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Abstract

Data mining and data reduction methods to detect interactions in epidemiologic data are being 

developed and tested. In these analyses, multifactor dimensionality reduction, focused interaction 

testing framework, and traditional logistic regression models were used to identify potential 

interactions with up to three factors. These techniques were used in a population-based case-

control study of pancreatic cancer from the San Francisco Bay Area (308 cases, 964 controls). 

From 7 biochemical pathways, along with tobacco smoking, 26 polymorphisms in 20 genes were 

included in these analyses. Combinations of genetic markers and cigarette smoking were identified 

as potential risk factors for pancreatic cancer, including genes in base excision repair (OGG1), 

nucleotide excision repair (XPD, XPA, XPC), and double-strand break repair (XRCC3). XPD.751, 

XPD.312, and cigarette smoking were the best single-factor predictors of pancreatic cancer risk, 

whereas XRCC3.241*smoking and OGG1.326*XPC.PAT were the best two-factor predictors. 

There was some evidence for a three-factor combination of OGG1.326*XPD.751*smoking, but 

the covariate-adjusted relative-risk estimates lacked precision. Multifactor dimensionality 

reduction and focused interaction testing framework showed little concordance, whereas logistic 

regression allowed for covariate adjustment and model confirmation. Our data suggest that 

multiple common alleles from DNA repair pathways in combination with cigarette smoking may 

increase the risk for pancreatic cancer, and that multiple approaches to data screening and analysis 

are necessary to identify potentially new risk factor combinations.
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Introduction

As the era of single-marker and single-nucleotide polymorphism association studies in 

epidemiology draws to a close, methods of data analysis are in development for main gene 

effects, gene-gene interactions, and gene-environment interactions among multiple markers. 

More traditional methods of analysis for higher-order interactions (2, 3, and more loci) such 

as logistic regression require more programming and computations, even in epidemiologic 

studies of modest size with 25 or more candidate gene markers. To address these issues, a 

number of data mining and data filtering software packages are now or soon will be freely 

available to researchers (1–6). One such method, multifactor dimensionality reduction, uses 

data reduction methods to detect higher-order interactions when the outcome variable is 

categorical.

Multifactor dimensionality reduction was developed as a nonparametric method. In case-

control studies of complex disease, it does not require specification of a genetic model to 

detect gene-gene interactions without main gene effects (1). Multifactor dimensionality 

reduction software has existed since 2001 and has evolved over multiple versions. The core 

algorithm used to collapse high-dimension data and cross-validation consistency has 

remained unchanged, whereas user interface and the addition of graphical features 

characterize recent improvements. Newer versions of multifactor dimensionality reduction 

have incorporated data filtering methods such as Tuned ReliefF to assist in the analysis of 

interactions in genome-wide association studies (see Web site: www.epistasis.org; ref. 7).

Focused interaction testing framework software was developed to identify markers for gene-

gene interaction and uses a parametric search algorithm in a pooled case-control group that 

reduces the number of tests done. The screening algorithm uses a goodness-of-fit m2 statistic 

that compares observed to expected genotype frequencies in the pooled cases and controls 

(assuming no marginal or main gene effects). The main interaction testing framework then 

uses a likelihood ratio test to simultaneously test for higher-order multilocus effects while 

adjusting the threshold for significance by controlling false discovery rates. Thus, 

multifactor dimensionality reduction and focused interaction testing framework use 

fundamentally different strategies to detect interactions.

Pancreatic cancer is the fourth leading cause of cancer-related death in men and women in 

the United States (8). With the exception of cigarette smoking, few environmental risk 

factors for pancreatic cancer are known, and most cases (>90%) do not aggregate in families 

(9). Thus, it is reasonable to suggest that most pancreatic cancers are the result of complex 

interactions and cross-talk between alleles or gene products and environmental exposures 

such as tobacco smoke.

The main objectives of this article are to identify pathway-based higher-order interactions 

(gene-gene and gene-smoking) important in pancreatic cancer etiology and to compare the 

results of multifactor dimensionality reduction and focused interaction testing framework 

software packages with traditional multivariable logistic regression methods using genotype 

data from participants in a population-based case-control study of pancreatic 

adenocarcinoma. From 7 biological pathways, 26 polymorphisms in 20 genes were 
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evaluated in this study (Table 1). The following pathways and genes were included in the 

analyses: base excision repair (APE1, OGG1, XRCC1), nucleotide excision repair (XPA, 

XPC, XPD, ERCC1), double-strand break repair (XRCC3), carcinogen metabolism and 

oxidant stress (GSTM1, GSTT1, GSTP1, UGT1A7, SOD2), hormone metabolism 

(CYP1A1, CYP1B1, CCK), inflammation (TNF-A, RANTES, CCR5), and extracellular 

matrix (MMP3).

Materials and Methods

Study Population

A population-based case-control study of pancreatic cancer was conducted in six San 

Francisco Bay Area counties (Alameda, Contra Costa, Marin, San Francisco, San Mateo, 

and Santa Clara) between 1994 and 2005. Detailed study methods have been published (10–

20). Briefly, cases were identified using rapid case ascertainment by the Northern California 

Cancer Center with a goal to identify patients in the study area within 1 month of diagnosis. 

Eligible cases were newly diagnosed between 1995 and 1999 with adenocarcinoma of the 

exocrine pancreas, were between 21 and 85 years of age, resided in 1 of the 6 Bay Area 

counties, were alive at the time of first attempted contact, and were able to complete an 

interview in English. A total of 532 eligible cases completed the interview for a 67% 

response rate (10–12). Patient diagnoses were confirmed by participants' physicians and by 

the Surveillance, Epidemiology, and End Results abstracts.

