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Abstract
To understand the proximate and ultimate causes that shape acoustic communication in an-

imals, objective characterizations of the vocal repertoire of a given species are critical, as

they provide the foundation for comparative analyses among individuals, populations and

taxa. Progress in this field has been hampered by a lack of standard in methodology, how-

ever. One problem is that researchers may settle on different variables to characterize the

calls, which may impact on the classification of calls. More important, there is no agreement

how to best characterize the overall structure of the repertoire in terms of the amount of gra-

dation within and between call types. Here, we address these challenges by examining 912

calls recorded from wild chacma baboons (Papio ursinus). We extracted 118 acoustic vari-

ables from spectrograms, from which we constructed different sets of acoustic features,

containing 9, 38, and 118 variables; as well 19 factors derived from principal component

analysis. We compared and validated the resulting classifications of k-means and hierarchi-

cal clustering. Datasets with a higher number of acoustic features lead to better clustering

results than datasets with only a few features. The use of factors in the cluster analysis re-

sulted in an extremely poor resolution of emerging call types. Another important finding is

that none of the applied clustering methods gave strong support to a specific cluster solu-

tion. Instead, the cluster analysis revealed that within distinct call types, subtypes may exist.

Because hard clustering methods are not well suited to capture such gradation within call

types, we applied a fuzzy clustering algorithm. We found that this algorithm provides a de-

tailed and quantitative description of the gradation within and between chacma baboon call

types. In conclusion, we suggest that fuzzy clustering should be used in future studies to an-

alyze the graded structure of vocal repertoires. Moreover, the use of factor analyses to re-

duce the number of acoustic variables should be discouraged.
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Introduction
Objective classifications of animal signals are a prerequisite for addressing a broad array of
questions, both at the proximate and ultimate level. Much progress has been made in develop-
ing quantitative methods to objectively characterize single acoustic patterns [1,2]. Less agree-
ment, however, exists on how to objectively characterize the structure of the entirety of a
species, that is, its vocal repertoire. Being able to compare the vocal repertoires of different spe-
cies is crucial to test hypotheses regarding the selective pressures that shape signal repertoires.
For instance, the habitat a species lives in was suggested to influence both the spectral charac-
teristics as well as the overall structure of a repertoire [3–5]. More recently, it was suggested
that increased social complexity gives rise to increased vocal complexity [6,7]. To rigorously
test this assumption, quantitative assessments of vocal complexity are needed. More important,
broader comparative or meta-analyses are hampered because studies from different labs often
lack consistency in the methods used and in the categorization criteria applied.

Many vocal repertoires are characterized by their graded morphology, meaning that the
acoustic structures of vocalizations are not well separated and discrete, but rather form a contin-
uum in the acoustic space [8]. Such graded systems are assumed to have evolved in species with
ready visual access to each other [9] and are common in most mammalian vocal systems. Al-
though graded vocal systems are described in a number of nonhuman primates [10–18], label-
ling whole repertories as being either discrete or graded often represents an oversimplification,
since gradation can occur within and between call types, and call types may vary to different de-
grees [19]. Whereas between-call-type variation might be dependent on the call’s function, with-
in-call-type variation could be linked to an animal’s general affective state [20,21]. Within this
general affective state, similar situations can potentially evoke slightly different forms of excite-
ment or fear, which can then relate to dissimilar acoustic structures within call types [22]. The
importance to differentiate between these different forms of gradation, however, is neglected in
most studies on vocal repertoires.

Whereas historically, vocal repertoires were established by human observers via visual cate-
gorization of spectrograms [14], current approaches largely make use of unsupervised clustering
methods [10] that are based on acoustic features extracted from spectrograms. The selection
and number of these features may have a potentially critical impact on the subsequent analysis.
Thus, the question arises whether a quantitative comparison of repertoires is feasible if reper-
toires are based on different types and numbers of extracted features. In addition, many studies
use factors derived from factor analysis to avoid the use of highly correlating acoustic features
[18,23,24]. In this study, we use a defined dataset of chacma baboon (Papio ursinus) vocaliza-
tions to examine how the choice of extracted acoustic features affects clustering results. The
structure and function of chacma baboon calls are well known [22,25–27], and were partly vali-
dated in playback experiments [28–30]. These previous descriptions of call types allowed us to
externally validate the structure of the chacma baboon’s vocal repertoire.

