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Abstract

The term “matricellular proteins” describes a family of structurally unrelated extracellular 

macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue 

architecture, but are induced following injury and modulate cell:cell and cell:matrix interactions. 

When released to the matrix, matricellular proteins associate with growth factors, cytokines and 

other bioactive effectors and bind to cell surface receptors transducing signaling cascades. 

Matricellular proteins are upregulated in the injured and remodeling heart and play an important 

role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. 

Thrombospondins (TSP)-1, -2 and -4, tenascin-C and –X, secreted protein acidic and rich in 

cysteine (SPARC), osteopontin, periostin and members of the CCN family (including CCN1 and 

CCN2/Connective Tissue Growth Factor) are involved in a variety of cardiac pathophysiologic 

conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated 

myocardial remodeling, myocarditis, diabetic cardiomyopathy and valvular disease. This review 

manuscript discusses the properties and characteristics of the matricellular proteins and presents 

our current knowledge on their role in cardiac adaptation and disease. Understanding the role of 

matricellular proteins in myocardial pathophysiology and identification of the functional domains 

responsible for their actions may lead to design of peptides with therapeutic potential for patients 

with heart disease.

I. INTRODUCTION

The extracellular matrix is a key component of multicellular organisms forming an intricate 

proteinaceous network that fills the extracellular spaces and provides structural support and 

tissue organization (342). In addition to their role in providing mechanical support, the 

extracellular matrix proteins and structures are important regulators and integrators of 

molecular signals, and critically modulate cellular responses (188). Collagen-based matrix is 

a characteristic of all multicellular organisms. Emergence of the vertebrates was associated 

with a marked expansion of the diversity of the extracellular matrices due to appearance of 

new members in existing gene families, increased number of spliced variants and the 

evolution of new glycoproteins such as fibronectin and the tenascins (187), (36). The 

increased complexity of extracellular matrix proteins in vertebrates not only resulted in 

formation of new structural components, such as bones and teeth, but also contributed to the 
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emergence of complex and tightly regulated responses to tissue injury. Most matrix proteins 

in vertebrates are large molecules that include multiple functional domains, capable of 

binding cellular receptors. Cell:matrix interactions mediate adhesion, but also transduce 

signals that modulate cell survival, proliferation, differentiation, phenotype and function. 

Many matrix proteins bind growth factors regulating their availability, activation and 

presentation to cells. Matrix-bound growth factors may be released following tissue injury or 

may act as solid-phase ligands. Moreover, matrix fragments generated following injury may 

directly bind growth factor receptors and activate signaling cascades. In the complex 

environment of vertebrate tissues, the versatility of cell:matrix interactions permits 

generation of tightly regulated adaptive and reparative responses, linking modulation of the 

cellular phenotype with alterations in matrix proteins that serve as sensors of the 

extracellular milieu.

A. The fundamental properties of the matricellular proteins

Paul Bornstein coined the term “matricellular proteins” to describe a family of structurally 

unrelated extracellular macromolecules that interact with cell surface receptors, growth 

factors, proteases and other bioactive effectors, as well as with structural matrix proteins, 

without subserving a direct structural role (45), (46). Thus, matricellular proteins play a 

limited role in tissue architecture, but serve as links between cells and the matrix, acting as 

dynamic integrators of microenvironmental signals that modulate cellular behavior in 

response to external stimuli. Identification of this subclass of secreted proteins highlighted 

the dynamic reciprocal relation between cells and matrix, emphasizing that altered 

composition of the matrix network directly modulates cellular phenotype. The “founding 

members” of the matricellular family were thrombospondin (TSP)-1, SPARC (secreted 

protein acidic and rich in cysteine), and tenascin-C; however the rapid expansion in our 

understanding of cell:matrix interactions resulted in inclusion of several additional proteins, 

such as TSP-2 and -4, tenascin-X, osteopontin (OPN), periostin, and the members of the 

CCN family (Table 1). Matricellular proteins exhibit remarkable functional complexity in 

vivo, reflecting the contextual nature of their effects that depend on the various structural 

proteins, cytokines, and growth factors they associate with, and the cell types with which 

they interact in different tissues. Although matricellular proteins have distinct functional 

properties, several general characteristics have been identified (Table 1):

a. matricellular proteins bind to various structural extracellular matrix proteins and to 

cell surface receptors, while associating with cytokines, growth factors and 

proteases. These interactions allow them to serve as key integrators of signaling 

cascades.

b. in contrast to the adhesivity of most extracellular matrix proteins, matricellular 

proteins often promote cellular “de-adhesion” (304), promoting an intermediate 

adhesive state that activates survival signals, and inducing expression of genes 

associated with adaptation and repair.

c. expression of matricellular proteins is generally low in normal adult tissues, but is 

upregulated during development and in response to injury.
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d. because most matricellular proteins are not involved in tissue homeostasis, mice 

with targeted disruption in matricellular genes have only subtle abnormalities in the 

absence of injury. In contrast, loss of matricellular proteins is associated with a 

wide range of alterations in injured and remodeling tissues.

B. Matricellular proteins in the heart

Most matricellular proteins are minimally expressed in normal young adult hearts, but are 

markedly upregulated following cardiac injury. A growing body of evidence suggests an 

important role for several members of the matricellular family in a variety of cardiac 

pathophysiologic conditions (392), (73), (120), (393), (167), (339); these actions are 

mediated through effects on cardiomyocytes and interstitial cells and through modulation of 

matrix organization and metabolism. The cardiac muscle is uniquely susceptible to injurious 

processes triggered by ischemia, inflammation, pressure or volume overload. Because the 

heart has negligible regenerative capacity, extensive cardiomyocyte loss following infarction 

results in formation of a collagen-based scar that provides structural support to the ventricle 

while altering its mechanical properties. Matricellular proteins induced in the infarcted heart 

appear to serve as transducers of key molecular signals in cardiac repair and act as 

modulators of cell migration, proliferation and adhesion. In the pressure-overloaded 

myocardium matricellular proteins deposited in the interstitium may modulate cytokine and 

growth factor signaling, affecting the susceptibility of cardiomyocytes to apoptosis and 

hypertrophic growth, regulating matrix assembly and metabolism and modulating the 

fibrogenic potential of inflammatory cells and fibroblasts. During cardiac senescence, 

upregulation of certain members of the matricellular family may play a role in preservation 

of the structural integrity of the heart, while other matricellular proteins may be involved in 

the pathogenesis of age-associated fibrosis. Because cardiac function and geometry are 

intricately dependent on the interactions between myocardial cells and the matrix, the effects 

of matricellular proteins in cardiac pathophysiology have profound consequences on systolic 

and diastolic performance of the ventricle. Considering the rapid growth in understanding 

the involvement of matricellular proteins in cardiac adaptation and disease, the current 

manuscript will try to fulfill several goals: First, to review the extensive and rapidly growing 

literature on the role of members of the matricellular family in cardiac pathophysiology. 

Second, to identify specific cellular events and molecular pathways modulated by the 

matricellular proteins in the infarcted and remodeling heart. Third, to provide a clinically 

relevant conceptual paradigm on the role of the non-structural components of the matrix 

network in myocardial disease.

II. CELL:MATRIX INTERACTIONS IN CARDIAC ADAPTATION AND DISEASE

A. Cell:matrix interactions in the normal heart

The mammalian heart is comprised of cardiomyocytes, non-cardiomyocytes and an 

extensive network of extracellular matrix (Figure 1). Although cardiac myocytes constitute 

the bulk of the volume of the adult cardiac muscle, non-cardiomyocytes are more numerous 

than myocytes in the heart. Based on morphological criteria only 30% of the cells in the 

adult rat heart were identified as cardiac myocytes, the remaining 70% were non-

cardiomyocytes (313). Endothelial cells, fibroblasts and pericytes are abundant in the 
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myocardium, smaller numbers of macrophages and mast cells are also noted in the 

perivascular and interstitial space (160). The cellular elements are enmeshed in a complex 

network of extracellular matrix (33) that is primarily composed of type I collagen with 

smaller amounts of type III, type V collagen, fibronectin, proteoglycans and basement 

membrane components (such as laminin and type IV collagen). In the normal heart the 

matrix not only serves as a scaffold for muscle fibers and vessels, but also plays an 

important role in transducing cell survival signals, in shielding fibroblasts from mechanical 

stress promoting a quiescent phenotype and in maintaining normal chamber geometry and 

ventricular function (37), (453). The homeostatic effects of the matrix on myocardial cells 

are mediated through interactions between matrix proteins and cellular receptors (such as 

dystroglycans and integrins); these actions are required for contractile synchrony and 

cardiomyocyte function.

B. The concept of cardiac remodeling

In biology, “remodeling” describes alterations that result in rearrangement of existing 

structures (437). Although tissue remodeling is not necessarily linked with pathological 

conditions, the term “cardiac remodeling” is used almost exclusively to describe the 

consequences of disease states on the myocardium. Although initially coined to define the 

geometric and structural alterations of the myocardium following infarction (366), (348), 

cardiac remodeling is widely used to describe changes occurring in a wide variety of cardiac 

conditions. Thus, pressure (438) and volume overload, various inherited cardiomyopathic 

conditions, metabolic disease (2), toxic insults are capable of inducing remodeling of the 

ventricle. Although in all cases the extent of geometric remodeling is a determinant of 

adverse prognosis, the characteristics of the alterations observed in the ventricle are 

dependent on the initial cause of injury.

C. Cell:matrix interactions in post-infarction remodeling

The most dramatic changes in the composition of the cardiac extracellular matrix occur in 

the setting of acute myocardial infarction. The dynamic alterations in composition of the 

matrix in the infarcted heart are critical determinants of outcome. Excessive early 

degradation of the cardiac matrix network and defective or delayed formation of newly-

synthesized matrix proteins may play an important role in the pathogenesis of cardiac 

rupture, a dramatic and fatal complication of acute myocardial infarction. In the later stages 

of healing, defects in extracellular matrix composition alter the mechanical properties of the 

heart resulting in enhanced ventricular dilation and increased sphericity of the ventricle. 

These geometric changes, termed post-infarction remodeling, are associated with increased 

mortality and a higher incidence of arrhythmias, and are intertwined with the development 

of chronic heart failure (341).

Infarct healing can be divided in three distinct, but overlapping phases: the inflammatory 

phase, the proliferative phase, and the maturation phase (141). Dying cells release 

subcellular constituents that activate the complement cascade while matrix fragments 

activate Toll-like receptor (TLR) signaling and tissue ischemia generates reactive oxygen 

species in the infarcted myocardium. These pathways activate Nuclear Factor (NF)-κB-

dependent cytokine and chemokine upregulation (146), (61), (121) in resident myocardial 
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cells triggering the inflammatory cascade (142), (60). Abundant inflammatory leukocytes 

infiltrate the infarcted area. Macrophages phagocytose dead cells and matrix debris, and 

produce growth factors, inducing fibroblast migration, proliferation, and activation. During 

the proliferative phase of healing, repression of pro-inflammatory signals is noted, as 

fibroblasts undergo phenotypic modulation and produce large amounts of extracellular 

matrix proteins (147), (483), (99). At the same time there is active angiogenesis and an 

extensive vascular network evolves. Maturation of the scar follows: inflammatory cells, 

fibroblasts and vascular cells undergo apoptosis and a collagen-based scar is formed. During 

all phases of infarct healing, the composition of the extracellular matrix plays a critical role 

in regulating cell behavior (120).

The extracellular matrix in the healing infarct undergoes dynamic changes that dramatically 

alter the microenvironment. During the inflammatory phase early activation of latent 

collagenases induces degradation of matrix proteins in the infarcted heart. Matrix 

metalloproteinase (MMP) activation is noted in the cardiac interstitium within 10 minutes 

after coronary occlusion (129). After the latent pool of collagenases has been depleted, new 

synthesis of MMPs promotes collagenolytic activity in the infarcted area (99). Collagenases 

cleave collagens at unique sites generating fragments.. Collagen fragments are further 

degraded into amino acids and oligopeptides by the gelatinases MMP-2 and MMP-9 (467) 

and by serine proteases (423), (98), (11). Fragmentation of extracellular matrix constituents 

during the early stages following infarction is not limited to fibrillar collagen; 

glycosaminoglycans, such as hyaluronan, may also undergo degradation leading to 

generation of low molecular weight fragments with pro-inflammatory properties (118), 

(185). As the original cardiac matrix network is degraded, a fibrin-based provisional matrix 

is formed (145), (118). Extravasation of plasma proteins through the hyperpermeable 

vasculature results in generation of a complex and dynamic matrix network based on fibrin 

and plasma fibronectin. In addition to its hemostatic role, the plasma-derived provisional 

matrix promotes leukocyte infiltration and supports migration and proliferation of 

mesenchymal cells facilitating the reparative response. Migrating cells use integrin receptors 

to interact with the extracellular matrix molecules, which also provide signals that modulate 

cellular phenotype and gene expression (103). Subsequently, the initial plasma-derived 

provisional matrix is lysed by proteolytic enzymes produced by granulation tissue cells and 

is quickly replaced by an organized cell-derived “second order” provisional matrix 

containing cellular fibronectin and hyaluronan (479). During this highly dynamic phase of 

cardiac repair, matricellular proteins are released into the infarct and activate signaling 

pathways essential for the reparative process. As the wound matures, matricellular proteins 

are degraded and the deposited collagen is cross-linked, leading to formation of a stable 

scar.

D. Cardiac hypertrophy and fibrosis

While cardiac growth occurs primarily through cardiomyocyte proliferation during 

embryonic development, after birth, cardiac myocytes are resistant to cell cycle reentry 

(412). Cardiac growth continues during the postnatal period and is mediated through 

hypertrophy of individual cardiomyocytes; a three-fold increase in the diameter of cardiac 

myocytes is noted in humans during development from infants to adults (184). Postnatal 
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cardiac growth and the hypertrophy observed in athletes as a response to exercise are 

physiological responses, associated with normal cardiac structure and function. In contrast, 

the hypertrophic response caused by an increased mechanical load is maladaptive and is 

associated with increased morbidity and mortality due to heart failure. Although initially 

cardiac hypertrophy serves to sustain cardiac output and normalize the increased wall stress 

in the presence of an external load, a persistent hypertrophic response ultimately evolves 

into cardiac dysfunction as the hypertrophied ventricle dilates. Several excellent reviews 

have discussed the signaling pathways regulating the maladaptive alterations in 

cardiomyocytes in the hypertrophied heart (297), (152), (276).

Although often neglected in studies of cardiac hypertrophy, non-cardiomyocytes and the 

matrix network play an important role in the pathogenesis of cardiac dysfunction in the 

chronically overloaded ventricle (478). Fibroblasts respond to alterations in mechanical 

loading by enhancing their matrix-synthetic capacity and by transdifferentiating into 

myofibroblasts, activated cells that express contractile proteins (157). Thus, the development 

of fibrosis is a hallmark of cardiac hypertrophy and heart failure and a major determinant of 

cardiac function. In animal models fibrotic remodeling of the cardiac interstitium is 

accompanied by increased stiffness and diastolic dysfunction. In contrast, degradation of the 

collagen fibers in the endomysium and perimysium is associated with impaired systolic 

function and chamber dilation. Three distinct mechanisms are responsible for 

hypocontractility upon disruption of the myocardial collagen network. First, loss of critical 

matrix-cardiomyocyte interactions may result in decreased survival and impaired contractile 

function of cardiomyocytes. Second, the sliding displacement (“slippage”) observed after 

loss of the collagen scaffold results in a decrease in the number of cardiomyocyte layers in 

the ventricular wall leading to dilation of the chamber. Third, a degraded collagen network 

disrupts the coordinated contraction of cardiomyocytes (37). The balance between matrix-

preserving and matrix-degrading pathways, regulated by MMPs and their inhibitors, plays 

an essential role in the structural characteristics of the matrix and profoundly affects cardiac 

function.

E. Aging-related cardiac remodeling

Aging is associated with an increase in the prevalence of left ventricular hypertrophy 

accompanied by a decline in diastolic function (108), (84). Both vascular and myocardial 

alterations are implicated in the pathogenesis of cardiac dysfunction in aging subjects. Age-

associated remodeling of the vascular wall results in luminal dilation and vascular stiffening 

increasing vascular load and contributing to the development of cardiac hypertrophy. On the 

other hand, senescence also directly influences cardiac structure. Increased cardiomyocyte 

necrosis and apoptosis is noted in senescent rat hearts (14), (88) while surviving 

cardiomyocytes undergo hypertrophy. Beyond its effects on cardiomyocytes, aging also 

affects the phenotype and function of cardiac fibroblasts leading to expansion of the 

myocardial interstitial space. Deposition and cross-linking of extracellular matrix proteins in 

the cardiac interstitium play an important role in the pathogenesis of diastolic heart failure in 

aging hearts. TGF-β appears to be implicated in the pathogenesis of fibrotic cardiomyopathy 

in aging subjects. Loss of one TGF-β1 allele in TGF-β1 heterozygous mice reduces age-

associated myocardial fibrosis and improves left ventricular compliance (58).
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F. Obesity and diabetes as causes of cardiac remodeling

Metabolic diseases, such as obesity and diabetes are also associated with cardiac remodeling 

(2), (17). Cardiac hypertrophy and fibrosis are often observed in animal models of diabetes 

and obesity (2), (17), (449) and may be responsible for the development of diastolic 

dysfunction in obese diabetic patients. Because of the pathophysiologic heterogeneity of 

obesity and diabetes and the common co-existence with other conditions that may 

profoundly affect cardiac morphology and function (such as hypertension and ischemic heart 

disease), dissection of the contribution of metabolic disease in remodeling of the heart is 

challenging.