Control participants were identified within the six San Francisco Bay Area counties using 

random-digit dial and were frequency matched to cases in an approximately 3:1 ratio by sex 

and 5-year age group. Eligibility criteria were identical for case and control participants, 

except for pancreatic cancer status. Control recruitment for those older than 65 years was 

supplemented by random sampling of the Health Care Finance Administration (now the 

Centers for Medicare and Medicaid Services) lists for the 6 Bay Area counties. A total of 

1,701 eligible control participants completed the study interview for a 67% response rate 

(10–12).

The analyses for this study are based on 308 cases and 964 controls who gave blood as part 

of the laboratory portion of the study. Detailed methods on case and control selection and 

the laboratory portion of the study have been published (12–14, 16). Eligible participants 

were those who had no portacath (a medical device surgically inserted under the skin that 

typically is used to deliver chemotherapy for cancer patients or for patients requiring long-

term parenteral nutrition) in place and had no history of bleeding disorders. Blood was not 

requested from the out-of-area cases. It was not obtained from the remainder of the case 

participants for the following reasons: patient was too ill, had died, or refused; the blood 

draw was unsuccessful or insufficient; or the study had ended. An analysis comparing 

participants who provided blood with those who did not provide blood has been previously 

described (14). Among cases, age, sex, race, education, smoking status (never, former, 

current), and pack-years of smoking were not different between those who did and did not 

provide a blood specimen (all P values were greater than 0.05). Blood was not requested 

from out-of-area controls. It was not obtained from the remainder of the control participants 

for the following reasons: participant refused, had died, was lost to contact, or was too ill; 
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the blood draw was unsuccessful or insufficient; or the study had ended. Among controls, 

age, education, and pack-years of smoking were independent of venipuncture (all P values 

were greater than 0.05), whereas those who provided blood were more likely to be white, 

men, and ever smokers. Overall, case or control status was not related to providing blood (P 

= 0.60). The study interviewers obtained separate written informed consent from all 

participants before interview and venipuncture. Study methods and protocols were approved 

by the University of California Committee on Human Research.

Exposure and demographic information were obtained from participants during in-person 

interviews conducted by trained interviewers using structured questionnaires. No proxy 

interviews were conducted. Self-reported race was broadly defined as white or Caucasian, 

black or African American, or Asian. Of the participants, 5 cases and 15 controls did not fall 

into any of these 3 categories and were classified as “other race” for these analyses. 

Participants were defined as never smokers if they never had smoked more than 100 

cigarettes in their lifetime and had not smoked cigars or pipes at least once per month for 6 

months or more. Because there was a substantial number of participants who had never 

smoked and who reported a history of passive smoke exposure at home as an adult (women: 

32 cases, 95 controls; men: 5 cases, 21 controls), these individuals were removed from the 

reference group of never smokers. In analyses of smoking status, passive smokers were 

combined with former active smokers and pipe or cigar smokers to form three groups 

(never, former or passive, and current). Smoking intensity (pack-years) was defined as the 

number of packs of cigarettes smoked per day multiplied by the number of years smoked. 

For gene-smoking interaction analyses using multifactor dimensionality reduction and 

focused interaction testing framework, pack-years were categorized to form three groups as 

follows: (a) never active or passive smokers; (b) former smokers, passive smokers, pipe or 

cigar smokers, or less than 41 pack-years; and (c) 41 or more pack-years. Age and sex were 

used to determine sampling probabilities and were therefore included in multivariable 

logistic models.

Genotyping

All genotyping was done on germ-line DNA (f50 ng) extracted from peripheral blood 

lymphocytes using the QIAmp DNA Blood Mini kit (Qiagen Inc.) according to the 

instruction of the manufacturer. PCR-RFLP analysis was used to genotype CYP1A1 m1 (T ! 
C, nucleotide 6235 in 3¶ flanking region), m2 (A ! G, nucleotide 4889), and m4 (C ! A) 

alleles. Genotypes for GSTM1 -null (homozygous gene deletion), GSTT1 -null, XPC -PAT+ 

[intron 9 poly(AT)], and CCR5 -D32 (32-bp deletion) were determined using PCR 

amplification and visualization on agarose gels. Detailed methods and results from our 

earlier analyses of polymorphisms in CYP1A1, GSTM1, and GSTT1 in this subset of the 

San Francisco Bay Area pancreatic cancer study have been published (13). CCR5-D32 was 

genotyped according to a gel-based PCR method and primers published by Martinson et al. 

(21). XPC -PAT+ was genotyped using primers and an optimized protocol from Khan et al. 

(22). XRCC1.194, XPA, ERCC1, XPD, and SOD2 variants were genotyped using validated 

Taqman assays (Applied Biosystems).
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The CYP1B1 and UGT1A7 variants were detected via allele-specific oligonucleotide 

hybridization using similar methods to those developed to distinguish different human 

papillomavirus DNA genotypes (23). The CYP1B1 (Val432Leu) and CYP1B1 (Asn453Ser) 

variants were examined by amplifying genomic DNA using the primers listed in the 

footnotes to Table 1 (24). The biotinylated probe sequences used for the CYP1B1 

hybridizations are listed in footnotes to Table 1. The UGT1A7.208 variant was examined by 

amplifying genomic DNA using primers listed in the footnotes to Table 1. The biotinylated 

probe sequences used for the UGT1A7*208 hybridizations also are listed in Table 1 

footnotes. All PCRs were done in a final volume of 50 AL consisting of DNA (20 ng), 

deoxynucleotide triphosphate (0.2 mmol/L each; Invitrogen), MgCl2 (2.5 mmol/L), 1 

Amol/L each primer, AmplitaqGold polymerase (1.25 U; Perkin-Elmer), and 1× reaction 

buffer. Amplification was done with an initial denaturation at 94jC for 10 minutes, followed 

by 35 cycles of amplification at 94jC for 30 seconds, 55jC for 1 minute and 72jC for 1.5 

minutes, and a final extension at 72jC for 5 minutes using a GeneAmp 9700 thermal cycler 

(Perkin-Elmer). The PCR products for each of the variants were denatured and blotted in 

duplicate onto Biodyne B membrane filters (pore size, 0.45 Am; Pall Biodyne) using a 

Robbins Hydra 96. The filters were treated with 3% hydrogen peroxide solution (Sigma 

Chemicals) at room temperature for 15 minutes then washed at 65jC for 30 minutes {wash 

solution consisted of 0.1× saline – sodium phosphate – EDTA [180 mmol/L NaCl, 10 

mmol/L NaH2PO4, and 1 mmol/L EDTA (pH 7.4)] and 0.5% sodium dodecyl sulfate}. 