A second focus of this study was to assess how suited different clustering algorithms are to
describe the fine structure of graded vocal systems. In a recent study, Kershenbaum and col-
leagues tested the performance of different unsupervised clustering-algorithms (k-means, hier-
archical clustering, and an adaptive resonance theory neural network) for grouping dolphin
signature whistles and compared the results with those of human observers [31]. Although all
algorithms performed relatively well in the classification of signature whistles, there are some
inherent shortcomings that all of them share when constructing vocal repertoires—none of
these hard algorithms are able to capture the graded transition of call types that occur in many
vocal repertoires. We compared two commonly used non-overlapping models, center-based
k-means and hierarchical Ward’s clustering, and opposed them to a soft clustering approach,
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fuzzy c-means clustering [32]. Fuzzy set theory has a broad range of applications and has for
instance been used in numerical taxonomy [33] or to cluster ecological data [34]. Despite its
successful application in these fields, it has not yet been used in vocalization taxonomy. Where-
as in k-means andWard’s the existence of a graded separation between call types is not imple-
mented, fuzzy c-means is an algorithm designed to describe systems with not strictly separated
categories. We thus expected that fuzzy c-means would be able to describe the graded structure
of the chacma baboon’s vocal repertoire better than the other methods.

Our overarching goal is to develop recommendations for future analyses of vocal reper-
toires, with the long-term perspective of creating unified and standardized procedures in the
field of bioacoustic research.

Methods

Study site and subjects
In this study, we reanalyzed call recordings that were collected during January 1998 and June
1999 in the Moremi Wildlife Reserve in Botswana. A number of comprehensive studies on the
social behavior as well as on the vocal communication of this population has been published
(see references in [35]).

Recordings and call parameterization
Recordings were taken as part of a number of studies on the monkeys’ vocal communication
[36]. Vocalizations were recorded with a SonyWM TCD-100 DAT recorder and a Sennheiser
directional microphone (K6 power module and ME66 recording head with MZW66 pro wind-
screen) [36]. We assembled a data set comprising of 912 calls, which we selected to capture the
overall diversity of the chacma baboon’s vocalizations. The selected calls were given by 35 adult
females and 34 adult males, as well as 5 infant females and 4 infant males (weaning calls). We
fast Fourier transformed (FFT) the calls into their frequency-time domain with Avisoft (Avisoft
SASLab Pro, version 5.2.05), using a FFT size of 1024 points, Hamming window and 96.87%
overlap. Depending on the frequency range of calls we used a sampling frequency of 5 kHz
(grunts) or 20 kHz (all others), resulting in a frequency range of 2.5 or 10 kHz and a frequency
resolution of 5 or 20 Hz. The time increment was 6.4 or 1.6 milliseconds. The resulting
frequency-time spectra were analyzed with the software LMA 2012 developed by Kurt
Hammerschmidt.

To assess the influence of datasets with varying numbers of acoustic features on the cluster-
ing results, we constructed 4 different sets for the subsequent analyses, all based on the 912
calls in the analysis. The sets include

a) “sparse set”: 9 features, which were used in a previous analysis of the Guinea baboon’ vocal
repertoire and had proven to be instructive [25]

b) “medium set” 38 features, which are an extension of a) including more detailed features in
the frequency- and time domain

c) “full set”: 118 features—the maximum amount of features that can be extracted out of the
FFT using LMA

d) “factors”: 19 features—derived from a factor analysis of the 118 features dataset.

We performed Factor analysis with IBM SPSS Statistics (version 21) using varimax rotation
and factors with an Eigenvalue� 1 were selected. Factor loadings, Eigenvalues, and detailed in-
formation about all acoustic features used are given in S1, S2, S3 and S4 Tables.
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Clustering schemes
To classify the calls, we performed unsupervised clustering using the above mentioned feature
sets. Sets were standardized by z-scoring all of the values and cluster analysis was run within
the Matlab environment (Mathworks; version R2011b). We used different clustering methods
for comparison, which are described in the following sections in more detail. First, hard algo-
rithms (k-means, Ward’s clustering) were used and validated. Second, a soft classification
scheme based on fuzzy set theory [37] was applied to capture more details of the dataset’s
underlying structure.