III. THE MATRICELLULAR PROTEINS. KEY MODULATORS OF CELL:CELL 

and CELL:MATRIX INTERACTIONS IN CARDIAC ADAPTATION AND 

DISEASE

A. The thrombospondins

1. Structure—In vertebrates the five known TSPs are divided in two subgroups according 

to their oligomerization status and molecular architecture (Figure 2). TSP-1 and -2 (group 

A) form trimers, whereas TSP-3, -4 and -5 (group B) are assembled as pentameric proteins 

(6), (68). The carboxyterminal regions of the TSP subunits are highly conserved: all TSPs 

contain a variable number of EGF-like repeats (type 2) that are contiguous with seven TSP 

type 3 repeats and a globular C-terminal region (CTD). The aminoterminal regions are more 

varied between individual TSPs. Group A TSPs contain a globular N-terminal domain 

(NTD), a coiled-coil oligomerization region, and a pro-collagen (or von Willebrand factor) 

homology domain (vWF-C). A distinctive characteristic of group A TSPs is the presence of 

three properdin-like repeats, the so-called type 1 domains (thrombospondin repeats, TSRs). 

Type 1 domains in TSP-1 and -2 have important functions in mediating inhibition of 

angiogenesis and in supporting cell attachment. In contrast, the pentameric thrombospondins 

(TSP -3, -4 and -5) lack the procollagen homology domain and the type 1 repeats, and 

contain four (instead of three) copies of the type 2 repeat. Extensive evidence is available on 

the expression patterns of TSP-1 and -2 in vitro and in vivo; in contrast, information on 

pentameric TSPs remains limited.

2. Expression, synthesis and degradation of the TSPs—Each TSP exhibits a 

distinct pattern of expression in developing and adult tissues (5). In the developing mouse 

TSP-1 is the predominant from embryonic days 10–13 and is transiently expressed in the 

neural tube, head mesenchyme and in the cardiac cushions (195). Persistently high levels of 

TSP-1 expression are observed in megacaryocytes. In contrast, TSP-2 expression is 

primarily confined to the connective tissue of many organs and peaks after TSP-1 levels 

have decreased. Distribution of the pentameric TSPs in embryonic tissues seems to be more 

limited: TSP-3 expression is restricted to the brain, cartilage and lung (195), whereas TSP-4 

is expressed in the nervous system (15), cornea and skeletal muscle (5) and TSP-5 is 

confined to the articular cartilage (5). As prototypical matricellular proteins, TSPs are 

expressed at low levels in most adult tissues and are not part of the normal extracellular 
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matrix; however, marked upregulation of TSP expression has been observed in response to 

injury.

TSP-1 is a major constituent of platelet α-granules, but can also be synthesized by many 

other cell types including endothelial cells, vascular smooth muscle cells, fibroblasts, 

keratinocytes and macrophages (356). In vitro, TSP-1 expression is highest in proliferating 

cells and is upregulated by stimulation with growth factors, such as TGF-β1 (315), Platelet 

Derived Growth Factor (PDGF) and Fibroblast Growth Factor (FGF)-2 (186) and by 

angiotensin II (314). In contrast, the pro-inflammatory cytokines Tumor Necrosis Factor 

(TNF)-α and Interleukin (IL)-1β suppress TSP-1 synthesis (298). In vivo, intense 

upregulation of TSP-1 message and protein is observed following tissue injury (241). In 

human cutaneous wounds, TSP-1 expression is markedly increased at the wound margins 

(357). Degranulation of α-granules from platelets and new expression by macrophages and 

vascular cells are the main sources of TSP-1 in wound healing (241), (357), (116). TSP-2 

and TSP-4 are also upregulated in healing and remodeling tissues (241), (311).

TSP upregulation following injury is transient. After an early peak, TSP synthesis in healing 

tissues is suppressed and the protein may be degraded. TSP-1 is cleaved by cathepsins, 

leukocyte elastases, plasmin and by ADAMTS1 (a disintegrin and metalloproteinase with 

thrombospondin motifs-1) (194). While cleavage by elastase and plasmin results in TSP-1 

degradation, other enzymes release specific fragments with distinct properties (194). 

Information on the in vivo role of these interactions in modulating and diversifying the 

effects of TSP-1 is lacking.

3. Molecular interactions of the TSPs—As typical matricellular proteins, TSPs bind to 

structural components of the matrix network (including matrix proteins and proteoglycans) 

(446), interact with cytokines, growth factors and proteases in the microenvironment, and 

modulate cellular phenotype through activation of specific receptors. The ability of TSPs to 

interact with collagen and the binding sequences are conserved in most members of the 

family, involving interactions with the TSP C-terminal domain. (370), (320), (36). TSP-1 is 

known to bind type V collagen (303) and fibrinogen (258), accelerating formation of fibrin 

fibrils (27). In addition, TSP-1 may be incorporated into the matrix through interactions with 

fibronectin (258). TSPs are known to bind a large number of calcium ions; these interactions 

induce conformational changes in the type 3 repeats of the TSP molecule modulating its 

sensitivity to proteolysis and its cell attachment activity. TSPs (in particular TSP-1) also 

interact with a variety of cytokines, growth factors and proteases modulating activity of their 

binding partner. Thus, TSP-1 binding reduces the catalytic activity of thrombin, cathepsin G 

and plasmin. Moreover, both TSP-1 and-2 bind to MMP-2, inhibiting its activity (34). The 

interaction between TSP-1 and TGF-β1 is particularly important in vivo and plays a crucial 

role in TGF-β activation (discussed in more detail in the next section).

Secreted TSPs alter cellular phenotype through binding to many different ligands, including 

adhesion proteins and surface receptors. Specific interactions between various functional 

domains of the TSP-1 molecule and specific receptors have been characterized (80); 

however, the pathways involved in cellular signaling through other TSPs are less well 

understood. Many biological actions of TSP-1 are mediated through CD36, a major 
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scavenger receptor that binds and internalizes oxidized LDL and fatty acids, but also acts as 

an adhesive molecule. Extensive evidence suggests that CD36 on the surface of platelets, 

monocytes and endothelial cells serves as a TSP-1 receptor (80). The interaction with CD36 

has been implicated as a key molecular pathway mediating plasmin-induced activation of 

TGF-β1 in rat alveolar macrophages (499), as an important mechanism in macrophage 

uptake of apoptotic cells (387), (388) and as a crucial mediator in the angiostatic effects of 

TSP-1. TSP-2 also mediates its angiostatic effects through CD36 (415).

TSPs also signal through binding to integrins. Interactions with β3 (αvβ3 and αIIbβ3), and 

β1 integrins (α3β1, α4β1, α5β1) appear to mediate several effects of TSP-1. β3 integrins are 

implicated in TSP-1-mediated accentuation of growth factor responses in smooth muscle 

cells (510) and in binding of TSP-1 to the platelet surface (251). β1 integrins mediate the 

antimigratory effects of type 1 repeats in endothelial cells (413) and may be implicated in 

the angiostatic actions of TSP-1. Both β3 and β1 interactions may be involved in TSP-1-

mediated effects on the inflammatory response. Although evidence on interactions of other 

TSPs with integrins is scarce, TSP-5/integrin-mediated actions have been implicated in 

supporting chondrocyte attachment (79). In addition to these pathways, TSP-1 also signals 

through binding to CD47/Integrin-associated protein (IAP). Extensive evidence suggests 

that TSP-1/CD47 interactions affect integrin activity in a variety of cell types, modulating 

their adhesive potential (80).

4. Cellular effects of the TSPs—Most of the evidence on the cellular actions of the 

TSPs refers to TSP-1, the first member of the TSP family to be identified. Studies on the cell 

biological effects of TSP-1 have revealed a wide range of cell-specific actions; the focus of 

this discussion will be limited to effects with an established role in mediating in vivo 

functions of the molecule.

i. Effects of TSPs on cell adhesion and motility: The process of cell adhesion to the matrix 

consists of three phases: attachment (weak adhesion), spreading (intermediate adhesion) and 

formation of focal adhesions and stress fibers (strong adhesion) (Figure 3) (304). During 

attachment, cellular integrins interact with their corresponding matrix ligands. The initial 

cell:matrix interactions increase the cell surface contact area with the extracellular matrix 

and result in cell spreading and formation of actin microfilaments (intermediate adhesion). 

In the presence of appropriate matrix-derived signals, the state of “intermediate adhesion” is 

followed by organization of the cellular cytoskeleton and formation of focal adhesions and 

stress fibers (strong adhesion). The reverse sequence of cellular events, where cells 

transition from a state of strong adhesion to weaker adhesive interactions, may be highly 

relevant in cytokinesis and in tissue remodeling. TSP-1 and other matricellular proteins 

(including SPARC and tenascin-C) stimulate the loss of focal adhesions and stress fibers in 

endothelial cells, fibroblasts and smooth muscle cells, inducing the intermediate adhesive 

state, a process termed “de-adhesion” (305), (304). De-adhesion occurs primarily through 

rapid disassembly of focal adhesions. The de-adhesive properties of TSP-1 may be 

important in cell motility.

ii. Proliferation and apoptosis: TSP-1 modulates cell proliferation and apoptosis in a cell 

type-specific manner. TSP-1 enhances growth factor-mediated proliferation in vascular 
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smooth muscle cells (277) and induces clonal expansion of T cells (459). The pro-apoptotic 

effects of TSP-1 on endothelial cells are particularly important in mediating its angiostatic 

actions (209). TSP-1-induced endothelial apoptosis is dependent on CD36 and involves 

MAPK and caspase-3-dependent pathways. The pro-apoptotic actions of TSP-1 may be 

specific to endothelial cells; TSP-1/CD36 activation does not induce apoptosis in 

macrophages (484).

5. In vivo functions of the TSPs—The diverse and sometimes contradictory in vitro 

effects of the TSPs reported in the literature can be explained by their multiple functional 

domains, by the extensive repertoire of their cellular and molecular effects and by the 

contextual nature of their functions. The biological significance of some of these effects in 

vivo remains unclear. The generation and characterization of TSP null mice provided 

extensive information on the functional role of these intriguing molecules in tissue 

homeostasis and in various disease states. The relatively subtle abnormalities observed in 

mouse gene knockout studies clearly demonstrated that none of the TSPs is essential for 

survival (252), (243), (352), (153). However, the defective and altered responses exhibited 

by various TSP knockouts after injury revealed significant pathophysiological functions of 

the TSPs in many organ systems.

i. TSP-1 activates TGF-β: Activation of TGF-β is a crucial event in inflammatory, 

reparative and fibrotic processes (62), (119), (38). TGF-β is secreted as a complex, 

containing the C-terminal mature TGF-β and LAP. (226). Upon secretion it is covalently 

bound to one of the four Latent TGF-β binding proteins (LTBPs) forming the large latent 

complex. LTBP is covalently associated with the extracellular matrix and contributes to 

localization of the complex in specific areas. After proteolytic cleavage of TGF-β from its 

propeptide, the LAP propeptide dimer remains associated with the TGF-β dimer by 

noncovalent interactions forming the small latent complex. The LAP:TGF-β interaction 

inhibits TGF-β bioactivity. Thus, in order for bioactive TGF-β to be released, several 

sequential events need to occur (13):

Step 1) The large latent complex needs to be assembled and localized in the 

extracellular matrix. This requires formation of a covalent link between 

LTBP and the matrix that is mediated by tissue Transglutaminase (tTG).

Step 2) TGF-β needs to be proteolytically cleaved and separated from LAP. This 

step involves processing of the proTGF-β complex by a plasma membrane 

bound furin, or another extracellular protease, such as plasmin (273). Once 

processing has occurred the complex is competent and can be activated.

Step 3) Active TGF-β needs to be released from the activation competent 

LAP:TGF-β complex.

TSP-1 appears to play a key role in TGF-β activation through a cell and protease-

independent mechanism (Figure 4A) (309), (402); in contrast the other TSPs do not activate 

TGF-β. The mechanism of activation involves direct binding of TSP-1 to the sequence 

LSKL in the LAP; this interaction alters the conformation of TGF-β making it accessible to 
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its receptor (308). The second TSR and the RFK sequence of the TSP-1 molecule have been 

reported to be essential (504) for TGF-β activation.

The phenotype of TSP-1 null mice demonstrated the in vivo significance of TSP-1 actions in 

TGF-β activation. TSP-1 −/− mice exhibit inflammatory changes in the lung and pancreas 

showing some of the histological features of the TGF-β1 null animals, albeit in much milder 

form (252). TSP-1 −/− pups treated with KRFK, a TSP-1-derived peptide that activates 

TGF-β1, demonstrated a partial reversion of the lung and pancreatic abnormalities toward 

wild type (104). These findings indicated that one of the main functions of TSP-1 is 

activation of TGF-β in the pulmonary epithelium. In the absence of TSP-1, impaired TGF-β 

activation results in an accentuated immune response leading to infiltration of the lung 

parenchyma with inflammatory leukocytes. The significance of TSP-1-mediated TGF-β 

activation has been further supported by findings in a wide range of biological processes 

including tissue repair, fibrosis and neoplasia (446).

ii. The angiostatic actions of the TSPs: Both TSP-1 and TSP-2 are potent inhibitors of 

angiogenesis (Figure 4B) (168), (468). The generation of knockout mice demonstrated that 

neither TSP-1 nor TSP-2 has a major impact on vascular development. Modest increases in 

capillary density have been reported in some tissues of TSP-1 null animals (278), whereas 

TSP-2 absence is associated with a twofold increase in vascular density in the dermis and 

adipose tissue (243). Despite the relatively subtle effects of the TSPs on embryonic vascular 

development; extensive evidence implicates both group A TSPs in regulation of 

angiogenesis in healing wounds, in ischemic tissues and in tumors. Excisional cutaneous 

wounds in TSP-2 null mice exhibit accelerated healing associated with formation of 

hypervascular granulation tissue (242). Moreover, platelet-derived TSPs appear to mediate 

angiostatic actions in the ischemic hindlimb (228). Somewhat surprisingly, TSP-1 null 

animals had delayed healing of excisional wounds in the absence of altered vascular content; 

the findings may reflect the more complex biology of TSP-1 that also serves as a TGF-β 

activator (7). TSP-1, or TSP-2, overexpression suppresses vascular density in tumors (432), 

(433) and in healing tissues (434). CD36 is critically involved in TSP-1 and TSP-2-mediated 

angioinhibition. Antibodies to CD36 block the inhibitory effects of TSP-1 on endothelial 

cell migration (109) and both TSP-1 and TSP-2 inhibit bFGF-mediated angiogenesis in 

wildtype, but not in CD36 null mice (209), (415).

iii. Modulation of NO signaling: Isenberg and co-workers identified TSP-1 as a potent 

inhibitor of angiogenic endothelial responses to NO (200). Attenuation of NO/cGMP 

signaling by TSP-1 is not limited to endothelial cells; TSP-1 potently inhibits NO responses 

in vascular smooth muscle cells (202) and platelets (201). CD47, but not CD36, is required 

for the inhibitory effects of TSP-1 on the NO/cGMP pathway (199). Although TSP-2 and 

TSP-4 appear to exert weak inhibitory actions on NO-stimulated cGMP synthesis in 

vascular cells (196), potent antagonism of NO signaling is restricted to TSP-1. Because NO 

plays an important role in a wide range of pathophysiologic responses including, 

cardiovascular disease and cancer, the effects of TSP-1 on NO signaling may have 

significant clinical relevance (197).
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iv. Regulation of protease activity: TSPs may stabilize the extracellular matrix in 

remodeling tissues through protease inhibition. TSP-1 is capable of inhibiting a broad 

spectrum of proteases including plasmin, urokinase plasminogen activator (uPA), neutrophil 

elastases and MMPs (367), (180). TSP-1 and TSP-2 bind to the gelatinases MMP-2 and 

MMP-9. TSP-1 inhibits MMP-3-dependent activation of pro-MMP-9 and thrombin-induced 

activation of pro-MMP2 through interactions involving the type 1 repeats (Figure 4C) (34). 

TSP-1-mediated regulation of MMP activity may contribute to its angiostatic and tumor 

inhibitory properties (367), (446) Beyond its direct effects on MMP activity, TSP-1 may 

modulate protease activity in vivo through its TGF-β-activating properties. TSP-2 absence is 

associated with enhanced MMP-2 expression in fibroblasts (497) and gelatinase activity is 

increased in TSP-2 null cells and tissues (233). In injury models TSP-2 deficiency is 

associated with enhanced MMP-2 and/or MMP-9 expression (233).

v. Effects of the TSPs on the inflammatory response: Group A TSPs play a role in 

controlling inflammation through several distinct pathways. First, TSP-1/CD47 pathways 

have been implicated in generation of regulatory T cells (169). In vivo, TSP-1, TSP-2 and 

CD47 null mice exhibit sustained oxazolone-induced inflammation (246) associated with 

enhanced T cell activation. Second, TSP-1/CD36 interactions mediate recognition and 

phagocytosis of neutrophils undergoing apoptosis (388). Third, TSP-1 (but not TSP-2) 

activates TGF-β, a molecular signal involved in suppression of pro-inflammatory pathways. 