Afterward, the treatment the filters were hybridized with the biotinlabeled probes overnight 

(hybridization temperatures for the CYP1B1 and UGT1A7.208 variants were 57jC and 

44jC, respectively), followed by two 1-hour washes at the hybridization temperature. 

Enhanced chemiluminescence reagent (Amersham) was used to detect hybridization, 

followed by exposure to autoradiography. All of the results were interpreted by two 

experienced investigators, and discrepancies were resolved by consensus.

APE1, OGG1, XRCC1.399, GSTP1, CCK, TNF-a, RANTES, XRCC3, and MMP3 (Table 

1) were genotyped using the Masscode assay (BioServe Inc.; ref. 25). Methods and results 

for XRCC1.399, TNF-a, and RANTES have been published (14, 16). For participants in 

whom the mass spectrometry method failed to yield a conclusive genotype for TNF-a and 

RANTES, missing data were completed using PCR-RFLP assays according to Wilson et al. 

(26) and Hajeer et al. (27). A random sample of the data (3%) for TNF-a -308 and RANTES 

-403 were repeated using Masscode and PCR-RFLP and were found to agree for both 

genotyping methods. DNA samples that yielded “no calls” after three genotyping attempts 

were reported as missing.

Statistical Methods

Only markers with less than 7% missing data in cases or controls were included in these 

analyses. For multifactor dimensionality reduction and focused interaction testing 

framework analyses, genetic markers with missing genotype values were imputed to the 

most common genotype for that marker. Tests for Hardy-Weinberg equilibrium among all or 

white or Caucasian control participants were conducted by comparing observed with 

expected genotype frequencies using a m2 test with 1 degree of freedom. Expected genotype 

frequencies were estimated from allele frequencies. Multifactor dimensionality reduction 
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and focused interaction testing framework analyses were run with and without variables for 

smoking status or pack-years.

Multifactor Dimensionality Reduction Analysis

Multifactor dimensionality reduction version 1.0.Orc1 was used, and best models were 

reported for interactions with up to three factors until the total cross-validation consistency 

was five or more. Multifactor dimensionality reduction uses cross-validation by dividing the 

data into a training set (e.g., 9/10 of the data) and a testing set (e.g., the remaining 1/10 of 

the data) to derive estimates of cross-validation consistency and testing accuracy. 

Multifactor dimensionality reduction models were considered statistically significant if the 

testing accuracy was greater than the cutoff based on a 1,000-fold permutation test. For 

permutation testing, the data were randomized 1,000 times by case or control status 

consistent with the null hypothesis of no association (testing accuracy, 0.5). The multifactor 

dimensionality reduction model-fitting procedure was run for each randomized data set to 

determine expected values for testing accuracy. Testing accuracies greater than the expected 

values based on the permutated data sets were considered statistically significant at the 0.05 

level. This approach also accounts for multiple hypothesis testing. High- or low-risk 

summary graphics provided by multifactor dimensionality reduction were used to visualize 

potentially interacting genotypes and to build combined variables for testing in logistic 

regression models. Interaction dendrograms provided by multifactor dimensionality 

reduction were examined to assist in the visualization and interpretation of pot ential 

interactions (6). Connected red or orange lines indicate genetic markers that may interact 

synergistically, whereas blue or green lines indicate genetic markers that are redundant or do 

not interact. Shorter lines or leaves indicate stronger synergistic or redundant relations 

between variables.

Focused Interaction Testing Framework Analysis

Focused interaction testing framework software was downloaded in July 2006 using the 

Web site http://hydra.usc.edu/fitf (5). Data for interactions with up to three factors were 

evaluated. The overall a level of 0.05 was partitioned as follows: 0.01 in the first stage and 

0.02 in the second and third stages. The m2 subset (chi-square subset) statistical cutoff 

values were set to three and six for these analyses. All statistically significant interaction 

models were reported based on the false discovery rate P value. The model with the lowest 

false discovery rate P value was reported if no models were statistically significant.

Unconditional Logistic Regression

Unconditional multiple logistic regression with PROC LOGISTIC in SAS (version 9.1; SAS 

Institute) was used to compute covariate-adjusted odds ratios and 95% confidence intervals 

(95% CI) for genetic factors and pancreatic cancer risk. Interactions between variables were 

assessed in logistic regression models by forming a new variable with a common reference 

group (e.g., XRCC3.241 TT+TC+ never smoker) from two or three individual variables. For 

gene-gene interaction variables in logistic models, either previous information on variant 

function (if known) or interaction graph output from multifactor dimensionality reduction 

software was used to form the new combined variable (high versus low risk).

Duell et al. Page 6

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hydra.usc.edu/fitf


Results

Among white or Caucasian control participants, the following genetic markers were not in 

Hardy-Weinberg equilibrium: GSTP1.105 (P = 0.00007) and CYP1A1 .m2 (P = 0.003), and, 

thus, were removed from further analyses. Ignoring smoking among all participants, 

multifactor dimensionality reduction and focused interaction testing framework identified 

XPD as the single most important gene, with focused interaction testing framework favoring 

XPD.312 and multifactor dimensionality reduction favoring XPD.751. Among white or 

Caucasian participants, multifactor dimensionality reduction favored XRCC3.241, and 

focused interaction testing framework again favored XPD.312 as the best single-locus 

markers.