Hard classification models and clustering validation. Ward’s clustering [38] is a hierar-
chical clustering procedure, that is often used to cluster calls and to analyze vocal repertoires
[31,39–41]. The algorithm works by first linking individual calls to their nearest neighbor and
then merging the pair of clusters with the minimum between-cluster distance at each time step.
This linkage procedure is repeated on these clusters until the top hierarchic level is reached
(single-linkage clustering).

In k-means clustering [42], initial cluster centroids are selected randomly and individual
calls are assigned to the cluster whose mean yields the least within-cluster sum of squares
(WCSS). In iterative steps the new centroids of the clusters are being calculated and the proce-
dure is repeated until the WCSS cannot longer be improved. Since poor initial cluster centroids
can lead to non-optimal solutions by running into local maxima, we executed 100 replications
to ensure that the best cluster solution was revealed. K-means clustering has the advantage that
initially poorly attributed calls are reassigned by the algorithm and is therefore an often used
procedure to classify calls [25,31,43,44]. However, since in several studies the determination of
the optimal number of clusters k showed to be challenging, we here did a further validation of
clustering quality.

To assess which of the feature sets give rise to classifications most robust against changes of
the clustering method, we measured the Normalized Mutual Information [32] between clusters
extracted by two different methods. Normalized mutual information (NMI) is a single metric
that measures how well the results of the two different clustering approaches match. If the clus-
ters extracted by Ward and k-means methods are perfectly overlapping, NMI takes a value of
1. If the resulting clusters have little conformity, NMI takes a positive value close to zero. NMI
is defined as:

NMI ¼

X
k;c
nk;clog

N � nk;c

nk � nc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
nklog

nk

N

� � X
c
nclog

nc

N

� �r

where nc is the number of calls assigned to cluster c by method 1, nk is the number of calls as-
signed to cluster k by method 2, nk, c is the number of calls in cluster c and cluster k, and N is
the total number of calls.

We also used NMI to compare clustering results with a reference classification. Based on
prior studies of the usage, function and meaning of vocalizations, we established six call types,
namely male barks [26]; grunts [27]; weaning calls [25]; female barks [22]; noisy screams [25];
and tonal screams [25]. Representative calls are shown in Fig 1. Based on acoustic and visual
spectrogram evaluation, we assigned each call in the dataset to one of these categories. This
procedure provided a defined human expert reference classification.

The quality of a clustering was also be validated by the analysis of silhouette values. Sil-
houette values range from 1 to -1 and represent the tightness of data points within a cluster
and the separation between different clusters in a given model [45]. Silhouette values are
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computed as following:

SðiÞ ¼ bðiÞ � aðiÞ
max½aðiÞ; bðiÞ�

where a(i) denotes the average Euclidean distance between data point i and other data points
in the cluster A and b(i) denotes the average Euclidian distance between i and points in the
second closest cluster. A silhouette value around zero means that the data point is at similar
distance to two clusters. Positive values show that the data point lies closer to one cluster
than to the second closest one. Negative values indicate a potential misclassification (even if
reassigning a point with a negative silhouette to a different cluster would change as well the
cluster means, resulting in a potentially larger number of negative silhouette scores). The
overall silhouette width S(A) is defined as the average of the S(i) over the whole dataset and is
used as a global measure of the quality of a clustering.

Soft classification model: Fuzzy c-means clustering. Fuzzy set theory [37] extends con-
ventional set theory allowing for the notion of imperfect membership. In this way, it is particu-
larly suited to the classification of data in which the separations between different classes of
data-points is gradual rather than sharp [46]. Each call is associated an assigned membership
value for each of the clusters, ranging from m = 1 (fully displays the properties of the cluster)

Fig 1. Spectrograms of calls in the used dataset. Shown are call types that have been described in the
literature. (A) Male bark [26]. (B) Grunt [27]. (C) Female bark [22]. (D) Noisy scream [25]. (E) Weaning call
[25]. (F) Tonal scream [25].

doi:10.1371/journal.pone.0125785.g001
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and m = 0 (does not display any of the properties of the cluster). Intermediate membership val-
ues 0<mia < 1 mark calls that do not fully belong to one of the clusters, but can be classified
as intermediates between different call types. Membership vectors are normalized in such a

way that
Xc

a¼1
mia ¼ 1.