Recent evidence implicates pentameric TSPs in regulation of inflammatory pathways. TSP-4 

null animals exhibited accentuated vascular inflammation and increased atherosclerosis in 

an ApoE −/− background. The anti-inflammatory effects of TSP-4 appear to be mediated 

through β2- and β3- integrin-dependent deactivating effects on endothelial cells (153).

vi. The role of TSPs in maintenance of matrix integrity: Although TSPs do not have a 

primary structural role, they may participate in maintenance of the architectural integrity of 

tissues through both direct and indirect actions. As a potent activator of TGF-β, TSP-1 

contributes to matrix deposition and preservation; this function may be important in 

reparative and fibrotic processes. Although TSP-2 lacks TGF-β-activating properties, it 

appears to play a direct role in matrix homeostasis. Although mice lacking TSP-2 appear 

overtly normal and are fertile, they exhibit significant defects in matrix assembly. Collagen 

fibers in the skin of TSP-2 null animals were disordered and the presence of unusually large 

fibrils with an irregular contour was noted in the tendons. These abnormalities resulted in 

increased fragility and reduced tensile strength of the skin (243).

6. The role of TSPs in cardiac adaptation and disease (Table 2)

i. TSPs and cardiac homeostasis: Group A TSPs are expressed at low levels in the 

myocardium, Moreover, studies using TSP knockout mice suggest a very limited role for the 

TSPs in cardiac homeostasis. In the absence of injury, TSP-1 −/− animals have normal 

cardiac morphology (252). A recent study demonstrated a modest increase (12%) in 

capillary density in the TSP-1 −/− myocardium when compared to the wildtype heart, 

associated with an 8% increase in left ventricular dimensions (278). Wall thickness and 

systolic function were comparable between WT and TSP-1 null animals.
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Telemetric monitoring studies have demonstrated subtle effects of TSP-1 deficiency on 

blood pressure regulation (198). During the inactive light period of the day blood pressure 

was comparable between WT and TSP-1 null animals. However, during the active dark 

cycles, TSP-1 −/− mice exhibited modest, but statistically significant, increases in diastolic 

and mean arterial pressure. Any alterations in homeostatic blood pressure regulation in 

TSP-1 null animals have no significant long-term consequences on left ventricular mass; our 

observations showed comparable left ventricular hypertrophy in senescent TSP-1 −/− and 

wildtype mice (C Gonzalez-Quesada and NG Frangogiannis, unpublished data). No 

significant alterations in cardiac function and morphology have been reported in young 

TSP-2 null mice (436). Limited information is available on the expression and role of the 

pentameric TSPs in the normal heart. Lawler and colleagues demonstrated that TSP-4 is 

highly expressed in the adult human heart (250); however its role in cardiac homeostasis 

remains unknown.

ii. TSPs and the aging heart: Recent evidence suggested a crucial role for TSP-2 in 

protecting the aging heart from cardiac dilation and dysfunction (436). Aging TSP-2 null 

mice had markedly reduced survival rates when compared to wildtype animals. More than 

55% of the TSP-2 null mice died between 24 and 60 weeks of age (in comparison, only 10% 

of WT mice died at the same time interval). TSP-2 absence was associated with severe 

dilated cardiomyopathy, markedly impaired systolic function and fibrosis. Adverse cardiac 

remodeling and dysfunction in aging TSP-2 −/− hearts were associated with progressive 

cardiomyocyte death and increased MMP activation. In contrast, effects of TSP-2 loss on 

vascular density were not observed. Thus, TSP-2–mediated protection of the aging heart 

appears to be related to activation of pro-survival Akt-dependent signals in cardiomyocytes 

and to inhibition of MMP activity. In contrast to the impressive effects of TSP-2 absence on 

the aging heart, direct evidence implicating TSP-1 in cardiac aging is lacking. In heart 

failure-prone mice (C57BL6 x 129Sv), age-associated heart failure was linked with 

increased TSP-1 levels (461). However, TSP-1 null mice in a C57BL/6J background had 

normal cardiac systolic function and preserved chamber dimensions after at least 100 weeks 

of follow-up (C Gonzalez-Quesada and NG Frangogiannis, unpublished observations).

iii. TSPs in injury, repair and remodeling following myocardial infarction: TSP-1 

mRNA and protein were markedly induced in canine and rodent models of myocardial 

infarction (148), (406). After 7 days of reperfusion, dead cardiomyocytes in the canine 

infarct were replaced with granulation tissue and an organized temporary matrix was 

formed. Although this matrix network was prominent in both the center and the border of 

the healing infarct, TSP-1 protein showed a strikingly selective pattern of deposition in the 

infarct border zone after 7–28 days of reperfusion, clearly demarcating the infarcted area 

from the non-infarcted myocardium (Figure 5A).. The molecular signals responsible for 

TSP-1 upregulation in the infarcted myocardium have not been identified; however its 

selective presence in the border zone may reflect the spatial localization of TGF-β/Smad2/3 

signaling that is activated predominantly in the margins of the infarct (63).

In order to explore the functional role of TSP-1 in infarct healing we compared the 

reparative response between TSP-1 null and WT mice (148). TSP-1 null mice had worse 
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adverse remodeling following myocardial infarction than WT mice (Figure 5). Accentuated 

dilative remodeling in TSP-1 null animals was associated with prolongation and expansion 

of the post-infarction inflammatory reaction and extension of granulation tissue formation 

into the non-infarcted heart. In order to examine whether defective regulation of the post-

infarction inflammatory response was due to impaired TGF-β activation in the absence of 

TSP-1, we assessed activation of the canonical TGF-β/Smad2/3 pathway. After 24h of 

reperfusion there was a trend for reduced Smad2 phosphorylation in TSP-1 null infarcts. In 

contrast, histological assessment of the density of vascular profiles demonstrated that infarct 

angiogenesis was not affected by the absence of TSP-1.

What are the mechanisms responsible for the protective effects of TSP-1 in the remodeling 

infarcted heart? We suggest that the strikingly localized expression of TSP-1 in the infarct 

border zone may locally activate anti-inflammatory, angiostatic and matrix-preserving 

signals preventing expansion of leukocyte infiltration and granulation tissue formation into 

the non-infarcted area. Thus, selective induction of TSP-1 in the infarct border zone may 

result in formation of a “barrier” preventing expansion of the inflammatory infiltrate in the 

non-infarcted area. Several TSP-1-mediated actions may contribute to this functional barrier. 

First, local activation of TGF-β may suppress inflammation while promoting matrix-

preserving pathways. Second, TSP-1-induced angiostatic effects may inhibit formation of 

inflammatory neovessels preventing expansion of granulation tissue. Third, TSP-1-mediated 

MMP inhibition may prevent excessive degradation of the matrix in the infarct border zone. 

Fourth, direct TSP-1-induced anti-inflammatory actions mediated through CD47 may 

contribute to containment of the post-infarction inflammatory response.

The role of TSP-2 in cardiac remodeling has been studied primarily in models of pressure 

overload hypertrophy (discussed in more detail below). However, evidence suggests 

important effects of TSP-2 in the infarcted heart. Myocardial infarction in TSP-2 −/− mice 

resulted in a high incidence of cardiac rupture (392), suggesting a crucial role for TSP-2 in 

formation and structural integrity of the remodeling matrix. The mechanisms responsible for 

these effects remain poorly understood. The role of the pentameric TSPs in infarct healing 

has not been investigated.

iv. TSPs in cardiac hypertrophy and fibrosis: Both animal model experiments and clinical 

studies have suggested that cardiac hypertrophy and fibrosis are associated with TSP 

upregulation. Schroen and co-workers first demonstrated upregulation of both group A and 

group B TSPs in homozygous renin-overexpressing (Ren-2) rats, a model of cardiac 

hypertrophy due to severe hypertension. Ren-2 rats have cardiac hypertrophy at 10 weeks of 

age; almost half of the animals decompensate a few weeks later developing overt heart 

failure. Myocardial biopsies obtained at 10 weeks of age were used to identify differentially 

expressed genes in animals that later decompensated. Myocardial TSP-1, -2 and -3 

transcripts were significantly higher in animals with decompensation (401). Moreover, 

increased TSP-1 expression was observed in a mouse model of pressure overload due to 

transverse aortic constriction (470). TSP-4 expression is also markedly increased in the 

pressure overloaded myocardium. Transition from left ventricular hypertrophy to 

hypertensive heart failure in spontaneously hypertensive rats was associated with TSP-4 

upregulation (373). Angiotensin II and arginine-vasopressine (AVP) infusion induced rapid 
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upregulation of TSP-4 transcripts in the myocardium; protein expression was primarily 

localized in vascular endothelial cells (311).

The role of TSPs in the hypertrophied and fibrotic heart is an area of active investigation. In 

a pathophysiologically complex model of cardiac remodeling induced by abdominal aortic 

constriction in rats with type I diabetes, a peptide antagonist of TSP-1-mediated TGF-β 

activation prevented the progression of cardiac fibrosis (35). These findings highlight the 

important role of the TGF-β-activating actions of TSP-1 in modulating matrix remodeling in 

the myocardium. Whether TGF-β activation is the predominant function of TSP-1 in cardiac 

hypertrophy and fibrosis remains unknown. Recent experiments suggested that genetic 

TSP-1 disruption is associated with adverse remodeling in a mouse model of pressure 

overload hypertrophy due to transverse aortic constriction (490). The detrimental effects of 

TSP-1 deficiency are associated with enhanced cardiomyocyte injury, increased MMP 

activation, and replacement of dead cells with defective fibroblasts, expressing less collagen 

and exhibiting impaired myofibroblast transdifferentiation. Thus, in the absence of TSP-1, 

impaired matrix preservation due to defective TGF-β activation and loss of TSP-1-mediated 

protease inhibition may result in accentuated dilative remodeling (Figure 6).

The role of TSP-2 in the pressure-overloaded myocardium was investigated in a model of 

angiotensin II infusion (401). Seventy percent of TSP-2 null mice died within 4 days 

following angiotensin infusion due to cardiac rupture; surviving TSP-2 null mice developed 

heart failure. In contrast, all wildtype mice were followed-up for 4 weeks and survived the 

infusion. Pronounced mitochondrial swelling, interstitial edema and cardiomyocyte damage 

was observed in TSP-2 null mice following angiotensin II treatment; these alterations were 

associated with increased MMP-2 and MMP-9 activity. Thus, the protective effects of 

TSP-2 on the remodeling heart appear to be due to preservation of matrix integrity, either 

through direct effects on collagen fibril assembly, or to inhibition of MMP activity (Figure 

7). Direct pro-survival effects of TSPs on cardiomyocytes, possibly mediated through 

integrins, may also contribute to their protective actions.

v. TSPs in toxic cardiomyopathies: Recent evidence suggests that TSP-2 plays a protective 

role in doxorubicin-induced cardiomyopathy (460). TSP-2 −/− mice had significantly 

increased mortality after treatment with doxorubicin; surviving animals exhibited depressed 

cardiac function in comparison to corresponding WT mice and had increased cardiomyocyte 

apoptosis and accentuated matrix degradation. The protective effects of TSP-2 were 

mediated through activation of Akt-dependent pro-survival signaling in cardiomyocytes and 

through inhibition of MMP-2.

vi. TSPs in human heart disease: The relevance of the animal model experiments in the 

human pathobiologic process is supported by studies demonstrating increased TSP 

expression in patients with cardiac hypertrophy. Patients with aortic stenosis exhibited 

increased myocardial TSP-2 expression; levels were particularly elevated in individuals with 

depressed systolic function (401). Moreover, failing human hearts from patients with end-

stage dilated cardiomyopathy exhibited a 3.5-fold increase in TSP-4 expression when 

compared with non-failing hearts (445). Evidence also suggests that TSPs are upregulated in 

human myocardial ischemia. Affymetrix microarray analysis showed elevation of TSP-1, 
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TSP-2 and TSP-4 mRNA expression in “chronically ischemic” myocardium (identified as 

myocardial segments supplied by a totally or partially occluded coronary artery) biopsied 

from patients with ischemic cardiomyopathy undergoing aortocoronary bypass surgery 

(158). Moreover, in an attempt to identify new predictive biomarkers for patients with 

myocardial infarction Devaux and colleagues found that the levels of TSP-1 mRNA 

expression in whole blood cells from patients with acute myocardial infarction predicted 

functional deterioration (113). In contrast, in end-stage heart failure patients, myocardial 

TSP-1 levels were decreased (32), perhaps reflecting the transient nature of TSP 

upregulation following cardiac injury. Intense upregulation of TSP-1 has also been reported 

in human cardiac allograft vasculopathy (508).

Perhaps the strongest evidence for a role of TSPs in human cardiac pathophysiology is 

derived from studies suggesting an association between single nucleotide polymorphisms 

(SNP) in TSPs and premature coronary atherothrombotic disease (430). A serine (Ser-700) 

amino acid rather than the usual asparagine (Asn-700) at residue 700 of TSP-1 has been 

linked to an increased risk of familial premature myocardial infarction (454), (429). In 

addition, a missense variant of TSP-4 where a proline substitutes alanine at position 387 

(A387P) was strongly associated with myocardial infarction. In contrast, a variant in the 3′ 

untranslated region of TSP-2 seemed to have a protective effect against myocardial 

infarction in homozygous individuals (454). The basis for these associations remains poorly 

understood. A recent investigation demonstrated that the Ser-700 TSP-1 variant increased 

the rate and extent of platelet aggregation and showed increased surface expression on 

platelets compared with the Asn-700 variant (319). Furthermore, the A387 TSP-4 variant 

induces enhanced activation of adherent neutrophils (350). Thus, these SNPs may impart a 

gain-of function, inducing a prothrombotic and atherogenic phenotype (514).

B. Tenascins

The tenascins are a highly conserved family of oligomeric glycoproteins built from a 

common set of structural motifs (183) (90). Four tenascin paralogues have been identified in 

mammals, each designated with a letter derived from earlier eponyms: C, R, X and W. Only 

tenascins C and X are known to modulate cell adhesion, migration and growth and are 

considered matricellular proteins.

1. Structure—Each tenascin has N-terminal heptad repeats, one or more Epidermal 

Growth Factor (EGF)-like repeats, a series of fibronectin type III modules and a C-terminal 

region containing a globular fibrinogen-like domain (211) At the N-terminus each tenascin 

has an oligomerization domain allowing subunits to assemble, usually into trimers. 

Tenascin-C, the founding member of the family, assembles into a disulfide-linked hexamer 

(Figure 8). Isoform variants of tenascin-C, produced through alternative splicing within the 

fibronectin type III repeats, have been described (183); these variants may exhibit distinct 

functional properties. Tenascin-C is cleaved by MMP-2 and other proteases potentially 

revealing cryptic adhesive sites (291); the significance of these interactions in vivo remains 

unclear.
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2. Expression and synthesis of the tenascins—Expression of tenascins-C and -X is 

regulated by microenvironmental factors; in contrast, tenascins–R and –W exhibit more 

stable and restricted expression patterns (458). Tenascin-C is highly expressed during 

embryonic development and organogenesis near migrating cells, at sites of epithelial-

mesenchymal interactions and in developing connective tissue. Tenascin-C expression 

virtually disappears in most adult tissues; however its expression remains abundant in 

normal tendons and at the osteotendinous and myotendinous junctions (208). Tenascin-C is 

induced by a variety of growth factors, such as PDGF, FGF2 and TGF-βs, and its expression 

is markedly upregulated in injured and remodeling tissues, during neovascularization and 

tumorigenesis. In addition, mechanical stress is an important mechanism inducing tenascin-

C synthesis; this explains the persistently high tenascin-C levels in tendons. In vitro, 

increased mechanical strain markedly upregulates tenascin-C expression in fibroblasts, 

smooth muscle cells and neonatal rat cardiomyocytes (92), (495).

Tenascin-X is expressed in loose connective tissue in the dermis, epimysium and blood 

vessels, both during development and in adult organisms (458). In contrast, expression of 

tenascins-R and –W is more restricted. Tenascin-R is exclusively expressed in the central 

nervous system, where it is mainly synthesized by oligodendrocytes. Tenascin-W, the most 

recently described member of the family (398). is found primarily in bone, but is also 

upregulated in the stroma of certain tumors.