In two-loci models among all participants, multifactor dimensionality reduction favored a 

possible interaction between OGG1.326*XPC.PAT and focused interaction testing 

framework-identified XPD.312*XRCC3.241, although neither of these was considered 

statistically significant (Table 2). Focused interaction testing framework also identified a 

possible interaction between XPD.312 and XPA among whites or Caucasians that was not 

identified by multifactor dimensionality reduction. Thus, potential two-loci interactions 

OGG1.326*XPC.PAT and XPD.312*XPA were tested in subsequent logistic regression 

models.

Ignoring smoking among all participants, focused interaction testing framework identified 

XRCC1.399*XPC. PAT*XPD.312 and OGG1.326*XPD.156*XPD.751 and multifactor 

dimensionality reduction identified XRCC3. 241*XPC.PAT*CYP1B1.432 and 

OGG1.326*XPC.PAT*XPD. 156 as potential three-loci interactions (Table 2). In whites or 

Caucasians, multifactor dimensionality reduction identified XPD.156*XRCC3. 24 

1*CYP1B1.453 and XPD.156*XRCC3.241*XPA and focused interaction testing framework 

identified XPD.312*ERCC1*XRCC3.241 as potential three-loci interactions. Cross-

validation consistency was low (less than five) for all two- and three-loci interactions 

identified by multifactor dimensionality reduction that did not include smoking.

In general, similar results were obtained from models that evaluated tobacco smoking using 

smoking status (never, former, current) or smoking pack-years. In these models, multifactor 

dimensionality reduction and focused interaction testing framework identified smoking as 

the most important single risk factor for pancreatic cancer (Table 3). When smoking was 

included in multifactor dimensionality reduction and focused interaction testing framework 

models, multifactor dimensionality reduction tended to include smoking in all the best two- 

and three-factor combinations, whereas none of the best two- and three-factor combinations 

identified by focused interaction testing framework included smoking (Table 3). Multifactor 

dimensionality reduction results suggested that OGG1 and XPD and smoking interact 

(consistent among all participants and among whites or Caucasians), whereas focused 

interaction testing framework results suggested that OGG1 and XPD interact (among all 

participants, with or without smoking).

Next, logistic regression models were evaluated in all participants combined and restricted 

to whites or Caucasians for the best potential interactions (and single risk factors) identified 
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by multifactor dimensionality reduction and focused interaction testing framework software 

programs. Logistic regression models for XPD.312*XPA, OGG1. 326* XPC.PAT, XPD.

751, XRCC3.241, and smoking first were evaluated (Table 4) based on the high- or low-risk 

categories for XPD.312*XPA and OGG1.326*XPC.PAT provided by multifactor 

dimensionality reduction software (Fig. 1A and B). In these logistic models with smoking as 

a main effect, XPD.751 alone and XRCC.241 alone were statistically significant predictors 

of pancreatic cancer risk (Table 4). The odds ratios for all of the factors evaluated in these 

models were statistically significant and consistent between whites or Caucasians and all 

participants combined (Table 4).

To determine the specific combination of genotypes that may be associated with increased 

risk and to evaluate the potential interactions with smoking suggested by multifactor 

dimensionality reduction, combined odds ratios for XPD.312*XPA, OGG1.326*XPC.PAT, 

and XRCC3.241 *smoking were evaluated using logistic regression (Table 5). A two-loci 

interaction for OGG1. 326*XPC.PAT (combined variable with six categories) showed some 

heterogeneity in risk across categories (Table 5). Based on this logistic regression model, 

there did not seem to be an interaction between XPD.312 and XPA (Table 5). Among white 

or Caucasian participants, a likelihood ratio test comparing a model with XRCC3.241 and 

smoking as main effects versus a model with these factors combined resulted in a m2 of 4.2 

(P = 0.04).

Among all participants, the likelihood ratio test m2 value testing for interaction between 

XRCC3.241 and smoking was 0.87 (P = 0.35). None of the likelihood ratio test tests for 

XPD.312*XPA and OGG1.326*XPC.PAT were statistically significant (all P > 0.05). We 

ran the final confirmatory logistic regression model in whites or Caucasians separately for 

men and for women (data not shown). In general, the direction and magnitude of odds ratios 

were similar between men and women. None of the likelihood ratio test tests for XRCC3. 

241 *smoking by sex (men or women) or by race or ethnicity (in whites or Caucasians or in 

all participants) were statistically significant (all P > 0.2). In logistic models, we found some 

evidence for an interaction between smoking and XPD.751 in men and not in women (data 

not shown). The magnitude of the combined odds ratios (for XPD.751 and smoking) was not 

as strong as those observed for XRCC3.241 *smoking (data not shown).

Adjusted odds ratios for the combined effect of OGG1.326*XPD.751 genotypes also were 

evaluated because the multifactor dimensionality reduction analysis indicated a possible 

interaction between OGG1.326 and XPD.751. After adjustment for age, sex, XRCC3 

*smoking, and XPD.312*XPA, there was no evidence of statistically significant associations 

or interactions for any combined category of OGG1.326*XPD.751 and pancreatic cancer 

(among whites or Caucasians, or among all participants; data not shown). Odds ratios 

adjusted for age, sex, XPD.312*XPA, and XRCC3 for the combined effect of 

OGG1.326*XPD.751, stratified by smoking status (current versus never or former), were 

evaluated because the multifactor dimensionality reduction analysis indicated that there may 

be an interaction between OGG1.326 and XPD.751 and smoking (Table 3). Combined odds 

ratios were evaluated for OGG1.326*XPD.751 in the following six categories: C/C*A/C

+C/C (reference), C/C*A/A, C/G*A/C+C/C, C/G*A/A, G/G*A/C+C/C, and G/G*A/A. 