More specifically, we adopted a fuzzy c-means algorithm [47,48]. To determine the number
of clusters that describe the dataset best, two parameters of the algorithm can be adjusted. The
first parameter is the maximal number of clusters allowed and the second is the fuzziness
parameter μ. If μ = 1, the extracted clusters are very crisp and membership values of data points
are either 1 or 0 (in this limit indeed fuzzy c-means converges exactly to k-means). However,
by increasing μ, clusters become fuzzier and nearby clusters can eventually merge, unlike in k-
means, leading to a smaller number of clusters. We assumed a relatively large possible number
of clusters c = 15 (larger than the number of reasonably detectable clusters).

Similar to k-means, the fuzzy c-means algorithm builds up clusters by creating randomly se-
lected cluster centroids and a subsequent iterative optimization process. In this aspect both
clustering algorithms suffer from the same sensitivity to the initial cluster centroids. Like in k-
means, we computed 100 replications to find the optimal cluster solution with fuzzy c-means.
In contrast to k-means, where objects do either belong or not belong to a cluster, in fuzzy c-

means membership vectorsmðtÞ
i for c clusters are computed at a given iteration t. Cluster cen-

troids are given by vectors uðtþ1Þ
a (α = 1. . .c) with components uðtÞ

al .

1

mðtÞ
ia

¼
Xc

l¼1

dðtÞ
ia

dðtÞ
il

 ! 2
m�1

where dðtÞ
il is the Euclidean distance between the data-point fi and the centroid u

ðtÞ
l at a given

iteration t.
These membership vectors are used in turn to compute a new set of cluster centroids u(t+1)

a with coordinates:

uðtþ1Þ
al ¼

XN

i¼1
ðmðtÞ

ia ÞmfilXN

i¼1
ðmðtÞ

ia Þm

This procedure is designed to minimize a specific cost function [32], namely the sum of the
squared distances of the data-points from the different centroids, weighted by the relative fuzzy
memberships:

Jt ¼
XN
i¼1

Xc

l¼1

ðmðtÞ
il Þm � ðdðtÞ

il Þ2

Once the fuzziness parameter μ is set and the clusters (i.e. call types) have been computed, the
main type α for each call i is the call type with the highest assigned membership component
mia ¼ mi

ð1stÞ. By subtracting the second largest membership componentmi
ð2ndÞ from the first,

we get the typicality coefficient dðiÞ ¼ mi
ð1stÞ �mi

ð2ndÞ for each call. The average �d of all
typicality coefficients and their distribution, quantified by the halved mean absolute deviation
Δ = d - d / 2 were quantified over the entire dataset. Based on the observed distribution of typi-

cality coefficients, calls were then considered as typical if d > dtypical ¼ �d þ D and as atypical if

d < datypical ¼ �d � D.
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Results
The hierarchical clustering trees generated by Ward’s method show similar classifications of
calls for all four sets (Fig 2). However, crucial differences in linkage distances can be found (see
y-axes of the four graphs). In the following, the results are exemplified for the full set. Calls are
first segregated into two clusters. All calls of cluster 1 (n = 124) are characterized by their high
frequency distribution over the entire call and are hereafter denoted as “screams”. In contrast,
all calls of cluster 2 (n = 788) are characterized by a substantially lower overall frequency distri-
bution. Cluster 2 was further divided into two second-order branches. Cluster 2.2 (n = 350), is
characterized by very short and low-frequency calls (grunts). In the next higher order, cluster
2.1 (n = 438), splits into cluster 2.1.1 (n = 97) and cluster 2.1.2 (n = 341). Calls in cluster 2.1.1
are characterized as highly tonal, long and little frequency-modulated (weaning calls), whereas
calls in cluster 2.1.2 are shorter and have a higher change in frequency-modulation (barks). On
the next level, cluster 1 (screams), is split into cluster 1.1 (n = 68) and cluster 1.2 (n = 56). Calls
between these two sub-clusters differ mainly in their signal to noise ratio (STNR), with calls in
cluster 1.1 having a higher average STNR. Further structure was detected by the hierarchical
clustering. However we did not analyze it in further detail, due to the instability of these classi-
fications (as revealed by fuzzy c-means, see below). Since the Euclidean distance is defined as
the square root of the sum of the squared distances per feature, the less features are included in
the analysis, the smaller the average Euclidean distance within a cluster becomes (Fig 2). Al-
though the within-cluster distances are decreasing with decreasing number of acoustic features,
the separation of the first three clusters remains rather distinct (see branch structure of dendro-
grams in Fig 2A–2C). An exception of this pattern is formed by the factorial dataset, which
shows a much worse separation of even a small number of call clusters (Fig 2D).

