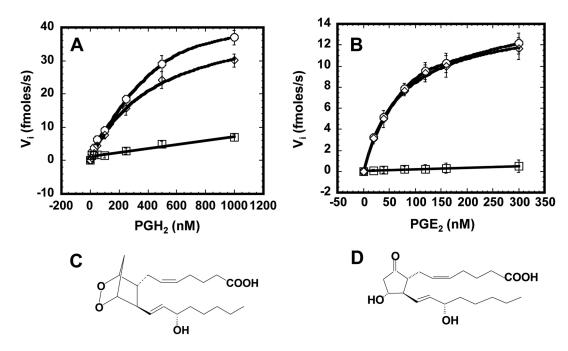
Acknowledgements

Supported by NIH 2RO-1 DK 49688-12 and NIH P50 DK064236-01

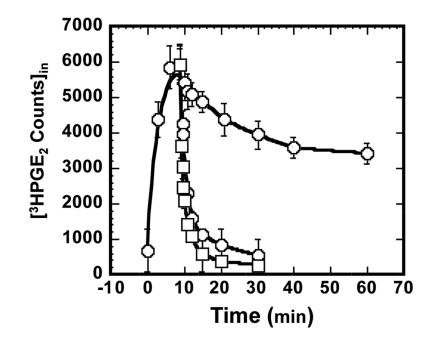

Abbreviations

PG	Prostaglandin	
PGT	prostaglandin transporter	
PGH ₂	prostaglandin H ₂	
PGE ₂	prostaglandin E_2	
AA	arachidonic acid	
TxA ₂	thromboxane A ₂	
COX	cyclooxygenase	
ER	endoplasmic reticulum	