Among all current smokers, adjusted odds ratios for OGG1.326*XPD.751 were 3.0 (95% 
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CI, 1.1–8.4), 1.3 (95% CI, 0.47–3.5), 1.2 (95% CI, 0.25–4.2), 1.8 (95% CI, 0.25–13), and 

0.91 (95% CI, 0.09–10). Among all former or never smokers, adjusted odds ratios for 

OGG1.326*XPD.751 were 1.3 (95% CI, 0.79–2.1), 0.85 (95% CI, 0.53–1.4), 0.68 (95% CI, 

0.38–1.2), 1.1 (95% CI, 0.46–2.4), and 1.3 (95% CI, 0.55–3.0). Among white or Caucasian 

participants, adjusted odds ratios for the combined effect of OGG1.326*XPD.751 among 

current smokers were 3.2 (95% CI, 1.0–9.8), 1.2 (95% CI, 0.43–3.6), 2.1 (95% CI, 0.55–

8.4), 2.1 (95% CI, 0.28–16), and 1.5 (95% CI, 0.13–17). Among white or Caucasian never 

or former smokers, odds ratios for the combined effect of OGG1.326*XPD. 751 were 1.3 

(95% CI, 0.77–2.1), 0.85 (95% CI, 0.52–1.4), 0.55 (95% CI, 0.28–1.1), 1.0 (95% CI, 0.39–

2.6), and 1.2 (95% CI, 0.44–3.5). There was little or no evidence in logistic regression 

models of three-loci interactions for XPD.312*XRCC3.241*ERCC1, OGG1*XPD.

156*XPD.751, and XRCC1.399*XPC.PAT*XPC.312 (data not shown).

A graphical depiction of the combined effect of XRCC3.241 and smoking as high- and low-

risk groups and statistical interactions determined by multifactor dimensionality reduction 

are shown (Fig. 1C). As portrayed in the dendrogram (Fig. 2), OGG1 (OGG1.326) and 

XPC9 (XPC.PAT) may interact (connected red lines), whereas XPD.312 and XPD.751 are 

redundant or do not interact (blue lines).

Discussion

Multifactor dimensionality reduction and focused interaction testing framework software 

programs and logistic regression models were used to evaluate pathway-based gene-gene 

and gene-environment interactions in pancreatic adenocarcinoma using data from a 

population-based case-control study in the San Francisco Bay Area. Results showed that 

cigarette smoking, common variants in XPD (a nucleotide excision repair gene), and 

XRCC3 (a double-strand break repair gene) were the most important single-factor 

determinants of risk for pancreatic cancer in these data. For two-factor interactions, 

moderately increased risk estimates were observed for the combined effects of OGG1*XPC 

and XRCC3 *smoking. XPC is involved in damage detection that is specific for global 

genomic repair (nucleotide excision repair pathway), and OGG1 or 8-oxoguanine 

glycosylase is involved in removing mutagenic 7,8-dihydro-8-oxoguanine lesions as a 

consequence of free radical oxidation and is part of the base excision repair pathway. 

XRCC3 is involved in double-strand break repair (specifically, homologous recombination 

repair), often a result of radiation- and smoking-induced DNA damage. In these analyses, 

the strongest interaction observed was for XRCC3.241 *smoking. Smoking is one of the 

only established environmental risk factors for pancreatic cancer, but the precise mechanism 

of action in the pancreas is presently unknown. It is reasonable to assume that the effect of 

tobacco smoking on pancreatic tissues is a result of a complex combination of direct and 

indirect action of tobacco-associated carcinogens and metabolites (e.g., nitrosamines, 

oxygen free radicals) that are known to damage DNA (13, 28). Furthermore, there is 

mounting epidemiologic evidence that DNA repair polymorphisms in combination with 

heavy tobacco smoking increase the risk for pancreatic cancer (14, 29, 30). Interestingly, in 

these analyses, multifactor dimensionality reduction and focused interaction testing 

framework did not identify a previously reported interaction by our group (XRCC1 

*smoking; ref. 14). Potential explanations for this include differences between the analytic 
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methods used to detect and rank interactions, and that the previously listed interactions gave 

stronger signals than XRCC1 *smoking (multifactor dimensionality reduction and focused 

interaction testing framework software programs give lower relative rankings to weaker 

interactions).

For three-factor combinations, there was some evidence for an interaction between XPD 

*OGG1 *smoking, but estimates based on logistic regression models lacked precision. In a 

recent analysis of a hospital-based case-control study from the MD Anderson Cancer Center, 

Jiao et al. (29) reported an interaction between XPD codon 312 variants and smoking in 

relation to risk of pancreatic cancer. Their analysis did not evaluate polymorphisms in 

OGG1. Overall, our results support the hypothesis that some common genetic variants in 

base excision repair, nucleotide excision repair, and double-strand break repair pathways 

define subgroups at higher risk for smoking-associated pancreatic cancer.

Although multifactor dimensionality reduction and focused interaction testing framework 

identified smoking as the best single-factor predictor of pancreatic cancer in our study, 

unlike multifactor dimensionality reduction, focused interaction testing framework did not 

identify any interactions involving smoking. Multifactor dimensionality reduction and 

focused interaction testing framework rarely agreed on the interaction factors and may 

reflect the different methods each program uses to identify interactions. Focused interaction 

testing frame-work screens markers based on a m2 test that compares observed with 

expected frequencies in a pooled group of cases and controls, the same as assuming no 

marginal or main gene effects. In comparison, multifactor dimensionality reduction is less 

constrained than focused interaction testing framework and does not estimate model 

parameters or interaction terms and instead does cross-validation as part of the algorithm. 