To compare the clustering quality of the four feature sets, we validated the results of k-
means clustering. For this purpose we calculated silhouette widths for k = 2–20 clusters for all
four datasets (Fig 3). The general trend for all datasets but the one based on factors was that a
2-cluster solution gained a relatively high value in silhouette widths, followed by a drop and a
subsequent stable cluster quality that decreased slowly the more clusters were generated.

Fig 2. UnsupervisedWard’s clustering of 912 chacma baboon calls based on different frequency
dependent and temporal feature setups. The x-axis represents groups of calls, and the y-axis represents
average Euclidian within-cluster linkage distance. (A) Set consisting of 118 features. High-frequency (cluster
1) and low-frequency (cluster 2) were segregated into two first-order clusters. High frequency calls further
subdivide into more tonal (cluster 1.1) and relatively noisier (cluster 1.2) calls. Low frequency calls subdivide
into short and very low-frequency grunt-calls (cluster 2.2), moderate-frequency and harmonic weaning-calls
(cluster 2.1.1), and more noisy, short bark-calls (cluster 2.1.2). (B) Set consisting of 38 features. (C) Set
consisting of 9 features. (D) Set consisting of 19 factors determined by factor analysis.

doi:10.1371/journal.pone.0125785.g002
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Silhouette widths for the 9-feature set were generally higher than for the other datasets and sil-
houette widths for the 19-factor set were generally lower for lower number of cluster solutions.

We then evaluated the large-scale behavior of the four considered curves. Here we found,
for the sets with 38 and 118 features slightly decreasing silhouette widths (for more than two
clusters), for the set with 9 features essentially constant values (for more than two clusters) and
for the set with 19 factors an increase up to 13 clusters that was followed by saturation. For
these reasons, Normalized Mutual Information (NMI) was calculated to further explore the
quality of clustering results. If our two unsupervised methods (k-means andWard’s), operating
on opposite approaches result in a similar classification, this would be a strong indicator for
the robustness of the classification. Classifications extracted by the different methods were
overall highly consistent between both algorithms over a wide range of cluster numbers, with
peak consistencies for all four datasets nearby k = 5 (excluding, as in Fig 3, the too unresolved
k = 2 clustering).

As a final check, since we know from previous studies that the call types of the 5 cluster solu-
tion (screams, barks, weaning calls and grunts) are well described calls in baboon vocalizations,
NMIs between the 5-cluster partition extracted by k-means or Ward’s unsupervised clustering
and the human expert-based reference classification were also calculated (Fig 4). The results
show, that the classifications generally match well. This confirms that the 5-cluster solution
obtained through k-means and Ward’s methods are consistent with the results obtained by
human expert inspection allowed us endorsing the unsupervised methods as valid alternatives
to human inspection when the size of the dataset becomes prohibitively large to be manually
parsed. The increase of NMI from the 9-feature set to the 38-feature set is quite large for both
clustering algorithms, whereas the 118-feature set only gains a small increase in NMI compared
to the 38-feature set. Thus, as a compromise between clustering quality and feature overview,
we decided to work with the 38-feature set for the subsequent analysis. We decided against a
subsequent usage of the 19-factor set, because factors not only showed the worst separation of
clusters (Fig 2), but also because factors are difficult to interpret if feature types are highly
mixed (see discussion and S4 Table).