3. Cellular effects of tenascin-C

i. Modulation of cell adhesion: Tenascin-C binds promiscuously to a variety of matrix 

molecules, including fibronectin (93) and proteoglycans, and serves an adhesion-modulating 

role. Much like TSP-1, tenascin-C promotes weak cell attachment and induces cellular 

deadhesion. Extensive evidence suggests that tenascin-C interacts with fibronectin, 

inhibiting fibroblast attachment (91). The effects of tenascin-C in regulating cellular 

responses to a fibrin-fibronectin matrix are mediated through modulation of focal adhesion 

kinase (FAK) and RhoA activation (292). Tenascin-C suppresses Rho activation in 

fibroblasts leading to loss of stress fibers and dramatically alters actin organization when 

added to a three-dimensional fibrin-fibronectin matrix (481). Moreover, cells surrounded by 

a matrix containing tenascin-C, fibrin and fibronectin do not assemble fibronectin fibrils and 

are unable to induce matrix contraction (292).

ii. The role of tenascin-C in cellular migration and proliferation: In vitro studies 

examining the effects of tenascin-C on cell migration have produced conflicting results, 

depending on the context and the type of the cells studied. Tenascin-C supports lymphocyte 

migration and rolling (97), but inhibits monocyte chemotaxis in vitro (271). Consistent with 

its modulatory effects on fibroblast adhesion, tenascin-C induces a migratory phenotype in 

mouse NIH3T3 fibroblasts (292). Effects of tenascin-C on cellular proliferation also appear 

to be context and cell type-dependent. Thus, tenascin-C enhanced proliferation in 

endothelial and smooth muscle cells promoting growth factor-mediated responses (210), 

(95), but inhibited proliferative activity of stimulated fibroblasts (105).
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4. In vivo actions of tenascin-C

i. Role of tenascin-C in development, homeostasis and matrix assembly: The 

development of tenascin-C null mice provided an important new tool to study the role of 

tenascin-C in various pathophysiologic processes. Two independent groups demonstrated 

that mice with disruption of the tenascin-C gene develop normally, exhibiting no gross 

anatomic abnormalities (275), (137), (374). As with other matricellular protein knockouts, 

however, the absence of gross abnormalities in tenascin-C null mice does not exclude a 

significant role in tissue homeostasis. More detailed analysis of the matrix architecture in 

tenascin-C null animals may demonstrate subtle, but important, defects. Moreover, studies 

using knockouts in several backgrounds may reveal phenotypic alterations that were not 

apparent in early studies due to variable penetrance. Most importantly, studies examining 

the response of the knockouts in various disease models have suggested important roles of 

tenascin-C in pathophysiologic contexts.

ii. Effects of tenascin-C in inflammation and wound healing: Tenascin-C is strongly 

induced in inflamed and remodeling tissues (130). (509). Tenascin-C upregulation in 

inflammatory and fibrotic processes is likely due to release and activation of growth factors, 

capable of stimulating its expression, such as TGF-β (346). Although tenascin-C is 

dramatically induced in inflammatory processes, its role in regulating inflammation and 

tissue repair remains poorly understood. Studies using tenascin-C null mice gave 

contradictory findings in various models of inflammatory injury. Tenascin-C null mice had 

significantly attenuated airway inflammation and hyperreactivity in a model of allergen-

induced bronchial asthma (316); these effects were presumed due to loss of activating 

actions on T lymphocytes. In contrast, tenascin-C loss was associated with prolonged and 

accentuated inflammation in a model of chemically-induced dermatitis (232). A recent 

investigation has suggested that tenascin-C may drive the innate immune response in 

synovial inflammation. Tenascin-C null mice show rapid resolution of acute zymosan-

induced joint inflammation; the pro-inflammatory effects of tenascin-C were mediated 

through activation of TLR4 signaling (290). Loss-of-function studies have also implicated 

tenascin-C in tissue repair. In a model of cutaneous injury, tenascin-C null mice had no 

obvious impairment in the quality of healing (137). Proliferation, migration and apoptosis of 

epidermal keratinocytes, fibroblasts and macrophages in the healing wounds appeared to be 

normal; however, deposition of fibronectin in the granulation tissue of tenascin-C knockout 

mice was significantly lower. This may indicate that the absence of tenascin-C results in a 

significant defect in matrix organization in the wounds. In addition, tenascin-C null mice 

had defective healing in a model of corneal suture wounding demonstrating decreased 

deposition of fibronectin (283). Recent evidence suggested that tenascin-C is important in 

repair of mechanical skeletal muscle injury (136).

iii. Role of tenascin-C in tissue fibrosis: Tenascin-C expression is associated with the 

development of fibrosis in both experimental models (491) and in patients with fibrotic 

conditions (343), (149). Beyond these associative findings, studies using knockout mice 

suggested a crucial role for tenascin-C in mediating the fibrotic response. Tenascin-C loss 

attenuated hepatic fibrosis in a model of immune-mediated hepatitis (126) and prevented 

fibrous tissue deposition in the lung in a model of bleomycin-induced injury (67). 
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Attenuation of fibrosis in the absence of tenascin-C is associated with decreased TGF-β 

signaling.

iv. Effects of tenascin-C on the vasculature: Extensive evidence suggests a role for 

tenascin-C in pathological angiogenesis. Tenascin-C expression in tumors correlates with 

angiogenesis (506). In vitro, tenascin-C promotes endothelial cell migration and migrating 

endothelial cells express higher amounts of tenascin-C than non-migrating cells (507). 

Moreover, the fibrinogen globe of tenascin-C is capable of switching bFGF-stimulated 

endothelial cells into a sprouting phenotype; these actions are related to the de-adhesive 

properties of the matricellular protein (396). In addition to the significance of these findings 

in tumor progression, the angiogenic actions of tenascin-C may also be relevant in cardiac 

neovascularization (28).

5. Tenascin-C and the heart (Table 3)

i. Tenascin-C in cardiac homeostasis: Tenascin-C is highly expressed by precardial 

mesodermal cells in the embryonic heart when they differentiate into cardiomyocytes; these 

cells stop producing tenascin when they express sarcomeric proteins (192), (193). In the 

normal adult heart, tenascin-C is not found in the myocardium except at the chordae 

tendinae of papillary muscles (383). In the absence of injury, tenascin-C null mice have 

normal cardiac function and morphology (323) suggesting that this matricellular protein 

plays no role in maintenance of the structural integrity and homeostasis of the heart.

ii. Tenascin-C in myocardial infarction: In healing myocardial infarcts, tenascin-C is 

transiently expressed during the proliferative phase of healing in both mammals (190) and 

fish (69), is predominantly produced by fibroblasts (190) and is localized in the border zone 

between infarcted and viable remodeling myocardium (Figure 8B). Several growth factors 

released in healing infarcts (such as TGF-β, bFGF, and PDGF), are capable of upregulating 

fibroblast tenascin-C synthesis. Smad3 loss results in significantly decreased tenascin-C 

expression in the infarct border zone and in TGF-β-stimulated fibroblasts suggesting that the 

TGF-β/Smad2/3 pathway plays an important role in tenascin synthesis following infarction 

(62). In addition, angiotensin II, an important regulator of cardiac remodeling and fibrous 

tissue deposition, is also known to stimulate tenascin-C expression (274). Tenascin-C 

expression virtually disappears in the mature scar (482).

iii. The role of tenascin-C in infarct healing and post-infarction remodelling: Recent 

experiments using tenascin-C null mice revealed detrimental effects of tenascin-C signaling 

in non-reperfused myocardial infarction. Tenascin-C −/− and WT animals had comparable 

survival rates and scar size following infarction. However, tenascin-C loss significantly 

attenuated dilative remodelling and diastolic dysfunction in the infarcted heart; these 

protective effects were associated with less pronounced fibrosis of the non-infarcted 

remodelling myocardium (323). In vitro, tenascin-C accelerated cardiac fibroblast migration, 

enhanced myofibroblast transdifferentiation upregulating α-smooth muscle actin synthesis 

and induced collagen gel contraction, without affecting fibroblast proliferation (442). Thus, 

the detrimental effects of tenascin-C on the remodelling infarcted heart may be due to 

accentuation of growth factor-induced profibrotic actions. Selective upregulation of 
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tenascin-C in the infarct border zone may facilitate fibroblast migration into the remodelling 

areas, inducing local fibrosis and worsening diastolic dysfunction. Whether tenascin-C also 

modulates the matrix-degrading properties of fibroblasts in the infarct has not been 

investigated. Additional detrimental effects may be due to tenascin-C-mediated weakening 

of adhesive interactions involving cardiomyocytes, thus leading to cardiomyocyte 

“slippage” and adverse remodelling (190).

iv. The role of tenascin-C in myocarditis, cardiomyopathy and heart failure: Tenascin-

C is markedly upregulated in a variety of pathological processes associated with 

inflammation and remodeling of the cardiac tissue. Intense, but transient tenascin-C 

upregulation was noted in mouse models of viral myocarditis (191), pressure overload 

hypertrophy (491), angiotensin II-induced cardiac fibrosis (324) and ischemic fibrotic 

cardiomyopathy due to brief repetitive ischemia and reperfusion (114). Moreover, increased 

tenascin-C levels were found in mice with a chronic adrenergic state due to cardiac 

overexpression of the α1A-adrenergic receptor (74). In a mouse model of myosin-induced 

autoimmune myocarditis tenascin-C expression was upregulated at a very early stage (before 

cell infiltration and myocytolysis became histologically apparent), remained elevated during 

the active phase and disappeared with scar formation (191). Tenascin-C was predominantly 

synthesized by interstitial fibroblasts and correlated with disease activity (191). Although 

tenascin-C upregulation is consistently found in animal models of cardiomyopathy; its role 

in the pathogenesis of non-infarctive remodelling has not been investigated. Recent evidence 

suggested that tenascin-C may be involved in neovessel formation in the myocardium. 

Experiments in a model of cardiac transplantation demonstrated that tenascin-C null mice 

exhibit impaired vascularisation of cardiac allografts, suggesting an important role in 

postnatal cardiac angiogenesis (28). Whether tenascin-C plays a role in ischemia-induced 

angiogenesis remains unknown.

v. Tenascin-C in human heart disease: Increased cardiac expression of tenascin-C is 

consistently found in patients with a variety of cardiomyopathic conditions. Tenascin-C 

upregulation has been reported in human myocardial infarcts (482) and in patients with 

myocarditis (457), dilative (443) and ischemic cardiomyopathy (149). Moreover, tenascin-C 

expression was found in remodeling valves in patients with heart failure (397); progression 

of aortic stenosis was associated with increased tenascin-C levels in the valve tissue (385) 

Several characteristics of its expression pattern in the remodelling heart suggest that 

tenascin-C has outstanding potential as a marker of disease activity. First, tenascin-C 

expression is negligible in the normal heart. Second, it is rapidly upregulated following 

cardiac injury and is deposited in the remodeling interstitial space. Third, tenascin-C 

expression correlates with inflammatory and fibrogenic activity and disappears in mature 

scars. Fourth, it is selectively localized in remodeling myocardial segments. In patients with 

ischemic cardiomyopathy undergoing aortocoronary bypass surgery, high tenascin-C 

expression was found in segments with reversible recovery of function following 

revascularization (Figure 8C); levels in segments with irreversible dysfunction was 

significantly lower (149). These findings reflect the increased expression of tenascin in 

actively remodeling myocardium and its absence in segments containing mature scar tissue 

(150), (143). Furthermore, in patients with acute myocarditis, tenascin-C expression may be 
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a clinically useful marker of disease activity. In patients with acute myocarditis undergoing 

endomyocardial biopsy, tenascin-C expression was noted in patients with active stage 

inflammation and disappeared in healed lesions (300). Animal experiments have suggested 

that nuclear imaging using anti-tenascin antibodies is feasible and may be useful for 

diagnosis of myocarditis (384). Assessment of serum levels of tenascin-C has been 

suggested as a potentially useful biomarker in patients with post-infarction remodelling and 

heart failure. In patients with acute myocardial infarction, peak serum tenascin-C levels 

predicted the development of dilative remodeling (382). Moreover, assessment of serum 

tenascin-C prior to discharge in patients hospitalized for decompensated heart failure had an 

incremental prognostic value, when used for risk prediction along with BNP levels (154).

6. Tenascin-X—In humans tenascin-X deficiency causes a distinct, recessive form of the 

Ehlers-Danlos syndrome, associated with hypermobile joints, hyperelastic skin and easy 

bruising (391). Occasional cases of valvular disease (in particular mitral valve prolapse) 

have been reported in tenascin-X-deficient individuals (347); however, the low prevalence 

of the condition precludes any conclusions regarding the role of tenascin-X in valve 

morphology and function. In mice, targeted inactivation of tenascin-X mimicked the human 

condition resulting in progressive skin hyperxtensibility associated with reduced density of 

collagen fibrils in cutaneous tissues. Although tenascin-X is abundantly expressed in the 

normal adult heart (287), its absence in genetically targeted mice did not result in any gross 

cardiac abnormalities (279). However, systolic and diastolic ventricular function, valvular 

morphology and competence have not been systematically studied in tenascin-X null mice. 

Thus, important functions of tenascin-X in cardiac homeostasis and potential effects in 

cardiac pathophysiologic conditions cannot be excluded.

C. SPARC

SPARC (osteonectin/BM-40) is a highly-conserved, multifunctional glycoprotein, expressed 

in both vertebrates and invertebrates, that was first described as the main non-collagenous 

constituent of bone (448), (56). A typical matricellular protein, SPARC, regulates cell 

function and tissue remodeling by exerting counterhadhesive actions, by modulating growth 

factor signaling and by serving as a cell cycle inhibitor (94).

1. Structure—The mature SPARC protein consists of three distinct regions. The N-

terminal acidic module contains a low-affinity, high-capacity Ca2+-binding domain. The 

central portion of the SPARC molecule is composed of a follistatin-like domain and a 

protease-like inhibitor region, and contains bioactive peptides that exert different effects on 

endothelial cells. The C-terminal region constitutes the extracellular Ca2+(EC)- binding 

module and contains a peptide sequence that inhibits endothelial cell proliferation (238) and 

a collagen-binding region (380).

2. Synthesis, expression and cleavage—During embryonic development SPARC is 

expressed in many tissues; its levels are particularly high in areas of chondrogenesis, 

osteogenesis and somitogenesis (377). SPARC expression is significantly decreased in adult 

organs with the exception of tissues that exhibit high rates of turnover (such as the bone, 

gastrointestinal epithelium, skin and glandular tissue) (377). SPARC expression is very low 
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in parenchymal organs, but is markedly upregulated during active tissue remodeling. A wide 

range of pathophysiologic conditions, such as wound healing, neoplasia, arthritis, fibrotic 

conditions, obesity and diabetes are associated with SPARC induction (360).

Growth factor-mediated effects appear to be implicated in regulation of SPARC in injured 

tissues. Most of the in vitro evidence on regulation of SPARC expression is derived from 

experiments on cells involved in bone metabolism (487); synthesis by other cell types has 

been less well studied. Extensive evidence suggests that members of the TGF-β family are 

capable of inducing SPARC in various cell populations. TGF-β1 induces SPARC synthesis 

in dermal (361) and corneal fibroblasts (1), in periodontal ligament cells (156) and in 

chondrocytes (70). Bone morphogenetic protein (BMP)-2, another member of the TGF-β 

family, also increased SPARC expression in chondrocytes (317). Effects of other growth 

factors are less consistent: VEGF stimulation induced SPARC in endothelial cells (216), 

whereas PDGF and IGF-1 enhanced SPARC expression in articular chondrocytes (70); 

however, bFGF and PDGF attenuated SPARC synthesis in periodontal ligament cells (156). 

Pro-inflammatory cytokines (such as IL-1β and TNF-α) attenuate SPARC synthesis in 

chondrocytes (70), (317).

Proteolytic processing of SPARC modulates its activity and function; these interactions may 

be important in vivo. In the protease-rich environment of injured tissues, SPARC may be 

cleaved to generate smaller fragments through interactions involving MMPs. Several MMPs 

(including MMP-2, -3, -7 and -13) are capable of inducing proteolytic cleavage of a single 

peptide bond in the central module of the SPARC molecule, markedly increasing its affinity 

for collagen (379). Moreover, proteolysis of SPARC by MMP-3 generates several fragments 

that influence angiogenesis (376).

3. Cellular effects of SPARC

i. Effects on cell adhesion: Much like tenascin-C and TSP-1, SPARC acts as a typical 

matricellular protein promoting a de-adhesive state through disassembly of focal adhesions 

(306), (307) in endothelial and in lens epithelial cells (477). Although the effects of SPARC 

on cell adhesion are likely to modulate cell migration and survival, the significance of 

SPARC-mediated de-adhesive actions in vivo is unclear.

ii. Growth factor signaling: SPARC modulates the activity of several growth factors 

critically involved in tissue repair, fibrosis and angiogenesis. SPARC inhibits PDGF-

stimulated smooth muscle cell proliferation (302) and binds with PDGF-BB and PDGF-AB, 

blocking their interaction with their receptor (354). SPARC also regulates VEGF function. 

VEGF-mediated endothelial cell mitogenesis is markedly inhibited by SPARC; this effect is 

mediated in part by binding of the matricellular protein to the growth factor (238). Effects of 

SPARC on FGF-2 signaling have also been reported. SPARC inhibits FGF-2-stimulated 

proliferation of endothelial cells; however, these effects are not mediated through direct 

binding, but involve selective regulation of the MAPK cascade, downstream of FGFR1. 

IGF-1 signaling in mesangial cells is also inhibited by SPARC despite the absence of a 

direct interaction between the growth factor and the matricellular protein (140). TGF-β and 

SPARC exhibit mutual regulatory effects: TGF-β induces SPARC synthesis in many cell 
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types, while SPARC increases TGF-β expression (138). SPARC does not bind TGF-β, or its 

receptors; however, it can enhance TGF-β-mediated Smad2 signaling in mesangial cells 

(139), epithelial cells (399) and fibroblasts (394).

4. In vivo actions actions of SPARC—In vivo SPARC regulates the assembly and 

organization of the extracellular matrix and also modulates cellular phenotype and function 

by regulating growth factor signaling, by attenuating adhesive interactions and by 

controlling proliferative activity.

i. SPARC and matrix remodeling: SPARC regulates matrix assembly and remodeling both 

through direct actions on matrix deposition and by modulating protease activity (49). 

SPARC binds to multiple structural components of the matrix (94), including collagens I, 

III, IV and V and vitronectin. The generation of SPARC null mice by two independent 

groups provided extensive information on the role of SPARC in matrix assembly and 

metabolism. Despite the wide expression of SPARC in murine embryonic tissues, and the 

evidence suggesting a crucial role of SPARC in development of invertebrates (135), SPARC 

−/− mice were viable and fertile and had no developmental abnormalities. However, the 

absence of SPARC resulted in significant morphological defects of the fibrillar collagen and 

in reduced collagen deposition in many tissues. In SPARC null mice the skin has half the 

amount of collagen in comparison with wildtype skin (53). Decreased interstitial collagen 

content was also noted in SPARC −/− myocardium and adipose tissue (50), (52). Collagen 

fibrils in the dermis of SPARC null mice are smaller and more uniform in diameter than in 

WT animals (362). The basis for this defect remains unclear. It has been suggested that 

SPARC may not directly mediate fusion of collagen fibrils, but its absence may result in 

generation of collagen fibrils that lack the capacity to fuse (49).