With multifactor dimensionality reduction, any combination of genotypes (or environmental 

exposures) between two or more factors that results in an excess of cases compared with 

controls will be considered a potential interaction. Because the biology of many genes and 

of interactions between genes or gene products and environmental exposures are often 

unknown, the more “agnostic approach” of multifactor dimensionality reduction may be 

more appropriate for data mining. In contrast, focused interaction testing framework may 

have more power to detect interactions because of the prescreening procedure implemented 

in pooled cases and controls.

Because of the low magnitude of combined odds ratios from logistic models based on 

multifactor dimensionality reduction categories of high risk versus low risk, it is unclear if 

these categories represent risks due to true interactions (departures from additive or 

multiplicative effects of individual factors) or if they represent increased risks from multiple 

alleles or factors from distinct or overlapping pathways. There is considerable redundancy in 

DNA repair pathways. Because of this, the population-level effects of weakly or moderately 

interacting alleles and gene products are likely to be difficult to detect and interpret. Two 

markers (GSTP.105 and CYP1A1.m2) were not included in the analyses because they were 

not in Hardy-Weinberg equilibrium in Caucasian controls. Although the precise reasons for 

not satisfying Hardy-Weinberg equilibrium in our study are not known, they could include 

genotyping error (however, we repeated genotyping on 5% of the samples and found no 

differences), recent mutations that have not yet reached equilibrium in our population, or an 
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artifact of admixture due to subgroups that differ in allele frequency. It is important to note 

that our study had limited power to assess interactions; thus, our results require confirmation 

in larger epidemiologic studies and in studies from different populations.

Multifactor dimensionality reduction and focused interaction testing framework are tools 

that can provide analysts with guidelines for the evaluation of interactions, but neither 

method can compensate for a lack of precision in the data. Although traditional logistic 

regression is inadequate to analyze the large amount of data that are produced by genome-

wide methods, it is useful for covariate adjustment and to describe relative risks for disease 

in association with various combinations of genetic and environmental factors. No single 

method is likely to identify all of the potential interacting alleles or genotypes in a data set. 

Based on our experience, it seems appropriate to recommend that researchers and analysts 

use more than one approach to screen for potential gene combinations or interactions. Our 

approach was to use multifactor dimensionality reduction and focused interaction testing 

framework as tools to identify potential interacting candidate alleles or genotypes for more 

efficient testing using traditional logistic regression techniques. Our result showing an 

increased association for pancreatic cancer with a “checkerboard-like” combination of 

XPC.PAT and OGG1.326 genotypes (Fig. 1A) may not have been observed using more 

traditional logistic regression methods such as interaction terms and −2 log – like likelihood 

ratio tests. It remains to be seen whether this pattern (XPC.PAT*OGG1.326) is observed in 

other study populations. It is becoming apparent that some interactions and allelic effects 

may be context dependent (31). Mutual collaborations and exchange of ideas among 

epidemiologists, computational biologists, mouse geneticists, and other basic scientists are 

necessary to further our understanding of these potentially important processes in complex 

human diseases.
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Figure 1. 
Multifactor dimensionality reduction interaction diagrams. Darker-shaded cells show higher-

risk combinations, whereas lighter-shaded cells show combinations not associated with 

elevated risk for pancreatic cancer. 0, homozygous for common allele; 1, heterozygous; 2, 

homozygous for minor allele. Case-control ratio was 1:3. Data from a population-based 

case-control study of pancreatic cancer in the San Francisco Bay Area, CA (1995–1999). A. 

XPC.PAT × OGG1.326 among all participants. B. XPD.312 × XPA among all participants. 

C. XRCC3.241 × smoking among whites or Caucasians.
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Figure 2. 
Multifactor dimensionality reduction interaction dendrogram (among all participants, 

without smoking). Shorter connections among nodes mean stronger synergistic (red and 

orange) or redundant (blue and green) interactions.
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Table 1

Polymorphisms included in multifactor dimensionality reduction and focused interaction testing framework 

interaction analyses of pancreatic cancer in a population-based case-control study in the San Francisco Bay 

Area, CA (1995–1999)

Pathway Marker Nucleotide position Variation codon Minor allele All participants* White or 
Caucasian 