Fig 3. Comparison between the average silhouette width for K-means clustering for k = 2 to 20
clusters for all 4 feature sets. The 9 feature set (green) shows generally higher silhouette width. For the
2-cluster-solution, all but the set based on factors (yellow) show globally the highest value. Excluding the
2-cluster-solution (not to be retained because of its lack of detail), no solution is markedly superior over all
others, although plateau values of average silhouette width are already obtained for cluster numbers as small
as k = 5 (apart from factor-based clustering).

doi:10.1371/journal.pone.0125785.g003
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Fuzzy c-means clustering
To gain better insight into the graded structure of our dataset, we applied fuzzy c-means clus-
tering. This allowed us to determine the best number of clusters in an alternative to silhouette
widths for different cluster solutions in the aforementioned algorithms. Hereby, we followed
an approach described in [49], where we made use of the fuzziness parameter μ. By starting
with a sufficiently large μ, all calls were grouped indistinctively into one fuzzy class. Decreasing
the fuzziness, high-frequency calls (“screams”) separated then first at μ = 2.38 (Fig 5A and 5C).
At μ = 1.96, a second cluster crystallized, consisting of short and low-frequency calls (“grunts”)
(Fig 5A and 5D). Between μ = 1.565 and 1.515, a third cluster of modulated, short and harsher

Fig 4. Sensitivity of the algorithm performance (normalized mutual information) between the human-
made reference classification and K-means (purple), andWard’s (orange) clustering for the three
feature sets.NMI values have been calculated for k = 5 clusters.

doi:10.1371/journal.pone.0125785.g004

Fig 5. Fuzzy partitions with decreasing fuzziness (μ values) are visualized asmembership matrices.
(A) Number of clusters in dependence on the fuzziness parameter μ. Partitions with more than five clusters
exist only over very narrow ranges of μ values (red). (C-D) membership matrices for the identified clusters:
Rows correspond to different fuzzy clusters and columns to individual calls. Membership values of single
calls to each class are color coded (B). The scream-cluster is the first to emerge (cluster 1, C), followed by
grunts (cluster 2, D). The scream-cluster splits into two clusters and the weaning-cluster emerges (cluster
1–2; cluster 4, E).

doi:10.1371/journal.pone.0125785.g005
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“bark” calls separated and at μ = 1.51, the high-frequency “scream”-cluster split between calls
with a higher and lower signal-to-noise ratio (Fig 5A and 5E). Below μ = 1.44 down to μ = 1
several smaller clusters emerged that were not very stable over μ. Looking at stability (cluster exis-
tence over fuzziness parameter μ), the 2-, 3- and 5-cluster solutions are most robust (Fig 5A).
These results go along with the findings of k-means andWard’s clustering analyses. In Fig 5C–5E
membership values for all calls to the existing clusters are shown for selected values of μ. The re-
maining analyses were performed for the specific classification obtained for μ = 1.505, leading to
5 clusters. The results were very similar to the results of the k-means andWard’s clustering,
which provides as a strong indicator that the obtained classification is very robust.

In Fig 6 a 2-dimensional visualization of how calls are scattered in the membership space is
presented. Each call is represented by the closest and the second closest cluster. For the five
considered calls types we found common boarders between weaning-calls and barks and wean-
ing-calls and grunts. In both cases, highly typical calls can be found along with calls that appear

Fig 6. Pairwise comparisons of cluster segregations. Two-dimensional projections of memberships of
calls belonging to the grunt (red), scream 1 (green), scream 2 (pink), weaning (yellow), and bark (blue)
cluster. Every call is represented once (by closest and second closest cluster). Diagonal lines in the panels
represent identical memberships. Spectrograms represent transitions frommost typical call of cluster A to
most typical call of cluster B with hybrids close to the joint cluster borders. Sound examples can be found in
the supporting information.

doi:10.1371/journal.pone.0125785.g006
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to belong to both clusters. Intermediate calls can also be found between the two scream types
and sparsely between the bark and the scream 1 cluster. Calls in the bark- and grunt-clusters
share common boarders and typical grunts and barks exist. In contrast to the other pairs, no
calls at the very edge to the other cluster can be found and the two clusters remain separated.