Studies in invertebrates suggested that SPARC plays a role in assembly of the basal lamina 

interacting with collagen IV. In C elegans SPARC is localized in the basement membrane 

(135) and SPARC mutant flies have no collagen IV in basal laminae and display defects 

similar to those of collagen IV mutants (281). The contribution of SPARC in basal laminal 

assembly appears to be important in mammals: both strains of SPARC knockout mice 

exhibit early onset cataractogenesis (165), (325) associated with abnormal type IV collagen 

deposition in the lens capsule (496). Beyond its direct role in deposition and assembly of 

matrix proteins, SPARC may also modulate matrix metabolism by increasing the production 

and activity of MMPs (455), (164). However, the in vivo significance of these interactions 

remains unclear.

ii. SPARC in wound healing and fibrosis: Through its effects on matrix deposition and 

growth factor signaling, SPARC may modulate the reparative response. Although SPARC 

expression is markedly and consistently upregulated in healing tissues (360), (359), loss-of-

function studies have provided conflicting results on its role. In large excisional cutaneous 

wounds, Basu and co-workers demonstrated that SPARC absence is associated with 

impaired and delayed healing; the defect was restored by administration of purified SPARC 

(31). In contrast, Bradshaw and colleagues demonstrated accelerated skin wound closure in 

SPARC null animals resulting from enhanced contractibility of the collagen-poor scar (55). 

The basis for the conflicting findings is unclear.
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Increased SPARC expression is also found in chronic fibrotic conditions (431). The bulk of 

the evidence suggests that SPARC exerts pro-fibrotic effects. In a model of bleomycin-

induced lung fibrosis Strandjord and co-workers reported attenuated pulmonary collagen 

deposition in the lungs of SPARC null mice (431). Moreover, SPARC deficiency reduced 

renal fibrosis in a model of angiotensin-II-mediated hypertension (420) and SPARC 

inhibition attenuated fibrous tissue deposition in the liver (65) and in the lung (471). The 

fibrogenic actions of SPARC may be related to its role in matrix deposition and assembly, or 

to its effects in potentiating TGF-β/Smad2 signaling. Moreover, SPARC suppresses 

apoptosis in fibroblasts from patients with idiopathic pulmonary fibrosis; defective clearance 

of these cells may be important in the pathogenesis of the disease (71). In contrast to these 

findings, Savani and co-workers (386) suggested SPARC-mediated antifibrotic actions 

demonstrating that SPARC null mice had increased pulmonary fibrosis in a model of 

bleomycin-induced injury. The basis for this surprising observation was not explored.

iii. SPARC and angiogenesis: SPARC may modulate the angiogenic process through 

actions on growth factor signaling and through effects on MMP synthesis and activation. 

SPARC signaling is capable of activating both angiogenic and angiostatic pathways, thus, its 

role in conditions associated with angiogenesis may be dependent on the context. SPARC 

expression is upregulated in injured vessels (349). Mice lacking SPARC had increased 

fibrovascular invasion of subcutaneous sponges, suggesting angiostatic effects of SPARC 

that may be due to its VEGF-binding properties (54).

iv. SPARC in adipogenesis: Inflammation and fibrosis of the adipose tissue contribute to 

the metabolic dysfunction associated with obesity. SPARC is linked to human obesity and 

may enhance matrix deposition in the adipose tissue fibrosis its pro-fibrotic actions (229), 

(230). Loss-of-function experiments suggested that SPARC modulates the composition 

adipose tissue matrix and alters the phenotype of adipocytes. SPARC inactivation is 

associated with increased adiposity in mice fed a standard diet (52) and enhances weight 

gain in a model of obesity due to a high fat diet (321). In vitro, SPARC inhibited adipocyte 

differentiation through enhancement of beta-catenin signaling (322) and attenuated mitotic 

clonal expansion of preadipocytes (321).

5. SPARC in cardiac homeostasis and disease (Table 4)

i. SPARC in the normal heart: SPARC is highly expressed in the embryonic heart; 

however, levels of expression are significantly decreased in the adult organ (377). Whether 

small amounts of SPARC are present in the normal adult cardiac interstitium is unclear. 

Using immunohistochemistry with highly-specific polyclonal antibodies, Sage and co-

workers found no SPARC expression in the normal adult murine cardiac interstitium (377). 

In contrast, using immunogold staining, Sasaki et al. observed SPARC deposition in the 

adult mouse heart, localized in the cardiac interstitial matrix (381). As in many other tissues, 

SPARC contributes to the formation of the collagen network in the adult heart through 

effects on post-synthetic processing. SPARC null animals have reduced myocardial collagen 

content when compared to WT mice; the relative proportion of insoluble collagen is also 

decreased in the absence of SPARC (51), (50). Scanning electron microscopy confirmed the 

altered formation of collagen in the cardiac interstitium demonstrating thinner fibrillar 
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collagen struts and reduced weave in SPARC null hearts. SPARC regulates the myocardial 

collagen network by modulating procollagen processing and interactions with fibroblast cell 

surfaces (175). The alterations in collagen morphology had no effects on systolic ventricular 

function, blood pressure or effective arterial elastance. However, experiments using isolated 

papillary muscles demonstrated that SPARC absence was associated with decreased passive 

stiffness of the cardiac muscle (50).

ii. SPARC in aging-associated cardiomyopathy: Experiments in aging mouse hearts 

demonstrated increased expression of SPARC protein in the myocardium (51), associated 

with fibrotic remodeling of the ventricle. In the absence of SPARC, senescent mice had 

attenuated collagen deposition with lower levels of mature cross-linked collagen. Scanning 

electron microscopy showed that SPARC deficiency prevented the increase in collagen fibril 

thickness observed in the senescent myocardium. These alterations in collagen deposition 

and morphology had significant functional consequences. SPARC absence prevented the 

increase in diastolic stiffness observed in aged papillary muscle (51), without affecting 

systolic ventricular function.

iii. SPARC in myocardial infarction: In experimental canine, rat and mouse models of 

myocardial infarction, SPARC is abundantly expressed in the infarcted heart (427), (227), 

(118), (488), (213), (394). In both canine and mouse models SPARC shows a prolonged 

time course of expression, peaking 7–14 days after the acute event, and is primarily 

localized in myofibroblasts and macrophages infiltrating the myocardium (118), (394). 

Loss-of-function studies demonstrated that SPARC upregulation plays a critical role in 

maintaining the integrity of the cardiac matrix and in mediating repair following myocardial 

infarction. In non-reperfused myocardial infarcts, SPARC absence was associated with a 

four-fold increase in mortality, resulting from a higher incidence of cardiac rupture and heart 

failure (Figure 9). SPARC null mice showed formation of disorganized granulation tissue in 

the infarcted heart, filled with immature collagen fibers. On the other hand, adenoviral 

overexpression of SPARC in WT mice improved the quality of the matrix in the infarct and 

protected against cardiac dilatation and dysfunction (394). What are the mechanisms 

responsible for the protective effects of SPARC in post-infarction cardiac repair? Through 

its multifunctional actions, SPARC may modulate several pathways essential for cardiac 

repair. First, in the healing infarct SPARC may be important for assembly of newly-formed 

collagen promoting generation of a supportive matrix in the healing scar to prevent adverse 

dilative remodeling. Second, SPARC may regulate growth factor signaling playing an 

important role in recruitment and activation of reparative cells. Schellings and co-workers 

demonstrated that SPARC enhances TGF-β signaling in cardiac fibroblasts and that TGF-β 

infusion rescued SPARC null hearts from rupture (394). These findings suggested that the 

protective actions of SPARC on the infarcted heart may be mediated, at least in part, through 

enhancement of TGF-β actions necessary for formation of a supportive scar. Third, SPARC-

mediated actions in regulation of infarct angiogenesis may play an important role in 

granulation tissue formation. However, due to the complex and context-dependent actions of 

SPARC in the angiogenic process, the significance of these interactions in cardiac repair and 

remodeling remains unknown. In contrast to these protective actions of SPARC in cardiac 

repair, a recent study suggested that SPARC absence is associated with attenuated early 
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systolic dysfunction following infarction, accompanied by alterations in expression of 

fibroblast-derived genes (289).

iv. SPARC in cardiac hypertrophy and fibrosis: SPARC expression is markedly 

increased in experimental models of cardiac hypertrophy and fibrosis. Pressure overload, 

induced through transverse aortic constriction in mice (50), or through abdominal aortic 

banding in rats (128), significantly increased myocardial SPARC synthesis. Moreover, in a 

rat model of cardiac hypertrophy due to β-adrenergic stimulation through administration of 

isoproterenol, myocardial SPARC expression was markedly increased (282). In the 

pressure-overloaded heart, SPARC absence attenuates cardiac fibrosis without affecting 

development of hypertrophy (50). SPARC null mice had less myocardial collagen than 

wildtype animals after transverse aortic constriction; the proportion of insoluble collagen 

was also significantly lower. Reduced collagen deposition in pressure-overloaded SPARC 

null hearts was associated with attenuated diastolic stiffness. Thus, much like in the 

infarcted myocardium, SPARC upregulation in the hypertrophied heart promotes fibrogenic 

signaling enhancing collagen deposition. However, the functional outcome of SPARC 

signaling is very different: SPARC protects from cardiac rupture and adverse remodeling in 

the infarct, but increases diastolic dysfunction in the pressure-overloaded heart. In contrast 

to the infarcted heart, where the collagen-based scar provides mechanical support to the 

ventricle preventing adverse remodeling, in the pressure-overloaded myocardium a SPARC-

mediated increase in matrix deposition promotes diastolic dysfunction.

v. SPARC in human heart disease: Because SPARC acts locally by binding to matrix 

proteins and growth factor its role as a biomarker in heart disease appears to be limited 

(404). Prior to thrombolysis patients with ST elevation myocardial infarction (STEMI) and 

healthy controls had comparable serum SPARC levels. Three hours after thrombolysis, a 

modest but significant increase in SPARC levels was observed in STEMI patients (403). 

Thus, despite the marked induction of this matricellular protein in the infarcted myocardium, 

serum SPARC does not hold promise as a biomarker in myocardial infarction. In patients 

with degenerative aortic stenosis, SPARC expression was localized in valvular blood vessels 

and appeared to be a marker of lesions with less extensive calcification (72).

D. Osteopontin

Osteopontin (OPN, Eta-1) is a phosphorylated acidic glycoprotein that was originally 

identified as a bone matrix protein, then recognized as a cytokine that is secreted in body 

fluids (112). OPN is expressed by many immune cells and is markedly and consistently 

upregulated in response to tissue injury (472).

1. Structure—OPN is expressed as a 33kDa nascent protein, but due to extensive post-

translational modifications its molecular weight increases to about 44kDa. The functional 

domains of the OPN molecule provide clues to its binding interactions with adhesion 

molecules. Two major domains are responsible for interactions between OPN and integrins. 

The central RGD (Arg-Gly-Asp) sequence, a motif common to many extracellular matrix 

proteins, is responsible for binding with the αvβ1, αvβ3, αvβ5, αvβ6 and α5β1 integrins 

(500), (30). A second, cryptic integrin binding site is exposed upon cleavage of OPN by 
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thrombin and is important for adherence of leukocytes expressing α4 and α9 integrins (203). 

OPN interactions with the transmembrane adhesion molecule CD44 appear to be RGD-

independent and may involve a C-terminal region of the molecule. OPN is a substrate for 

several MMPs, including MMP-2, -3, -7, -9 and -12 (390). MMP-mediated cleavage of the 

OPN molecule may result in formation of fragments with distinct integrin binding 

properties.

2. Synthesis, expression, and regulation—OPN can be expressed by many different 

cell types, (including osteoblasts, osteocytes, epithelial cells, fibroblasts, endothelial cells, 

vascular smooth muscle cells and hematopoietic cells) and is secreted into body fluids. 

Monocytes express low amounts of OPN; however, monocyte to macrophage differentiation 

is associated with a marked increase in OPN synthesis (234). Thus, macrophages exhibit 

constitutive expression of OPN that can be further increased with activation of AP-1 and 

NF-κB signaling (335). On the other hand, OPN expression in T cells is highly inducible 

upon activation of TCR signaling and is dependent on T-bet (411), a transcription factor that 

controls CD4+ Th1 cell lineage commitment. OPN is also highly expressed in immature 

dendritic cells (218). Angiotensin II, pro-inflammatory cytokines, and growth factors are 

capable of stimulating OPN expression in fibroblasts and vascular smooth muscle cells. 

Angiotensin II is a potent inducer of OPN in smooth muscle cells (162) and fibroblasts 

(492). IL-1β induces OPN in pulmonary fibroblasts (405) and enhances OPN synthesis in 

Angiotensin-II-stimulated cardiac fibroblasts (492). PDGF-BB, PDGF-AB, FGF-1, FGF-2, 

and TGF-β potently enhance OPN expression in vascular smooth muscle cells (261), (162), 

(474). The stimulatory effects of TGF-β on OPN synthesis are mediated through Smad3 and 

Smad4; Smad3 binds directly to the OPN promoter, whereas Smad4 displaces the 

transcription repressor Hoxa-9 (25).

The constitutive expression of OPN in macrophages and its inducible synthesis by a wide 

variety of mediators in many cell types result in marked OPN upregulation in injured tissues. 

Thus, increased OPN expression has been observed in inflammatory, angiogenic and fibrotic 

processes, in healing wounds, in calcified lesions, in atherosclerosis and neoplasia (472).

3. Cellular actions of OPN—OPN is a multifunctional protein that signals through 

integrins- or CD44-mediated pathways to modulate cell adhesion, survival and gene 

expression. OPN acts as a cytokine, when secreted in a soluble form, and as a matricellular 

protein when immobilized to the matrix.

i. OPN in cell survival: Extensive evidence suggests that OPN serves as a survival signal; 

its protective effects are, at least in part, mediated through inhibition of apoptosis (472). 

Both soluble OPN (which acts as a cytokine), and OPN that is bound to the matrix acting as 

a matricellular protein, are capable of transducing anti-apoptotic signals (425). Endothelial 

cells plated on OPN-coated surfaces were protected from apoptosis due to serum deprivation 

(389). The pro-survival effects of immobilized OPN are mediated through integrin signaling 

and are dependent on NF-κB activation (389). Moreover, soluble OPN inhibited apoptosis 

of adherent endothelial cells deprived of essential growth factors (221). The pro-survival 

actions of OPN may be important in the pathogenesis of neoplasia. OPN expression is 

increased in many tumors and may prevent apoptotic death of malignant cells (332).
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ii. OPN in cell adhesion and migration: Many cell types adhere to OPN through 

interactions involving integrins or CD44. In vitro, OPN is a chemoattractant for a variety of 

cells, including monocytes, T cells, endothelial cells, smooth muscle cells and epithelial 

cells. Malignant cells are often more responsive to the effects of OPN than normal cells; this 

is due to aberrant expression of integrins by neoplastic cells (450).

iii. OPN regulates function of inflammatory cells: Extensive evidence demonstrates that 

OPN activates macrophages, indicating that these cells are both a major source and a target 

of OPN. OPN null macrophages exhibit attenuated basal and chemokine-mediated migration 

(59). Moreover, OPN induces macrophage-derived IL-12 synthesis, suppressing IL-10 

expression, contributing to the development of a Th1 response (19). Effects of OPN on 

survival, proliferation and differentiation of T lymphocytes have also been reported. These 

actions are important in mediating the in vivo functions of OPN (390).

4. In vivo functions of OPN—Studies using OPN null mice provided information on the 

role of OPN in tissue homeostasis and disease. Despite its broad distribution in the 

collagenous matrix of the bone, OPN is not essential for osteogenesis. OPN −/− mice 

initially appeared phenotypically normal, were fertile and had no dental or skeletal defects 

(365), (266). However, further studies revealed a critical role for OPN in mediating a wide 

range of in vivo functions, including critical effects in immune and inflammatory responses, 

modulatory actions in bone remodeling and important effects in regulation of wound repair, 

fibrosis and angiogenesis.

i. OPN and bone remodeling: Although OPN does not play a role in normal bone 

development, in pathological conditions, OPN modulates bone turnover by inhibiting 

mineralization, by promoting osteoclast differentiation, and by enhancing osteoclast activity. 

OPN −/− bones are hypermineralized and more fragile that those from WT mice (47). OPN 

null mice are resistant to ovariectomy-induced bone resorption (503) and, in vitro, OPN null 

osteoclasts are dysfunctional exhibiting decreased capacity for bone resorption. The effects 

of OPN on osteoclast function are mediated through pathways involving CD44 and αvβ3 

integrin (75), (12).

ii. OPN and the immune system: Experiments using knockout mice have revealed an 

important role for OPN in inflammation and immunity. As discussed previously, in vitro 

experiments demonstrated that OPN is a potent chemoattractant for T cells and 

macrophages, suggesting that it may regulate recruitment of mononuclear cells in injured 

tissues. Injection of purified OPN in the rat dermis induced marked macrophage infiltration 

(163). However, experiments using knockout mice suggested that the role of endogenous 

OPN in recruitment of macrophages at sites of inflammation may be dependent on the type 

and tissue of injury. OPN absence was associated with attenuated macrophage accumulation 

in an experimental model of renal injury (340), but not in cutaneous wounds (266).