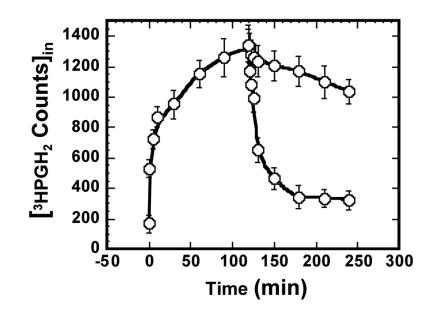
References


- Pinzar E, Miyano M, Kanaoka Y, Urade Y, Hayaishi O. Structural basis of hematopoietic prostaglandin D synthase activity elucidated by site-directed mutagenesis. J. Biol. Chem. 2000; 275:31239–31244. [PubMed: 10871602]
- Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E₂ synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E₂ biosynthesis. J, Biol, Chem. 2000; 275:32775–32782. [PubMed: 10922363]
- Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh-ishi S, Kudo I. Regulation of prostaglandin E₂ biosynthesis by inducible membrane-associated prostaglandin E₂ synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem. 2000; 275:32783–32792. [PubMed: 10869354]
- 4. Chen L-Y, Watanabe K, Hayaishi O. Purification and characterization of prostaglandin F synthase from bovine liver. Arch. Biochem. Biophys. 296. 1992:17–26.
- Watanabe K, Yoshida Y, Shimizu T, Hayaishi O. Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J Biol Chem. 1985; 260:7035–7041. [PubMed: 3858278]
- Liou J-Y, Shyue S-K, Tsai M-J, Chung C-L, Chu K-Y, Wu KK. Colocalization of prostacyclin synthase with prostaglandin H synthase-1 (PGHS-1) but not phorbol ester-induced PGHS-2 in cultured endothelial cells. J. Biol. Chem. 2000; 275:15314–15320. [PubMed: 10809766]
- 7. Morinelli TA, Niewiarowski S, Daniel JL, Smith JB. Receptor-mediated effects of a PGH2 analogue (U 46619) on human platelets. Am. J. Physiol. 1987; 253:H1035–43. [PubMed: 3688248]
- 8. Mayeux PR, Morton HE, Gillard J, Lord A, Morinelli TA, Boehm A, Mais DE, Halushka PV. The affinities of prostaglandin H2 and thromboxane A2 for their receptor are similar in washed human platelets. Biochem. Biophys. Res. Commun. 1988; 157:733. [PubMed: 2974286]
- Kent KC, Collins LJ, Schwerin FT, Raychowdhury MK, Ware JA. Identification of functional PGH2/TxA2 receptors on human endothelial cells. Circ. Res. 1993; 72:958–65. [PubMed: 8477529]
- Vezza R, Mezzasoma AM, Venditti G, Gresele P. Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets. Thromb. Haemost. 2002; 87:114–21. [PubMed: 11848439]
- Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol. Rev. 1978; 30:293–331. [PubMed: 116251]
- 12. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962; 194:927–929. [PubMed: 13871375]
- Kanai N, Lu R, Satriano J, Bao Y, Wolkoff AW, Schuster VL. Identification and characterization of a prostaglandin transporter. Science. 1995; 268:866–869. [PubMed: 7754369]
- Schuster VL. Molecular mechanisms of prostaglandin transport. Ann. Rev. Physiol. 1998; 60:221– 242. [PubMed: 9558462]
- Chi Y, Khersonsky SM, Chang Y-T, Schuster VL. Identification of a new class of prostaglandin transporter inhibitors and characterization of their biological effects on prostaglandin E₂ transport. J. Pharmacol. Exp. Ther. 2006; 316:1346–1350. [PubMed: 16269530]
- Nomura T, Lu R, Pucci ML, Schuster VL. The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase. Mol. Pharmacol. 2004; 65:973–978. [PubMed: 15044627]
- Chan BS, Satriano JA, Pucci ML, Schuster VL. Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter "PGT". J. Biol. Chem. 1998; 273:6689–6697. [PubMed: 9506966]
- Chan BS, Endo S, Kanai N, Schuster VL. Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am. J. Physiol. Renal. Physiol. 2002; 282:F1097– F1102. [PubMed: 11997326]
- 19. Halushka PV, Mais DE, Mayeux PR, Morinelli TA. Thromboxane, prostaglandin and leukotriene receptors. Annu. Rev. Pharmacol. Toxicol. 1989; 29:213–239. [PubMed: 2543270]

- Spencer AG, Woods JW, Arakawa T, Singer II, Smith WL. Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. J Biol Chem. 1998; 273:9886–9893. [PubMed: 9545330]
- 21. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 1996; 271:33157–33160. [PubMed: 8969167]
- 22. Laneuville O, Breuer DK, Dewitt DL, Hla T, Funk CD, Smith WL. Differential inhibition of human prostaglandin endoperoxide H synthases- 1 and -2 by nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 1994; 271:927–934. [PubMed: 7965814]
- 23. Barnett J, Chow J, Ives D, Chiou M, Mackenzie R, Osen E, Nguyen B, Tsing S, Bach C, Freire J, et al. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. BBA. 1994; 1994; 1209:130–139. [PubMed: 7947975]
- Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin D synthetase. J. Biol. Chem. 1985; 260:12410–12415. [PubMed: 3930495]
- Urade Y, Fujimoto N, Ujihara M, Hayaishi O. Biochemical and immunological characterization of rat spleen prostaglandin D synthetase. J Biol Chem. 1987; 262:3820–3825. [PubMed: 3102495]
- Jakobsson P-J, Thorén S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. PNAS. 1999; 96:7220–7225. [PubMed: 10377395]
- 27. Watanabe K, Kurihara K, Suzuki T. Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. BBA. 1999; 1439:406–414. [PubMed: 10446427]
- Tanikawa N, Ohmiya Y, Ohkubo H, Hashimoto K, Kangawa K, Kojima M, Ito S, Watanabe K. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem. Biophys. Res. Commun. 2002; 291:884–889. [PubMed: 11866447]
- 29. Suzuki T, Fujii Y, Miyano M, Chen L-Y, Takahashi T, Watanabe K. cDNA cloning, expression, and mutagenesis study of liver-type prostaglandin F synthase. J. Biol. Chem. 1999; 274:241–248. [PubMed: 9867836]
- Hara S, Miyata A, Yokoyama C, Inoue H, rugger RB, Lottspeich F, Ullrich V, Tanabe T. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem. 1994; 269:19897–19903. [PubMed: 8051072]
- Bao Y, Pucci ML, Chan BS, Lu R, Ito S, Schuster VL. Prostaglandin transporter PGT is expressed in cell types that synthesize and release prostanoids. Am. J. Physiol. Renal Physiol. 2002; 282:F1103–10. [PubMed: 11997327]
- Pucci ML, Chakkalakkal B, Liclican EL, Leedom AJ, Schuster VL, Abraham NG. Augmented heme oxygenase-1 induces prostaglandin uptake via the prostaglandin transporter in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 2004; 323:1299–1305. [PubMed: 15451438]
- Ulrich, D.; Ulrich, F.; Silny, J.; Unglaub, F.; Pallua, N. Handchir. Mikrochir. Plast Chir. Vol. 38. German: 2006. [Chiparray-based identification of gene expression in HUVECs treated with low frequency electric fields]; p. 149-155.