participantsc

Frequency Frequency

Cases Controls Cases Controls

Base excision repair

 APE1 rs3136820 2197 T/G (148) G 0.43 0.44 0.44 0.44

 hOGG1 rs1052133 8055 C/G (326) G 0.21 0.24 0.19 0.23

 XRCC1 rs25487 28152 G/A (399) A 0.32 0.30 0.34 0.31

rs1799782 26304 C/T (194) T 0.08 0.08 0.08 0.06

Nucleotide excision repair

 XPA rs1800975 −4 (5¶UTR) G/A A 0.34 0.32 0.35 0.31

 XPC AF076952 Intron 9 Poly(AT) PAT+ 0.38 0.42 0.39 0.43

 ERCC1 rs3212986 8092 C/A A 0.24 0.26 0.23 0.25

 XPD rs238406 22541 A/C (156) C 0.46 0.43 0.50 0.45

rs1799793 23591 G/A (312) A 0.26 0.33 0.28 0.35

rs13181 35931 A/C (751) C 0.29 0.36 0.31 0.38

Double-strand break repair

 XRCC3 rs861539 18067 C/T (241) T 0.31 0.37 0.32 0.39

Carcinogen metabolism

 GSTM1 — Present/null Null/null 0.52 0.53 0.53 0.53

 GSTT1 — Present/null Null/null 0.20 0.19 0.17 0.17

 GSTP1 rs1695 105 A/G G 0.31 0.32 0.32 0.33

 UGT1A7
b rs11692021 208 T/C C 0.34 0.36 0.38 0.37

 SOD2 — 47 C/T T 0.48 0.48 0.48 0.50

Hormone metabolism

 CYP1A1 rs4646903 m1 T/C C 0.14 0.14 0.12 0.13

rs1048943 M2 A/G G 0.06 0.07 0.05 0.06

rs1799814 M4 C/A A 0.03 0.04 0.04 0.05

 CYP1B1
x rs1056836 432 C/G (432) G 0.42 0.41 0.42 0.41

rs1800440 453 A/G (453) G 0.18 0.17 0.21 0.18

 CCK — −45 C/T T 0.14 0.12 0.12 0.12

Inflammation

 TNF-A rs1800629 −308 (−487) G/A A 0.13 0.14 0.14 0.14

 RANTES rs2107538 −403 (−470) G/A A 0.19 0.20 0.17 0.18

 CCR5 — D32 (32-bp del) Del 0.11 0.09 0.13 0.10

Extracellular matrix

 MMP3 — −1171 5A/6A A Ins 0.46 0.48 0.49 0.48
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NOTE: Main gene effects (based on logistic regression models) for XRCC1.399, GSTM1, GSTT1, CYP1A1, TNF-a, RANTES, and CCR5 have 
been previously published 13, 14, 16. For GSTM1 and GSTT1, the frequency reported is for homozygous (null/null) deletion genotypes. UTR, 
untranslated region; del, deletion.

*
308 cases and 964 controls.

c
206 cases and 860 controls.

b
UGT1A7 primers: 5¶-CATTGCGAAGTGCATTTTCT-3¶ and 5¶-GGGTTTGGAGAATTTCAGAGG-3¶. UGT1A7 biotinylated probe 

sequences: 208Trp-5¶-AGGAGAGAGTATTGAACCACA-3¶ and 208Arg-5¶-AGGAGAGAGTACTGAACCACA-3¶.

x
CYP1B1 (Val432Leu) and CYP1B1 (Asn453Ser) primers: 5¶-GTGGTTTTTGTCAACCAGTGG-3¶ and 5¶-

GCCCACTGAAAAAATCATCACTCT- GCTGGTCAGGTGC-3¶. CYP1B1 biotinylated probe sequences: 432Val, 5¶-
TCATGACCCAGGAAGTGGCC-3¶; 432Leu, 5¶-TCATGACCCAGGA- AGTGGCC-3¶; 453Asn, 5¶-GGCCTCATCAGAAGGACCTG-3¶; and 
453Ser, 5¶-GGCCTCATCAGAAGGACCTG-3¶.
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Table 2

Gene interactions identified by multifactor dimensionality reduction and focused interaction testing 

framework in a population-based case-control study in the San Francisco Bay Area, CA (1995–1999)

MDR CVC Testing accuracy* FITF FDR P

All participants
c Accuracy, z0.55 (P < 0.05)

 1 locus XPD.751 5 0.55* XPD.312 0.0015

 2 loci OGG1.326_XPC.PAT 4 0.54 XPD.312_XRCC3.241 0.0018

OGG1.326_XPD.751 3 0.56*

 3 loci XRCC3.241_XPC.PAT_CYP1B1.432 3 0.53 OGG1.326_XPD.156_XPD.751 0.00028
b

OGG1.326_XPC.PAT_XPD.156 2 0.54 XRCC1.399_XPC.PAT_XPD.312 0.00032
b

White or Caucasian 

participants
x Accuracy, z0.56 (P < 0.05)

 1 locus XRCC3.241 5 0.55 XPX.312 0.0042

 2 loci OGG1.326_XPD.751 3 0.55 XPD.312XPA 0.00040
b

OGG1.326_XPC.PAT 2 0.57*

 3 loci XPD.156_XRCC3.241_CYP1B1.453 3 0.56* XPD.312_ERCC1_XRCC3.241 0.00043

XPD.156_XRCC3.241_XPA 2 0.55

NOTE: For cross-validation consistencies less than five, the best multifactor dimensionality reduction models are shown until total cross-validation 
consistencies are five or more. Abbreviations: MDR, multifactor dimensionality reduction; CVC, cross-validation consistency; FITF, focused 
interaction testing framework; FDR, false discovery rate.

*
Multifactor dimensionality reduction model is considered statistically significant (P < 0.05) if testing accuracy is greater than testing accuracy 

cutoff based on 1,000-fold permutation test for up to three-factor interactions.

c
308 cases and 964 controls.

b
Focused interaction testing framework results reported for statistically significant or lowest false discovery rate P value. Statistically significant 

factors using focused interaction testing framework had false discovery rate P values less than the false discovery rate cutoff P value (all 
participants false discovery rate cutoff P values: one-factor P = 0.00037, two-factor P = 0.00019, three-factor P = 0.00034; white or Caucasian 
participants false discovery rate cutoff P values: one-factor P = 0.00037, two-factor P = 0.00075, three-factor P = 0.00028).

x
206 cases and 860 controls.
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Table 3

Gene-smoking interactions identified by multifactor dimensionality reduction and focused interaction testing 

framework in a population-based case-control study in the San Francisco Bay Area, CA (1995–1999)

MDR CVC Testing accuracy* FITF FDR P

All participants
c Accuracy z0.55 (P < 0.05)

 1 factor Smoking 10 0.56* Smoking
b

0.000002
x

 2 factors XPD.751_smoking 7 0.58* XPD.312_XRCC3.241 0.0018

 3 factors OGG1.326_XPD.751 smoking 9 0.60* OGG1.326_XPD.156_XPD.751 0.00028

White or Caucasian 

participants
k Accuracy z0.56 (P < 0.05)

 1 factor Smoking
b 10 0.57* Smoking

b
0.000014

x

 2 factors XRCC3.241_smoking 7 0.58* XPD.312_XPA 0.00040
b

 3 factors OGG1.326XPD.751_smoking 6 0.60* XPD.312_ERCC1_XRCC3.241 0.00043

NOTE: For cross-validation consistencies less than five, the best multifactor dimensionality reduction models are shown until total cross-validation 
consistencies are 5 or more.