Extensive evidence suggests that OPN modulates cell-mediated immunity by promoting the 

Th1, while inhibiting the Th2, response (334). Because early expression of Th1 cytokines is 

essential to mount a protective host response against intracellular pathogens, OPN loss 

results in impaired cellular immunity against viruses (HSV1) and bacteria (Listeria 
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monocytogenes) (19), (472). Moreover, OPN is a key contributor to the mucosal defense 

after viral infections; OPN null mice exhibited protracted disease after intestinal infection 

with rotavirus (369).

iii. OPN in wound repair and fibrosis: Cutaneous incisional wounds in OPN null mice 

exhibited disorganized matrix architecture characterized by altered collagen fibrillogenesis, 

leading to small diameter collagen fibrils (266). OPN loss was not associated with reduced 

macrophage density in the wound; however, debridement was impaired suggesting defects 

in macrophage function and reduced phagocytic activity. Whether defective collagen 

assembly in OPN −/− wounds is due to direct effects of OPN on collagen fibril formation 

remains unclear. OPN has been shown to bind to type I collagen in vitro (86); however, the 

in vivo significance of this interaction is unknown. The function of OPN in collagen 

fibrillogenesis may also be due to interactions with the SLRPs involved in collagen 

assembly, such as lumican, decorin and fibromodulin.

In vivo studies have also suggested an important role for OPN in tissue fibrosis. In 

dystrophic mice OPN loss resulted in attenuated skeletal muscle fibrosis; these findings 

were associated with alterations in the profile of immune cell infiltration and with reduced 

TGF-β expression (466). OPN null mice also exhibited decreased matrix deposition in a 

model of renal fibrosis (340).

iv. The role of OPN in atherosclerosis: OPN is highly upregulated in atherosclerotic 

lesions, where it is predominantly expressed in macrophages, smooth muscle cells and 

angiogenic endothelial cells (162). OPN overexpression was associated with increased 

plaque burden in mice fed a high-fat diet (89). Moreover, loss-of-function studies 

demonstrated that OPN null mice bred in an ApoE −/− background had attenuated 

atherosclerosis (286). These studies implicate OPN as an important mediator in the 

pathogenesis of plaque formation. OPN also appears to be an important regulator of vascular 

calcification (162).

5. OPN and the heart (Table 5)

i. OPN and cardiovascular homeostasis: OPN expression in normal hearts and vessels is 

low (417). Surprisingly, OPN −/− animals had a modest, but significant reduction in systolic 

blood pressure when compared with wildtype animals (312) accompanied by an increased 

heart rate. These alterations were associated with subtle changes in arterial physiology and 

morphology: blood flow was reduced in the carotid arteries of OPN null mice and the 

vessels showed increased compliance. Histologically, no differences in the aortic elastic 

network was noted; however, the adventitial collagen in OPN −/− arteries appeared looser 

compared with wildtype vessels (312). The subtle hemodynamic changes observed in OPN 

null mice did not appear to affect cardiac structure and function (285), (100).

ii. OPN and the aging cardiovascular system: Using immunohistochemical techniques 

Miller and co-workers demonstrated increased OPN expression in senescent rat aortas, 

predominantly localized in the outer media (293). In contrast, changes in myocardial OPN 
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expression have not been observed (418). Whether OPN absence affects the development of 

aging-associated vascular and cardiac dysfunction has not been studied.

iii. OPN in myocardial infarction: OPN upregulation is consistently found in experimental 

models of myocardial infarction. Using a model of cardiac cryoinjury in the rat, Murry and 

co-workers demonstrated marked upregulation of OPN in the infarcted myocardium (310). 

OPN protein was localized in a subset of macrophages infiltrating the infarct. OPN 

upregulation peaked 1–2 days after injury, but was transient; OPN levels were markedly 

downregulated one week after acute cryoinfarction. Suppression of OPN expression 

occurred despite the presence of abundant macrophages, suggesting that OPN upregulation 

in the infarcted heart does not simply reflect macrophage infiltration, but may be due to 

activation, or recruitment, of distinct macrophage subsets. Marked induction of OPN has 

been consistently reported in canine (151), (212) porcine (231), rat (227), and mouse (456) 

models of ischemic infarction. The time course of OPN upregulation in the infarcted 

myocardium is dependent on the species studied, and on the presence or absence of 

reperfusion (118). In a mouse model of non-reperfused infarction (456) myocardial OPN 

mRNA levels peaked 3 days after the acute event, then started to decline after 7 days, but 

remained above sham levels for at least 28 days after infarction. Increased OPN expression 

was also noted in samples from human myocardial infarcts (310).

The pathways involved in OPN upregulation in the infarcted heart are poorly understood. 

Genetic disruption of the CC chemokine CCL2/Monocyte Chemoattractant Protein (MCP)-1 

was associated with a marked attenuation in OPN expression in the infarct, disproportionate 

to the reduction in macrophage density (115). Thus, OPN expression in infarct macrophages 

may reflect recruitment, activation and maturation of specific macrophage subpopulations. 

Angiotensin II signaling also appears to play a role in mediating OPN upregulation in the 

infarcted heart (239). The signals responsible for suppression of OPN synthesis by infarct 

macrophages in the late stages of healing are unknown.

Loss-of-function experiments suggested an important role for OPN in post-infarction cardiac 

repair and remodeling (Figure 10). When compared to wildtype animals, OPN null mice had 

markedly accentuated left ventricular dilation following myocardial infarction (456). Worse 

dilative remodeling in the absence of OPN was not due to increased cardiomyocyte loss; 

infarct size and cardiomyocyte apoptosis were comparable between WT and OPN −/− mice. 

However, OPN null mice had markedly reduced collagen deposition in the healing scar. 

Electron microscopy demonstrated that OPN loss was associated with a reduction in thin 

collagen filaments and absence of large collagen fibers in the healing scar (456). Defective 

collagen synthesis and assembly, in the absence of OPN, may be responsible for enhanced 

dilation of the infarcted ventricle due a decrease in the tensile strength of the scar. Thus, 

OPN protects the infarcted ventricle from adverse remodeling; this function is not associated 

with activation of pro-survival signals to prevent cardiomyocyte apoptosis, but, much like in 

cutaneous wounds (266), appears to be related to actions on matrix formation. The basis for 

the essential role of OPN in assembly of the collagenous matrix in the infarcted heart 

remains unknown. Several mechanisms may be implicated. First, OPN may regulate 

collagen assembly either through direct actions, or by modulating synthesis of the 

proteoglycans involved in fibrillogenesis. Second, OPN may modulate expression and 
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signaling of growth factors necessary for fibrous tissue deposition. Although direct effects of 

OPN on growth factor activity have not been reported, in vivo studies have suggested that 

OPN absence is associated with reduced growth factor levels in experimental models of 

repair and fibrosis. Loss of OPN resulted in attenuated TGF-β signaling in ocular fibroblasts 

and reduced corneal neovascularization by decreasing VEGF expression levels (155). Third, 

OPN may promote matrix deposition by enhancing activity of the macrophages infiltrating 

the infarct, or by modulating the profile and functional properties of lymphocyte 

subpopulations (466) recruited in the infarcted heart. Fourth, OPN may be important in 

matrix deposition by modulating fibroblast phenotype and function. In vitro experiments 

demonstrated that OPN mediates the proliferative effects of angiotensin II in cardiac 

fibroblasts (18). Moreover, OPN null cardiac fibroblasts were more susceptible to oxidant-

induced apoptosis than WT cells, suggesting that OPN may protect cardiac fibroblasts from 

death in the hostile environment of the infarct (513). Finally the effects of OPN in cardiac 

repair may be mediated through activation of angiogenic pathways. The downstream signals 

responsible for the effects of OPN on infarct healing have not been investigated. Whether 

interactions with specific integrins mediate distinct effects of OPN is unknown. On the other 

hand, animals with targeted disruption of CD44, another important OPN ligand, exhibit 

reparative defects comparable to OPN null animals when subjected to reperfused infarction. 

Much like in OPN −/− mice, CD44 knockouts had accentuated dilative remodeling, 

associated with markedly reduced collagen deposition in the infarct (185). CD44 null 

fibroblasts had reduced capacity to synthesize matrix proteins without exhibiting a defect in 

TGF-β/Smad2/3 signaling. Whether the effects of OPN on fibroblasts are mediated, at least 

in part, through CD44 signaling has not been investigated.

iv. OPN in cardiac hypertrophy and fibrosis: OPN synthesis is markedly upregulated in 

experimental models of cardiac hypertrophy and fibrosis; its expression is associated with 

the development of heart failure. In spontaneously hypertensive rats (SHR) a marked (10-

fold) increase in myocardial OPN mRNA levels was found in animals with decompensated 

heart failure, but not in animals with compensated hypertrophy (416). OPN in the failing 

myocardium of SHR was predominantly expressed in interstitial cells (416).

Angiotensin II appears to play an important role in mediating OPN upregulation in the 

hypertrophied myocardium. ACE inhibition attenuated myocardial OPN expression in SHR 

(416). Moreover, angiotensin II infusion induces markedly increased OPN expression in the 

myocardium, associated with fibrosis and cardiomyocyte hypertrophy (100), (285). Two 

independent investigations have examined the role of OPN in mediating the in vivo actions 

of angiotensin in the myocardium using a model of angiotensin II infusion that induces 

marked cardiac hypertrophy accompanied by interstitial and perivascular fibrosis. Matsui 

and co-workers demonstrated that OPN absence attenuated the hypertensive and pro-fibrotic 

effects of angiotensin II, but had no effect on cardiomyocyte hypertrophy (285). Attenuated 

collagen deposition in angiotensin II-treated OPN null hearts was associated with impaired 

systolic dysfunction and ventricular dilation, presumably due to cardiomyocyte slippage 

(285). Independently, Collins and co-workers made similar observations (100): OPN null 

mice had a blunted hypertensive response and markedly reduced cardiac fibrosis after three 

weeks of Angiotensin II infusion. The antifibrotic effects of OPN deficiency were not 
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associated with a reduction in TGF-β mRNA levels; however, OPN −/− cardiac fibroblasts 

had impaired adhesion to matrix substrates and diminished proliferative capacity (100). 

Studies in a model of pressure overload due to aortic banding revealed a role of OPN in 

hypertrophic growth. OPN null mice were protected from the development of hypertrophy 

(493) in banded animals. In contrast, development of fibrosis, measured through quantitative 

morphometry in trichrome-stained sections, was not affected.

Thus, in the cardiac response to pressure overload, OPN appears to mediate fibrogenic, and 

hypertrophic actions. The basis for OPN-induced fibrogenesis may be due to increased 

macrophage chemotaxis and activation (285), to direct effects on fibroblast adhesion and 

proliferation (100), or to facilitation of collagen fibrillogenesis. The hypertrophic actions of 

OPN may be due to integrin-mediated MAPK activation (493).

OPN also activates a pro-fibrotic program in experimental models of genetic heart failure. 

Mice lacking the muscle-specific intermediate protein desmin develop pronounced 

cardiomyocyte degeneration and fibrosis associated with impressive upregulation of OPN 

(288). Desmin −/− OPN −/− double knockouts had attenuated cardiac dysfunction and 

reduced fibrosis in comparison to desmin null animals. The protective effects of OPN loss 

were attributed, at least in part, to a dramatic reduction of galectin-3 secretion by infiltrating 

OPN-null macrophages (353). Moreover, OPN contributed to the cardiomyopathic process 

in dystrophin-deficient mdx mice through stimulation of MMP-9 expression (106).

v. OPN and valvular disease: Extensive evidence has demonstrated that OPN is markedly 

induced in valvular lesions suggesting that it may regulate ectopic calcification. In human 

aortic lesions, levels of OPN expression were associated with the degree of calcification 

(333), (296), (355), (351). OPN protein in diseased valves was localized in a subset of 

macrophages. Increased OPN levels associated with calcium deposition and macrophage 

infiltration were also noted in calcified mitral valves from patients with mitral stenosis (66). 

Moreover, in human bioprosthetic valves, increased OPN expression correlated with cell 

accumulation and calcium deposition (424). In contrast, OPN was not found in non-calcified 

aortic regurgitant lesions (296). Although OPN induction is consistently linked with valve 

calcification, its role in the pathogenesis and progression of valvular disease remains poorly 

understood. Consistent with its role as an inhibitor of mineralization in the bone, OPN may 

have similar effects in inhibiting valvular ectopic calcification in stenotic lesions. In a model 

of ectopic calcification using subcutaneous implantation of porcine aortic valves in mice, 

valve leaflets implanted in OPN null mice showed accelerated and accentuated calcification 

when compared to leaflets implanted in WT animals (428). In vitro and in vivo experiments 

suggested that OPN not only inhibits mineral deposition, but also promotes resorption of 

calcium deposits (428), (337).

vi. OPN as a biomarker in patients with heart disease: In addition to its matricellular 

properties, OPN is secreted in the serum and in body fluids. Recent clinical studies have 

suggested that plasma OPN levels may serve as a marker of left ventricular dilatation (16). 

Plasma OPN may be of particular value as an indicator of adverse remodeling and as a 

predictor of mortality in patients with heart failure or ischemic heart disease. In patients with 

anterior myocardial infarction plasma OPN levels significantly increased 2 days after the 
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acute event, peaked after 3 days, remained elevated for 7 days, then decreased 14 days after 

infarction (435). Peak plasma OPN levels correlated positively with indicators of ventricular 

dilation and negatively with systolic function (435). The relation between plasma OPN and 

dilative remodeling following infarction was supported by findings in patients recovering 

from a previous myocardial infarction. More than 3 months after the acute event, plasma 

OPN levels were significantly higher in the coronary sinus than in the aortic root suggesting 

release of myocardial OPN in the coronary venous system. The transcardiac gradient of 

OPN correlated negatively with systolic function and positively with indicators of dilative 

remodeling (444). Plasma OPN levels were elevated in patients with heart failure 

irrespective of the etiology (ischemic vs. non-ischemic cardiomyopathy) (371) and reflected 

the severity of the disease (421), (371). In patients with dilated cardiomyopathy, OPN levels 

correlated with biomarkers indicating activation of the renin/angiotensin system (111). 

These clinical observations highlight the role of angiotensin II in OPN upregulation. The 

predictive value of plasma OPN levels has also been suggested in patients with heart failure 

and in individuals with stable ischemic heart disease. In a multivariable model that included 

clinical, demographic and biochemical parameters, plasma OPN levels emerged as an 

independent predictor of mortality for patients with heart failure (371). In contrast, in 

patients with heart failure and preserved ejection fraction OPN levels predicted death or 

heart failure events only in single variable analysis, but not when introduced into a 

multivariable model (235). Moreover, unloading the failing ventricle through left ventricular 

assist device support did not consistently reduce OPN levels in heart failure patients (400). 

A recent study suggested that in patients with stable ischemic heart disease, OPN levels are 

an independent predictor of adverse outcome (159).

Patients with stenotic aortic (505), (133), or mitral (21) valves also had elevated plasma 

OPN levels; increased circulating OPN correlates with valvular calcification (21). Whether 

OPN levels in patients with valvular disease provide independent prognostic information has 

not been investigated.

E. Periostin

Periostin, first identified as a protein secreted by murine osteoblasts, was originally named 

osteoblast-specific factor-2 (OSF-2) (441) and was suggested to play a role in bone 

metabolism. To avoid confusion with a transcription factor with the same name (123), its 

name was changed to “periostin” reflecting its intense expression in the periosteum and 

periodontal ligament (182). In recent years along with an explosion in our knowledge on 

periostin came the appreciation of its role in a wide variety of pathophysiologic conditions, 

including neoplasia, tissue repair and cardiac injury (174), (329). Understanding of the 

biological functions of periostin suggested that it should be considered a matricellular 

protein: periostin is upregulated in injured and remodeling tissues, where it binds to 

extracellular matrix proteins, and does not play a direct structural role, but modulates cell 

phenotype and function through integrin-mediated interactions (326).

1. Structure—Periostin is structurally homologous to the insect protein fasciclin-1 (441), 

which is involved in axon guidance and cell adhesion. The periostin protein has a signal 

sequence, four repeated domains related to those found in fasciclin-1 (fasciclin-1-like 
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repeats), an aminoterminal cysteine-rich region and heparin-binding domains in the C-

terminal end. The function of the periostin domains remains unknown. Periostin is one of 

four mammalian genes containing fasciclin domains: TGF-β-induced gene-human clone 3 

(βigH3) is a secreted protein that shares 49% aminoacid homology with periostin, whereas 

the stabilins -1 and -2 are significantly more divergent transmembrane molecules, and are 

expressed in a broad range of tissues (269).

2. Synthesis, expression, and regulation—Although early studies suggested that 

periostin expression was negligible in most adult tissues (with the exception of the bone and 

lung), more recent investigations have revealed significant baseline levels of periostin in 

many other sites. In normal human tissues, very high expression of periostin was found in 

the skin (207) and breast; several other organs, including the pancreas, liver, lung, colon and 

lymph nodes showed lower levels of expression (451). Periostin expression is particularly 

high in collagen-rich connective tissue subjected to mechanical stress in vivo, such as the 

periosteum and periodontal ligaments (182), the tendons (327), the cornea, the mature 

cardiac valves and the endocardial cushions in the developing heart. Tissue injury, repair 

and remodeling are associated with upregulation of periostin expression; moreover, large 

amounts of periostin are found in many tumors. Increased periostin expression in tissue 

repair, remodeling, and fibrosis may be due to local activation of TGF-β and BMP signaling. 