Fig. 1.

A, time course of PGH₂ uptake by PGT-expressing MDCK cells in the presence (squares) and absence (circles) of 25 μ M TGBz T34. The diamond line is formed by subtracting intracellular PGH₂ in the absence of TGBz T34 (circles) by intracellular PGH₂ in the presence of TGBz T34 (squares). B, time course of PGH₂ uptake by wild type MDCK cells. In both A and B, the values are presented as mean ± S.D. of three individual replicates.


Fig. 2.

Plots of initial velocity of PGH₂ (A) or PGE₂ (B) uptake by PGT-expressing MDCK cells in the presence (squares) or absence (circles) of 25 μ M TGBz T34 as a function of PGH₂ (A) or PGE₂ (B) concentration. Circles represent the total uptake and squares represent diffusional influx. The diamonds, which represent [total - diffusional] could be fit by the Michaelis-Menton equation (V_i = V_{max} [S] / ([S] + K_m)). These are representative plots of three individual sets of experiments. In each set of experiment, the error bars are S.D. values of triplicates. The kinetic parameters were generated in each of 3 sets of experiments and presented as mean values ± S.D. in Table 1. C and D, chemical structures of PGE₂ and PGH₂, respectively

Fig. 3.

Time Course of PGE_2 uptake by PGT-expressing MDCK cells in the absence (circles) and presence of 2.5 μ M PGH₂ (squares) or 25 μ M TGBZ T34 (closed circles). PGE₂ uptake as a function of time was first established by allowing uptake to various time points, washing, and counting intracellular PGE₂ (open circles). In separate experiments, either 2.5 μ M PGH₂ or 25 μ M TGBZ T34 was added at 10 minutes when intracellular PGE₂ had reached the peak level. Thereafter, PGE₂ uptake was stopped at various points by washing and intracellular PGE₂ was measured. The values are presented as mean \pm S.D. of triplicates.

Fig. 4.

Diffusional efflux of PGH₂. As a baseline, ³H-PGH₂ uptake was allowed to proceed to various time points and stopped by washing, and then intracellular ³H-PGH₂ was measured (open circles). In separate experiments, 25 μ M TGBZ T34 was added at 120 minutes when intracellular PGH₂ had reached peak level. Thereafter PGH₂ uptake was stopped at various time points by washing and intracellular PGH₂ was measured (closed circles). The values are presented as mean \pm S.D. of triplicates.

Table 1

Kinetic parameters of PGH2 and PGE2 influx by both PGT and diffusion.

Kinetic Parameters	PGH ₂	PGE ₂
K _m (nM)	376 ± 34	91.0 ± 8.2
V _{max} (fmoles/mg protein/s)	210.2 ± 11.4	78.9 ± 6.9
Influx permeability coefficient (P _{in}) (cm/s)	$(5.66\pm 0.63)\times 10^{-6}$	$(1.06\pm 0.13)\times 10^{-6}$

All kinetic parameters are presented as mean \pm S.D. (n = 3).