To quantitatively describe the graded structure of our dataset, typicality coefficients for each
call were calculated (Fig 7; see Methods). Calls with a typicality larger or smaller than specific
thresholds, related to the halved mean absolute deviation of the typicality distribution, were
considered as typical or atypical, respectively. According to these criteria, the threshold for
atypical calls was calculated at datypical = 0.256 (142 of 912≙ 16% of the calls) and for typical
calls at dtypical = 0.767 (120 of 912 ≙ 13% of the calls). However, the distribution of typical and
atypical calls was not homogeneous across different clusters. Most grunts and the majority of
bark-calls were well-separated from the other call types, as indicated by their large average typi-
cality coefficients (Fig 7). Weaning calls were less detached and the two scream clusters were
highly graded towards their shared borders.

Discussion
We investigated how different feature setups can affect the clustering quality, and compared
the usage of hard and soft clustering methods for the description of a primate vocal repertoire
and. Our efforts provided two key results. Firstly, datasets with a higher number of acoustic fea-
tures led to better clustering results than datasets with only a few features. Secondly, in datasets
with considerable gradation within and between clusters, an optimal number of clusters (call
types) may not exist, no matter which clustering algorithm is applied. Yet, fuzzy clustering al-
lows one to capture and quantify the extent of variation within and between clusters, providing
a potentially fruitful avenue to compare the extent of gradation within and between call types
between taxa.

With regard to the number and types of features in the analysis, we found that a low number
of features resulted in higher silhouette values. This was not necessarily due to a better separa-
tion of the call types, but rather the consequence of a smaller number of acoustic dimensions,
and therefore a higher statistical spread of values. For this reason, the usage of absolute silhou-
ette values to compare datasets with varying number of features does not appear to be

Fig 7. Histogram of typicality coefficients. Sections with different colors indicate calls with different main
type. Grunts and barks are more distinctly separated from other call types than screams and weaning calls.

doi:10.1371/journal.pone.0125785.g007
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appropriate. Indeed, when we compared the human-expert reference classification with the
cluster solution, we found that the matching success increased with an increasing number of
acoustic features. We therefore recommend the usage of a sufficiently large set of features to
capture the different acoustic dimensions. Whereas correlated features can cause problems in
multivariate statistical hypothesis testing due to colinearity, these restrictions do not apply to
clustering procedures. In fact, correlating features can perform badly in classifying call types
when taken on their own, but become well performing classifiers when combined. Since every
feature has independent measurement noise that can hinder its classification performance, two
or more features can share correlating trends but not the stochastic fluctuations around these
trends [50].

We also found that using factors derived from factor analysis resulted in an extremely poor
resolution of emerging call types. In addition to the argument above, that correlating features
can provide a sort of ‘error correction’ for measurement noise, the weak performance of the fac-
tor analysis can be explained by its linear nature, always being based on a matrix decomposition
of the covariance matrix. If the established clusters have non-spherical shapes in high-dimen-
sional feature space it might not be possible to properly separate them by hyperplanes orthogo-
nal to the factors. Thus reducing the dimensionality of the data by projecting them to the linear
space spanned by only a few factors may conceal non-linear correlations in the data-set, which
on the contrary can be exploited for performing clustering by unsupervised algorithms operat-
ing on an even smaller number of the original, not factor-reduced features. For these reasons,
we generally discourage the use of factors in cluster analysis, and recommend caution when
used in acoustic analyses more generally. Factors can be difficult to interpret, especially when
highly divergent feature types load onto the same factors (see S4 Table). In such cases, the usage
of selected features, preferably derived from a good understanding of the sound production
mechanisms [51], is more advisable. If factors are extracted, we recommend inspecting the fac-
tors and factor loadings carefully. If parameters load in an interpretable way onto a few factors
that explain most of the variance of the dataset, then working with factors may be feasible, but it
may also be the case that the construction of apparently meaningful factors results in the loss of
crucial variation that would be helpful to distinguish between calls or call types.