In vitro, TGF-β and BMP-2 are potent inducers of periostin in a variety of cell types, 

including fibroblasts (480), smooth muscle cells (262), (268), and osteoblasts (182). FGFs, 

PDGF-BB and angiotensin II are also capable of inducing upregulation of periostin 

expression in smooth muscle cells through a PI-3K-dependent pathway (262). A variety of 

fibrogenic mediators induce periostin synthesis in fibroblasts. Angiotensin II increases 

fibroblast periostin expression by activating Erk1/2/TGF-β1 and Ras/p38 MAPK/CREB 

pathways (265). Moreover, the fibrogenic Th2 cytokines IL-4 and IL-13 also upregulate 

periostin synthesis in fibroblasts (439) and in epithelial cells (414).

3. Cellular actions—As a matricellular protein, periostin binds to the matrix and 

transduces signals to cells through engagement of integrins. Interactions with αvβ3 and 

αvβ5 signaling are involved in periostin-mediated smooth muscle cell migration (260). αvβ3 

and β1 integrin pathways were involved in invasion of mesenchymal cushion cells through 

3D collagen gels (64). Integrin engagement by periostin triggers activation of PI-3K, Rho-

kinase and FAK-mediated pathways (329) and enhances cell motility. Furthermore, in 

malignant cells, acquired expression of periostin promotes cell survival by inhibiting 

apoptosis through αvβ3/Akt/PKB signaling (29)

4. In vivo functions of periostin

i. The phenotype of periostin null mice: Studies in periostin null mice have provided 

extensive information on the role of periostin in vivo. Three independent groups have 

generated periostin −/− animals using different approaches; these mice exhibited similar 

phenotypic characteristics (363), (222), (327), (338). Rios and co-workers generated 

periostin knockouts through replacement of the first exon with a lacZ reporter gene 

(PostnlacZ/lacZ mice) (363), whereas Oka et al. induced a deletion of exons 4 through 10 

encoding three of the four fasciclin domains (Postn −/− mice) (338); a third group also used 
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a deletion strategy to generate periostin null animals (222). Despite the robust expression of 

periostin in the embryonic periosteum, periodontal ligaments, cardiac valves and placenta, 

PostnlacZ/lacZ and Postn −/− pups appeared grossly normal. However after 3–4 weeks of age, 

periostin knockouts exhibited significant growth retardation and were consistently smaller 

than WT littermates. About 15% of PostnlacZ/lacZ mutants died within 2–3 weeks after birth 

(363). Moreover, while PostnlacZ/lacZ males were fertile, female PostnlacZ/lacZ mice were 

unable to become pregnant (363). PostnlacZ/lacZ mice also had characteristic dental defects 

exhibiting ameloblast alterations and a marked impairment in the structural organization of 

enamel. Interventions that reduced mechanical strain on the periodontal ligament, such as 

feeding null animals with a soft diet, reduced growth retardation and improved female 

fertility, but had no effect on postnatal lethality. Thus, impaired function of the periodontal 

ligaments had profound consequences on growth and phenotype in periostin null animals, 

but did not explain their increased mortality. Later studies demonstrated that early death in a 

minority of periostin null animals was due to cardiac defects.

ii. Periostin and collagen fibrillogenesis: Periostin binds directly to matrix proteins 

(including type I and type V collagen, fibronectin and tenascin-C) (439) and regulates 

assembly of collagen fibrils modulating the biomechanical properties of connective tissues 

(327). Periostin null mice (PostnlacZ/lacZ) had significantly reduced collagen fibril diameters 

in the dermis associated with reduced levels of cross-linking (327). Impaired matrix 

assembly in periostin null animals resulted in lower tensile strength of the skin. Moreover, 

the alterations in collagen fibrillogenesis observed in the absence of periostin significantly 

affect the mechanical properties of the valves.

iii. Periostin in tissue repair and fibrosis: Periostin upregulation is observed in wound 

repair and in fibrotic conditions (511). A TGF-β-inducible gene, periostin exerts potent 

fibrogenic actions in vivo. In the subepithelial fibrosis associated with asthma, periostin 

appears to play an important role by enhancing pro-fibrotic TGF-β signaling (414). The 

effects of periostin on fibrous tissue deposition are of particular importance in cardiac 

homeostasis and in the pathogenesis of fibrotic cardiomyopathies.

5. Periostin and the heart (Table 6)

i. Periostin expression in the heart: Periostin is highly expressed in the embryonic mouse 

and chicken heart (236), (328), (220) throughout cardiovascular development. Strong 

expression of periostin was observed in E10.5 embryonic mouse hearts and was 

predominantly localized within the enlarging outflow tract and in the atrioventricular 

endocardial cushions (236). Periostin is absent from cells of the cardiomyocyte lineage, but 

is a marker of mesenchymal cells that have undergone epithelial to mesenchymal 

transformation and is transiently expressed in the epicardial mesenchyme of the embryonic 

heart. Thus, in the developing myocardium periostin is expressed in cardiac fibroblasts, 

valvular attachment apparatus, chordate tendinae and epicardial/pericardial structures (419), 

(102).

ii. Role of periostin in development and functional integrity of the cardiac valves: Loss-

of-function experiments demonstrated that periostin plays an important role in maturation of 
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non-cardiomyocyte lineages and in stabilization of the extracellular matrix in the mouse 

heart, and is essential for integrity of the cardiac valves (419). Adult periostin null 

(PostnlacZ/lacZ) mice had mitral and tricuspid leaflets that were significantly shortened and 

thickened when compared with wildtype mice. Importantly, the early postnatal mortality in a 

minority (15%) of PostnlacZ/lacZ mice was due to valvular disease: neonatal hearts in mice 

dying before weaning had abnormal geometry, while the valves were shorter than in 

surviving animals and exhibited areas of discontinuity. The truncated valve leaflets found in 

PostnlacZ/lacZ valves contained islets of cardiomyocytes and smooth muscle cells and 

exhibited disorganized matrix stratification and impaired TGF-β signaling. An independent 

investigation produced similar findings: all periostin null mice had large primary atrial 

septal defects, and exhibited defective valve leaflets and chordae tendinae (330). In the 

absence of periostin, organization of the valvular matrix was markedly perturbed. 

Experiments in chicken embryos using adenoviral-mediated knockdown of periostin in the 

atrioventricular mesenchyme suggested that periostin promotes mesenchymal to fibroblast 

differentiation while blocking cardiomyocyte differentiation (331). Because formation of a 

functionally mature valve requires differentiation of valvular mesenchymal cells into 

fibroblasts, periostin is a critical mediator in valve formation and may be involved in human 

valvular pathologies (81). A recent study suggested that the absence of periostin 

significantly attenuates valve thickening, annular fibrosis and MMP expression in thickened 

valves of mice fed a high-fat diet (173). Thus, beyond its role in congenital valve defects, 

periostin may also be important in the pathogenesis of acquired valvular conditions.

iii. The role of periostin in physiologic neonatal cardiac remodeling: Physiological 

remodeling of the heart during the neonatal period is an adaptive process characterized by a 

twofold increase in the number of fibroblasts and by the formation, alignment and 

maturation of an endomysial collagenous network (326), (43), (42), (166). Periostin 

expression in normal myocardium is high during the neonatal period, but subsequently falls 

to low levels. Because of its known function in fibroblast differentiation and its high levels 

of expression in the neonatal myocardium, periostin may play an important role in 

maturation and differentiation of fibroblasts in the developing neonatal heart. This concept 

was supported by the identification of a large population of undifferentiated mesenchymal-

like cells in 3-month old periostin null hearts (326). Moreover, Affymetrix microarray 

analysis in adult periostin −/− hearts demonstrated significant alterations in a large number 

of genes associated with fibrosis, matrix remodeling and adhesion (338) suggesting an 

altered cardiac fibroblast gene program. However, these alterations appear to have limited 

consequences on function and geometry of the adult heart: 2–6 month-old periostin −/− mice 

have slightly reduced chamber dimensions while exhibiting normal systolic function (338). 

Diastolic function in periostin −/− animals has not been systematically studied.

iv. Periostin in myocardial infarction: Myocardial injury triggers a marked upregulation 

of periostin in the cardiac interstitium. Stanton and co-workers first demonstrated marked 

periostin induction in a mouse model of myocardial infarction (427). Increased periostin 

protein expression was observed 4 days after acute infarction in mice and appeared to persist 

for several weeks after the acute event (338). Periostin was exclusively localized in 

fibroblasts infiltrating the infarct and the border zone (Figure 11) (338), (410). Loss- and 
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gain-of-function approaches were used to study the role of periostin in the infarcted heart. 

Two independent studies demonstrated that periostin −/− mice had an increased incidence of 

cardiac rupture in the first 10 days after myocardial infarction (Figure 11) (338), (410); 

adenovirus-mediated gene transfer of a spliced form of periostin protected knockout mice 

from rupture (410). Defective repair in these animals was associated with impaired collagen 

fibrillogenesis and reduced myofibroblast accumulation (410). However surviving animals 

had better preserved systolic function 8 weeks after the acute event (338). Protection from 

dysfunction in periostin null mice during the remodeling phase was associated with 

attenuation of the inflammatory response and significantly reduced fibrosis of the infarcted 

heart. Periostin overexpression, on the other hand, did not increase fibrosis, but protected the 

infarcted mice from cardiac rupture (338).

The findings suggest that periostin upregulation plays an important role in early scar 

formation, promoting migration and activation of myofibroblasts and assembly of a matrix 

network. In its absence, impaired early repair results in cardiac rupture. However, the 

prolonged expression of periostin in the infarcted heart may have deleterious effects 

inducing expansion of fibrosis and increasing dysfunction.

In a recent investigation Kuhn and co-workers demonstrated that extracellular periostin 

induced cycle re-entry in differentiated cardiomyocytes (237) through activation of αv, β1, 

β3 and β5 integrins in the cardiomyocyte surface. In vivo, injection of periostin in mice 

undergoing infarction protocols improved cardiac function and stimulated cardiomyocyte 

proliferation reducing cardiac fibrosis (237). These surprising findings indicated that 

periostin may trigger cardiac regeneration without inducing fibrogenic actions challenging 

established concepts in the field (122). However, experiments in periostin null and periostin 

overexpressing mice and in vitro studies examining the effects of periostin on 

cardiomyocytes failed to support these observations suggesting that periostin does not affect 

cardiomyocyte content and cell cycle activity (272).

v. Periostin in cardiac hypertrophy and fibrosis: Increased myocardial expression of 

periostin is consistently found in experimental models of cardiac hypertrophy and fibrosis 

(426), (470) and in the dilated cardiomyopathy due to isolated volume overload (87). 

Hypertrophy due to pressure overload induced by transverse aortic constriction (426), (470) 

and the hypertrophic cardiomyopathy associated with mutations of the α cardiac myosin 

heavy chain gene were associated with cardiac periostin upregulation (447). In contrast, 

physiologic adaptive hypertrophy in mice due to strenuous exercise did not increase 

myocardial periostin expression. In vivo investigations suggested that periostin is an 

important mediator in the pathogenesis of cardiac hypertrophy and fibrosis. In the pressure-

overloaded heart periostin loss results in preservation of function, less fibrosis and 

attenuated hypertrophy (338). Periostin deficiency also attenuated fibrosis in mice with 

genetically-induced hypertrophic cardiomyopathy (447). Gain-of function studies have been 

somewhat less consistent. Periostin overexpressing animals had accentuated hypertrophy 

after pressure overload without exhibiting functional decompensation and fibrosis (338). 

Moreover, injection of adenovirus encoding an alternatively spliced form of periostin in the 

rat myocardium induced a modest hypertrophic response (270). In contrast, rats transfected 

with the periostin gene exhibited cardiomyocyte loss, cardiac dysfunction, chamber dilation 
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and fibrosis (217). The findings suggest that periostin upregulation in the heart exerts potent 

actions on cardiac fibroblasts, inducing their migration, differentiation and activation, and 

modulating their adhesive properties. Moreover, periostin may also trigger cardiomyocyte 

hypertrophy through activation of integrin-mediated pathways.

vi. Periostin in human heart disease: Knowledge on the expression of periostin in human 

cardiac pathophysiologic conditions remains limited and fragmented. Some preliminary 

evidence suggests that the observations made in animal models on the upregulation of 

periostin in the remodeling heart may be extended in human patients. High expression of 

periostin was noted in the myocardium of a patient with acute myocardial infarction (410). 

Moreover, high levels of myocardial periostin were found in patients with advanced heart 

failure; unloading of the ventricle after implantation of a LVAD significantly reduced 

periostin expression (426). Evidence on the expression of periostin in valve disease is also 

very limited and the findings appear to be dependent on the underlying pathology. In adult 

patients with atherosclerotic and rheumatic valve disease periostin expression was markedly 

elevated in the subendothelial layer of the valve (173). In contrast to these findings, periostin 

expression was reported to be markedly reduced in the valves of infants with congenital 

bicuspid aortic valve stenosis (419).

F. The CCN family of matricellular proteins

The CCN family (76), (254) (Table 7) was named after its first three prototypical members: 

cysteine-rich protein 61 (Cyr61, CCN1), connective tissue growth factor (CTGF, CCN2) 

and nephroblastoma overexpressed protein (Nov, CCN3). Three additional CCNs (CCN4, 

CCN5, CCN6) were identified later as Wnt-inducible secreted proteins. CCNs were initially 

considered polypeptide growth factors that exert the full range of their functions when 

bound to cells (48). However, the collective work of several laboratories over the last 15 

years, and the development of genetically targeted mice supported the role of the CCNs as 

matricellular proteins that bind to the matrix and modulate cellular functions through 

interactions with cell adhesion receptors (76), (254), (249), (498). It is now widely accepted 

that, although CCN proteins have some independent activity, they act primarily by 

modifying signaling of other molecules in a context-dependent manner.

1. Structure—CCN proteins share significant structural homology, including an N-

terminal secretory signal peptide, followed by four modules: four insulin-like growth factor 

binding protein (IGFBP) domains (module I), a von Willebrand factor type C repeat (vWC, 

module II), a TSP type I repeat (module III) and a C-terminal domain that contains a 

cysteine knot motif (module IV) (44). Binding sites for various integrins have been 

identified in modules II, III and IV. Modules II and III are linked by a proteolysis-sensitive 

hinge region.

2. Synthesis, expression, and regulation—The mechanisms of regulation have been 

characterized in detail for CCN2. CCN2 expression is markedly upregulated by TGF-β 

stimulation (255) in a variety of cell types, including fibroblasts (181), (189) osteoblasts 

(345), endothelial cells (489) and smooth muscle cells (368). TGF-β1-mediated CCN2 

expression requires the action of Smad proteins (181); a functional Smad element is present 
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within the CCN2 promoter. Smad3 and Smad4 signaling enhance CTGF promoter activity 

inducing its upregulation, whereas Smad7, an inhibitory Smad, suppresses TGF-β-stimulated 

CCN2 synthesis (181). Angiotensin II also induces rapid upregulation of CCN2 synthesis in 

fibroblasts through activation of MAPK signaling (206). Endothelin-1 is another potent 

inducer of CCN2 in fibroblasts (494), smooth muscle cells (368) and cardiomyocytes (219).

Information on gene regulation for other members of the CCN family is limited. TGF-β 

appears to be an important regulator of CCN synthesis acting as an inducer of CCN1, CCN4 

and CCN5 expression (378), (345), but as a suppressor of CCN3 synthesis (364), (244).

3. Cellular actions of the CCNs

i. CCNs act through binding to integrins and heparan sulfate proteoglycans (HSPGs): 
As typical matricellular proteins, CCNs are capable of regulating cell survival, adhesion, 

differentiation, proliferation and phenotype through binding to cell adhesion receptors, 

including integrins and HSPGs. Kireeva and co-workers first provided evidence for direct 

binding of a CCN family member (CCN1) and an integrin (αvβ3); this interaction mediated 

endothelial cell adhesion (223). Since this report, several other integrin/CCN interactions 

have been identified as mediators of CCN functions. Moreover, in certain situations CCN 

binding to HSPGs is important for transduction of integrin signaling; in particular the HSPG 

syndecan-4 is involved in CCN-mediated functions in fibroblasts (85).

ii. Effects of the CCN proteins on cell adhesion, survival and migration: CCN proteins 

consistently promote cell adhesion through interactions involving integrins and HSPGs. 

CCN1 and CCN2 transduce adhesive signaling in human dermal fibroblasts through α6β1/

HSPG and activate FAK, paxillin and Rac leading to reorganization of the cytoskeleton, 

formation of filopodia and lamellipodia and induction of MMP-1 and MMP-3 (83). Thus, in 

addition to their adhesive effects CCNs also modulate the matrix-degrading capacity of 

fibroblasts regulating matrix metabolism.

The effects of CCNs on cell migration are also well-documented. Extensive evidence 

suggests that CCN1, CCN2 and CCN3 stimulate cell migration of endothelial cells (24), 

(267) and fibroblasts (171); in contrast, CCN4 and CCN5 inhibit cell migration (422), (245). 

CCN proteins also modulate mitogenesis in a cell-type specific manner. The effects of 

CCN2 on fibroblast proliferation are somewhat controversial: early investigations have 

suggested proliferative effects (48), whereas other studies showed that CCN1, CCN2 and 

CCN3 do not exert direct mitogenic actions, but may enhance the proliferative effects of 

other mediators (171), (170). The proliferative actions of CCNs may be mediated through 

the carboxyterminal domain; CCN5, which lacks this domain attenuates cell proliferation 

(245).

The effects of CCNs on cell survival are context- and cell type-dependent. Although 

adhesion of cells to the matrix generally promotes survival, some members of the CCN 

family are capable of inducing apoptosis in certain cell types while supporting adhesive 

signaling. CCN1 induces apoptosis in fibroblasts through an α6β1/syndecan-4-mediated 

interaction, but promotes survival of endothelial cells (452).