*
Multifactor dimensionality reduction model is considered statistically significant (P < 0.05) if testing accuracy is greater than testing accuracy 

cutoff based on 1,000-fold permutation test for up to three-factor interactions.

c
308 cases and 964 controls.

b
Smoking defined as the following three categories: never active or passive smoker; former, passive, pipe, cigars, or less than 41 pack-years; or 

41+ pack-years.

x
Focused interaction testing framework results reported for statistically significant or lowest false discovery rate P value. Statistically significant 

factors using focused interaction testing framework had false discovery rate P values less than the false discovery rate cutoff P value (all 
participants false discovery rate cutoff P values: one-factor P = 0.00036, two-factor P = 0.00018, three-factor P = 0.00024; white or Caucasian 
participants false discovery rate cutoff P values: one-factor P = 0.00036, two-factor P = 0.00072, three-factors P = 0.00025).

k
206 cases and 860 controls.
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Table 4

Logistic regression model of pancreatic cancer risk based on multifactor dimensionality reduction and focused 

interaction testing framework results in a population-based case-control study in the San Francisco Bay Area, 

CA (1995–1999)

Variable All participants [308 cases, 964 controls; 
OR* (95% CI)]

White or Caucasian participants [260 cases, 

860 controls; OR
c
 (95% CI)]

XPD.312*XPA

 Low-risk genotypes (based on MDR) 1.0 (reference) 1.0 (reference)

 High-risk genotypes (based on MDR) 1.6 (1.2–2.1) 1.8 (1.3–2.5)

hOGG1.326*XPC intron 9 poly(AT)

 Low-risk genotypes (based on MDR) 1.0 (reference) 1.0 (reference)

 High-risk genotypes (based on MDR) 1.7 (1.2–2.2) 1.7 (1.2–2.3)

XPD.751

 A/A (Lys/Lys) 1.0 (reference) 1.0 (reference)

 A/C (Lys/Gln) 0.80(0.59–1.1) 0.80 (0.57–1.1)

 C/C (Gln/Gln) 0.59 (0.37–0.94) 0.59 (0.36–0.96)

XRCC3.241

 C/C (Thr/Thr) 1.0 (reference) 1.0 (reference)

 C/T (Thr/Met) 0.61 (0.44–0.83) 0.56 (0.40–0.78)

 T/T (Met/Met) 0.69 (0.45–1.0) 0.63 (0.40–0.98)

Smoking

 Never active or passive 1.0 (reference) 1.0 (reference)

 Former, passive, pipes, cigars 1.3 (0.88–1.9) 1.2 (0.75–1.8)

 Current 2.8 (1.7–4.5) 2.8 (1.7–4.6)

Abbreviation: OR, odds ratio.

*
Adjusted for all factors listed plus age, sex, and race or ethnicity.

c
Adjusted for all factors listed plus age and sex.
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Table 5

Confirmatory logistic regression model of pancreatic cancer risk in a population-based case-control study in 

the San Francisco Bay Area, CA (1995–1999)

Variable All participants [308 cases, 964 controls; 
OR* (95% CI)]

White or Caucasian participants [260 cases, 

860 controls; OR
c
 (95% CI)]

XPD.312*XPA

 G/A+A/A*G/G 1.0 (reference) 1.0 (reference)

 G/G*G/G 0.86 (0.52–1.4) 0.84 (0.49–1.4)

 G/A+A/A*G/A 0.73 (0.47–1.1) 0.78 (0.49–1.2)

 G/G*G/A 1.2 (0.72–2.0) 1.3 (0.77–2.3)

 G/A+A/A*A/A 0.94 (0.47–1.9) 1.1 (0.54–2.2)

 G/G*A/A 1.5 (0.76–2.9) 1.8 (0.88–3.8)

hOGG1.326*XPC intron 9 poly(AT)

 C/G+G/G*PAT+/PAT+ 1.0 (reference) 1.0 (reference)

 C/C*PAT+/PAT+ 2.3 (1.1–4.8) 2.7 (1.2–6.0)

 C/G+G/G*PAT+/PAT− 1.6 (0.83–3.3) 1.8 (0.85–4.0)

   C/C*PAT+/PAT− 1.4 (0.74–2.8) 1.7 (0.82–3.6)

 C/G+G/G*PAT−/PAT− 1.3 (0.64–2.7) 1.8 (0.79–4.0)

 C/C*PAT−/PAT− 2.5 (1.3–4.9) 2.9 (1.41–6.2)

XPD.751

 A/A (Lys/Lys) 1.0 (reference) 1.0 (reference)

 A/C (Lys/Gln) 0.82 (0.55–1.2) 0.80 (0.53–1.2)

 C/C (Gln/Gln) 0.65 (0.37–1.1) 0.67 (0.37–1.2)

XRCC3.241* smoking status

 T/T+T/C*never active or passive 1.0 (reference) 1.0 (reference)

 C/C*never active or passive 2.0 (0.97–14.0) 2.4 (1.1–5.2)

 T/T+T/C*former, passive, pipes, cigars 1.5 (0.85–2.7) 1.5 (0.81–2.7)

 C/C*former, passive, pipes, cigars 2.3 (1.3–4.1) 2.1 (1.1–4.0)

 T/T+T/C* current 3.1 (1.6–6.0) 2.8 (1.4–5.7)

 C/C* current 5.2(2.6–11) 7.0 (3.3–15)

*
Adjusted for all factors listed plus age, sex, and race or ethnicity (34 cases and 48 controls had missing data for one or more variables).

c
Adjusted for all factors listed, plus age and sex (31 cases and 43 controls had missing data for one or more variables).
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