A second important insight is that in datasets with a considerable variation an obvious opti-
mal number of call types may not exist. Although the call types in our analysis were easy to dis-
tinguish, neither k-means nor Ward’s clustering were able to identify an obvious ‘best solution’.
Based on the silhouette coefficients, different cluster solutions appeared to be appropriate to par-
tition the dataset. In this aspect, fuzzy c-means clustering did not facilitate the decision on the
best cluster solution. The finding that none of the applied approaches gave strong support to a
specific cluster solution is somewhat surprising, since the chacma baboon vocal repertoire was
previously described as representing a rather discrete system and call types can be easily catego-
rized by human experts. With fuzzy c-means clustering, the 5-cluster solution was the most sta-
ble solution for k>2, but differences in cluster stability were relatively small. A 5-cluster solution
was also supported by high silhouette values in k-means and the NMI for call classification be-
tween k-means andWard’s also had an average peak at the 5-cluster solution. Overall, there ap-
peared to be a trade-off between stability and acuity in our analysis.

When inspecting silhouette values, researchers should be aware that these values are affected
by a number of factors. Firstly, with increasing number of features, the dimension of the acous-
tic space is increased. This leads to higher dispersion within and between clusters and conse-
quentially to smaller silhouette widths. Secondly, although for this reason silhouette widths
might be high for low feature sets, these sets may miss some crucial acoustic features to sepa-
rate between different call types and therefore the clustering does not represent the true struc-
ture of the vocal system. Thirdly, within one feature set, silhouette widths indicate which
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cluster solutions are qualitatively better than others. Nevertheless, if the highest silhouette
width commends a low number of clusters, this might be mathematically the best solution, but
might not provide sufficient detail to describe a species’ vocal repertoire.

Soft clustering allowed us to capture details of the graded nature of vocal repertoires that
hard methods did not. Since fuzzy memberships directly represent structural differences of calls,
typical and atypical calls within huge datasets can easily be detected and visualized. We propose
that the robustness of cluster solutions over the fuzzy parameter in fuzzy c-means clustering
(Fig 5A) should be used in future studies to compare differences in the gradation of vocal reper-
toires between species on a first level. We further showed that the variation in the level of grada-
tion within and between call types can be visualized and even quantified by calculating typicality
scores for each call. Whereas the visualization presents a good overview of the repertoire struc-
ture, quantification even allows the systematic comparison of the level of gradation between dif-
ferent species’ repertoires.

In sum, although it would be desirable to have completely objective criteria to determine the
optimal number of call types, this may not be possible. Therefore, especially in more graded
datasets, the researcher’s preference to use different features, or to either split or lump data
[52], may also come into play. Transparency with regard to these decisions and awareness of
their consequences is therefore invaluable.

Summary
We conclude that the usage of a high number of acoustic features results in better cluster solu-
tions. The use of factors derived from PCA may result in the loss of critical information and
may lead to extremely poor solutions. We therefore discourage their usage for the construction
of vocal repertoires. We also showed that fuzzy clustering is a powerful tool to describe the
graded structure of a species vocal repertoire. It reveals details of the graded nature of vocal
repertoires that cannot be captured with classical approaches and allows a quantification of
typical and atypical calls. Researchers should be aware of and transparent about the fact that
the outcome of their analysis is affected by several decisions and that the choice of the eventual
cluster solution eventually depends on researcher preferences and research interests. Therefore,
data repositories should be used so that the same methods can be applied to different datasets.
This would greatly enhance the possibilities to compare species’ vocal repertoires within and
across taxa.

Supporting Information
S1 Fig. Call exemplars of typical and hybrid calls. (A) Grunt to bark. (B) Tonal scream to
noisy scream. (C) Weaning call to bark. (D) Weaning call to grunt. (E) Bark to noisy scream.
Colors represent the color code for call types in Figs 6 and 7.
(TIF)

S1 Sound. Grunt to bark.
(WAV)

S2 Sound. Tonal scream to noisy scream.
(WAV)

S3 Sound. Weaning call to bark.
(WAV)

S4 Sound. Weaning call to grunt.
(WAV)
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S5 Sound. Bark to noisy scream.
(WAV)

S1 Table. Descriptions of all 118 acoustic features that were used in the analyses.
(DOCX)

S2 Table. Eigenvalues of first 20 factors. Extraction Method: Principal Component Analysis.
(DOCX)

S3 Table. Scree Plot Eigenvalues of 118 factors.
(DOCX)

S4 Table. Rotated Component Matrix. Extraction Method: Principal Component Analysis;
Rotation Method: Varimax with Kaiser Normalization; Rotation converged in 21 iterations.
(DOCX)
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