Frangogiannis Page 39

Physiol Rev. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iii. CCNs interact with cytokines and growth factors modulating their biological 
actions: Extensive evidence suggests that CCN2 binds to TGF-β through the vWC domain 

(module II) (4) and potentiates its effects. Accentuation of TGF-β actions by CCN2 is due, 

not only to an increase in its effective concentration, but also to modification of TGF-β 

signaling. In vitro experiments using embryonic fibroblasts demonstrated that CCN2 is 

required for a subset of the responses to TGF-β (409). About 1/3 of TGF-β-inducible genes 

were not upregulated in CCN2 null fibroblasts, including genes involved in adhesion and 

matrix remodeling (409). In contrast to enhancing TGF-β-mediated functions, CCNs inhibit 

BMP actions (4). CCN2 also interacts with VEGF inhibiting its binding to VEGFR2; 

proteolysis of the CCN2/VEGF complex through MMP activation releases active VEGF. 

Thus, CCNs regulate bioavailable growth factors in response to microenvironmental cues 

(176). Another example of CCN-mediated modulation of cytokine actions is the interaction 

between CCN1 and TNF-α. CCN1 can unmask the cytotoxic effects of TNF-α leading to 

rapid apoptosis of otherwise resistant primary human fibroblasts (78).

4. In vivo effects of the CCNs

i. CCNs and embryonic development: Generation of CCN1, CCN2 and CCN3 null mice 

resulted in an explosion in our knowledge of their in vivo functions; in contrast, much less is 

known about the other three members of the CCN family. In contrast to other matricellular 

proteins, CCN1 plays an essential role in embryonic development. CCN1 null mice suffer 

embryonic death; approximately one third succumb to failure in chorioallantoic fusion, 

while the reminder die due to placental vascular insufficiency and impaired vascular 

integrity (295). CCN1 knockouts also had defective cardiac development exhibiting severe 

atrioventricular septal defects (AVSD). CCN1 +/− mice were viable, but 20% of them had 

an ostium primum atrial septal defect (294).

CCN2 null mice, on the other hand, were recovered among neonates in the expected 

Mendelian ratio, but died within minutes of birth (204) due to respiratory failure caused by 

skeletal defects. CCN2 deficiency resulted in severe chondrodysplasia due to impaired 

chondrocyte proliferation, defective matrix production in the cartilage and reduced growth 

plate angiogenesis (204). CCN3 null mice have also been generated; these animals produced 

no detectable full-length CCN3, but expressed low amounts of a mutant CCN3 that lacked 

the vWC domain (178). More than 50% of CCN3 −/− mice died during the embryonic or 

perinatal period. CCN3 −/− mice surviving into adulthood were viable and fertile, but 

exhibited severe skeletal abnormalities and joint malformations. Cardiac development was 

also affected; CCN3 mutants had septal defects and developed hypertrophic cardiomyopathy 

associated with chamber dilation and calcifications in the septum (178). Although loss-of-

function mutations in CCN6 cause progressive pseudorheumatoid dysplasia, a degenerative 

condition of the joints in human patients, surprisingly CCN6 null mice (240) and CCN6 

overexpressing animals (318) are normal. Thus, it appears that CCN6 has very distinct roles 

in mice and humans and is not required for murine skeletal growth. In addition to their role 

in embryonic development, CCNs serve as key regulators in several pathophysiologic 

conditions.
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ii. CCNs regulate tissue repair and fibrosis: Expression of CCN1, CCN2 and CCN3 is 

upregulated in healing wounds (189), (77) (267). CCN1 and CCN2 may mediate adhesion of 

infiltrating inflammatory cells and may exert modulatory effects on many cell types 

involved in tissue repair. CCN1 may induce pro-inflammatory genes in macrophages (26), 

while activating a genetic program for wound healing in fibroblasts (77), upregulating 

synthesis of genes involved in adhesion, angiogenesis and matrix metabolism. Recent 

experiments suggested that CCN1 may induce fibroblast senescence, limiting fibrosis in 

cutaneous wound healing (214). Through its role in modulating growth factor signaling, its 

effects on angiogenesis and on fibroblast function, CCN2 may be a key mediator in wound 

healing. However, relatively little is known regarding the in vivo significance of CCN2-

mediated interactions in healing wounds. A recent study suggested an important role for 

CCN2 in connective tissue repair demonstrating that in a model of calvarial healing in the 

rat, CCN2 directed fibroblast differentiation rather than ectopic mineralization (257).

Several lines of evidence suggest that CCN2 is strongly associated with tissue fibrosis (57). 

A TGF-β-inducible gene, CCN2 is markedly upregulated in experimental models of fibrosis 

regardless of the etiology and the affected organ (172), (248), (247). CCN2 upregulation is 

also prominent in human fibrotic conditions, such as scleroderma (3). In vivo studies have 

suggested that CCN2 potentiates TGF-β-mediated fibrogenic actions. When injected into the 

subcutaneous tissue of newborn mice, TGF-β or CCN2 alone induced only transient 

granulation tissue formation (299). Application of both CCN2 and TGF-β was required for 

sustained fibrotic response (299). Moreover, “fibrosis-resistant” BALB/c mice do not show 

induction of CCN2 upon stimulation with bleomycin, but can be rendered “fibrosis-

sensitive” by overexpression of CCN2 (40). CCN2 knockdown by siRNA inhibition 

attenuated fibrotic remodeling in a rat model of carbon tetrachloride-induced hepatic fibrosis 

(263) and CCN2 blockade attenuated fibrosis in a model of crescentic glomerulonephritis 

(215).

Much less is known regarding the role of other CCNs in the fibrotic process. In contrast to 

the profibrotic actions of CCN2, CCN1 may limit fibrosis by inducing fibroblast senescence 

(214). CCN3 may also exert anti-fibrotic actions by reducing CCN2 synthesis and by 

negatively regulating matrix deposition (364).

iii. CCN proteins and angiogenesis: CCN proteins also regulate the angiogenic response in 

a dose- and context-dependent manner. Recombinant CCN1, CCN2 and CCN3 promote 

angiogenesis in various in vivo assays (23), (24), (267). The significance of these effects is 

illustrated by the phenotype of CCN null animals: CCN1 null mice die during the embryonal 

period exhibiting either a complete failure in chorioallantoic membrane fusion, or placental 

vascular insufficiency and impaired vessel integrity (295). CCN2 knockouts also exhibit 

angiogenic defects in the growth plates during bone formation (204). The role of CCNs in 

pathophysiologic conditions associated with angiogenesis in adults is less well understood. 

However, evidence suggests that angiogenesis regulation by members of the CCN family 

may play an important role in cancer (39).
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5. CCNs in cardiac homeostasis and disease (Table 7)

i. CCN1: The phenotypic abnormalities observed in mice with targeted disruption of CCN1 

demonstrated its essential role in cardiac development. Nullizygosity in CCN1 resulted in 

severe vascular defects, large atrioventricular septal defects and embryonic lethality (294), 

(295). Although heterozygous CCN1 +/− mice were viable and fertile, 20% of them had 

ostium primum ASDs (294). CCN1 deficiency resulted in precocious apoptosis in the 

cushion tissue proximal to the atrial septum, a site of CCN1 expression. Thus, CCN1 

absence deprived cushion tissue cells from essential pro-survival signaling. Moreover, 

reduced gelatinase activity was observed in CCN1 null hearts. Because CCN1 induces 

MMP-2 in cardiomyocytes, deficient gelatinase activity in CCN1 −/− hearts may 

compromise tissue remodeling required for fusion of the septum and endocardial cushion 

tissue (294). The role of CCN1 in cardiac development is supported by the identification of 

a human AVSD susceptibility gene in the same region where CCN1 has been mapped 

(1p21-p31) (408).

In adult animals, CCN1 is markedly upregulated in the remodeling heart. Mechanical stretch 

and pressure overload induce CCN1 synthesis in cardiomyocytes both in vitro and in vivo; 

CCN1 upregulation is dependent on AT1 signaling. (179). Rapid CCN1 induction is also 

observed in a mouse model of myocardial infarction, peaking between one and six hours 

after coronary occlusion (179). The relevance of these findings in human disease were 

supported by markedly increased CCN1 expression in cardiomyocytes from hearts with end-

stage ischemic cardiomyopathy (179) and in patients with dilated cardiomyopathy (485). 

Although CCN1 expression is increased in response to injury, its role in cardiac repair and 

remodeling remains unknown. In vitro experiments demonstrated that CCN1 protects 

cardiomyocytes from apoptosis due to oxidative stress (502). A recent investigation 

demonstrated that CCN1 modulates cardiac inflammatory responses. Adenovirus-mediated 

CCN1 overexpression in a model of murine autoimmune myocarditis attenuated cardiac 

inflammation; in vitro CCN1 diminished transwell migration of monocytes to chemokine 

gradients (372). In addition, the anti-fibrotic and angiogenic actions of CCN1 may be 

important in regulation of the reparative response. However, the significance of these 

interactions in cardiac injury has not been studied.

ii. CCN2: CCN2 is the best-studied member of the CCN family in the cardiovascular 

system. The generation of genetically targeted mice did not reveal an essential role for 

CCN2 in cardiac development. However, the marked and consistent upregulation of CCN2 

in models of cardiac injury, hypertrophy and fibrosis and its profound effects on 

cardiomyocytes, fibroblasts and endothelial cells suggest that it may play an important role 

in cardiac remodeling (253), (107).

a. CCN2 is upregulated following myocardial infarction: Postnatally cardiac CCN2 

expression is restricted to the atrium (96). However, CCN2 synthesis in the ventricular 

myocardium is markedly upregulated in rat and mouse models of myocardial infarction (82), 

(9), (110), (117) and is localized in myofibroblasts and cardiomyocytes in the viable border 

zone (336). TGF-β/Smad3 signaling, angiotensin II and endothelin-1 may be important in 

mediating CCN2 upregulation in the infarcted heart. Experiments in Smad3 −/− mice 

Frangogiannis Page 42

Physiol Rev. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggested that late, but not early, CCN2 upregulation was dependent on Smad3 signaling 

(117). The role of angiotensin II in mediating CCN2 upregulation in infarcts is less 

established: Ahmed and co-workers demonstrated that AT1 blockade prevented CCN2 

upregulation in the infarcted myocardium (9); however, in another study ACE inhibition did 

not affect CCN2 synthesis in the infarct (110). The role of endothelin-1 is suggested mostly 

by in vitro studies demonstrating its effects in upregulating CCN2 synthesis by neonatal rat 

cardiomyocytes (219) and by cultured adult mouse atrial-muscle HL-1 cells (358). The 

function of endogenous CCN2 in myocardial infarction remains poorly understood. Potential 

effects of CCN2 in the infarct may include potentiation of TGF-β signaling to promote 

fibrous tissue deposition, angiogenic actions and direct effects on fibroblast phenotype and 

function. When subjected to ischemia/reperfusion, mice with cardiac-specific CCN2 

overexpression had a marked reduction in infarct size. CCN2 treatment or overexpression 

activated the Akt/p70 S6 kinase/GSK-3beta salvage kinase pathway in vitro and in vivo and 

induced cardioprotective genes. These findings suggested that, in addition to its effects on 

growth factor signalling, fibrosis and angiogenesis, CCN2 may also exert protective actions 

on cardiomyocytes (8).

b. CCN2 in cardiac hypertrophy and fibrosis: CCN2 upregulation has been demonstrated in 

many different models of fibrosis, heart failure and cardiac hypertrophy. Marked and 

consistent CCN2 induction is found in cardiac hypertrophy due to pressure overload, or 

angiotensin II infusion (205), (134), in models of diabetic cardiomyopathy (476), in a 

porcine model of pacing-induced cardiomyopathy (10), in aging-associated murine cardiac 

fibrosis (473), in the mdx mouse model of dystrophic cardiomyopathy (22) and in a model 

of cardiac fibrosis due to viral myocarditis (247). Much like in the infarcted heart, TGF-β, 

angiotensin II and endothelin-1 may be involved in mediating CCN2 upregulation in the 

hypertrophied ventricle. Angiotensin II-mediated cardiac hypertrophy and fibrosis is 

associated with CCN2 upregulation (134); CCN2 expression colocalizes with TGF-β1 and 

collagen in areas exhibiting leukocyte infiltration, interstitial and perivascular fibrosis. 

Angiotensin-II-mediated CCN2 upregulation in vivo is dependent on AT1 signaling and on 

PKC-delta activation (177). CCN2 expression is also upregulated in models of pressure 

overload hypertrophy and fibrosis; its expression is induced through activation of 

angiotensin II/AT1 signaling (205). Recent studies have identified pathways responsible for 

suppression of CCN2 synthesis that may play a role in limiting pro-fibrotic actions. CCN2 

upregulation in left ventricular hypertrophy is regulated by two major cardiac microRNAs 

(miRNA), miR-133 and miR-30. In cultured cardiomyocytes and fibroblasts; knockdown of 

these miRNAs increased CCN2 expression; in vivo, decreased expression of the miRNAs 

was associated with enhanced CCN2 synthesis, hypertrophy and fibrosis (124). Kruppel-like 

Factor (KLF15) also may play a role in negative regulation of CCN2, mediating repression 

of the CCN2 promoter in fibroblasts and inhibiting basal and TGF-β-induced CCN2 

expression (469).

Despite extensive associative evidence documenting CCN2 upregulation in areas of cardiac 

hypertrophy and fibrosis, its role in mediating cardiac remodeling remains poorly 

understood. Three independent groups have developed transgenic mice with cardiomyocyte-

specific CCN2 overexpression. Yoon and co-workers found that CCN2-overexpressing mice 
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have normal left ventricular mass and cardiac morphology at baseline (501), but exhibit an 

accentuated hypertrophic and fibrotic response in the pressure overloaded ventricle. Panek 

and co-workers also found that cardiac CCN2 overexpression did not induce significant 

fibrosis; however, their animals developed dilated cardiomyopathy and cardiac dysfunction 

at the age of 7 months (344). Independently Ahmed and co-workers also generated mice 

with cardiac restricted CCN2 overexpression (8). These animals had an inconspicuous 

increase in collagen, but no evidence of dysfunction. The absence of baseline cardiac 

fibrosis and hypertrophy upon CCN2 overexpression suggests that CCN2 by itself does not 

induce fibrosis. However, in the cardiac response to stress or injury, induction of CCN2 may 

potentiate TGF-β-mediated actions accentuating fibrosis and hypertrophy. Unfortunately, 

systematic loss-of-function investigations testing this hypothesis are lacking. Support for the 

role of CCN2 in fibrotic cardiac remodelling was provided by a study demonstrating that 

CCN2 neutralization attenuated graft fibrosis in a mouse model of cardiac allograft rejection 

(41).

Recent investigations suggested a role for CCN2 in diabetic cardiomyopathy. CCN2 

upregulation in the diabetic heart is associated with increased TGF-β expression and with 

the development of fibrosis (476). In vitro, the hypertrophic effects of high glucose and 

palmitate on neonatal rat cardiomyocytes were attenuated by CCN2 knockdown (475). 

However, whether CCN2 is involved in the fibrotic and hypertrophic changes observed in 

diabetic cardiomyopathy remains unknown.

c. CCN2 as a biomarker in human heart disease: Because of its marked induction in 

cardiac fibrosis and hypertrophy, CCN2 could serve as a biomarker for patients with 

conditions associated with cardiac remodeling (256). In biopsies from patients with heart 

failure due to diastolic dysfunction intense CCN2 immunoreactivity was noted in areas of 

fibrosis; CCN2 expression correlated with the extent of fibrotic remodeling (224). Plasma 

CCN2 levels were elevated in patients with chronic heart failure, correlated with plasma 

BNP levels and TGF-β levels and served as indicators of matrix remodeling (225).

iii. CCN3: Little is known about the role of CCN3 in cardiac homeostasis and disease. 

CCN3 null mice had enlargement and abnormal modeling of the endocardial cushions 

associated with atrial septal defects (178). Morphologic assessment of the adult CCN3 null 

heart suggested the development of septal hypertrophy, ventricular dilation and ectopic 

septal calcifications; functional analysis has not been performed. The basis for these 

developmental defects remains unclear.

iv. CCN4: CCN4 expression is increased following myocardial infarction and is primarily 

localized in the infarct border zone and in the remote remodeling myocardium (101), (464). 

TNF-α is a potent inducer of CCN4 and may be responsible for its upregulation in the 

infarcted myocardium (464). Although the role of CCN4 in vivo has not been investigated, 

in vitro studies have suggested important actions on cardiomyocytes and cardiac fibroblasts. 

CCN4 stimulates cardiomyocyte hypertrophy (101) and enhances cardiac fibroblast 

proliferation (101). Moreover, CCN4 appears to play an important role in regulation of 

TNF-α actions, mediating the profibrotic effects of the cytokine, but inhibiting TNF-α-

induced cardiomyocyte death (464). Recent experiments demonstrating protective effects of 

Frangogiannis Page 44

Physiol Rev. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCN4 against doxorubicin-mediated cardiomyocyte apoptosis further supported its pro-

survival functions (465).

v. CCN5: In contrast to the hypertrophic actions of CCN2, CCN5 inhibits phenylephrine-

induced cardiomyocyte hypertrophy in vitro. In vivo, transgenic mice overexpressing CCN5 

had significant inhibition of the hypertrophic and fibrotic response triggered by pressure 

overload; these effects were associated with attenuated TGF-β/Smad signaling (501). The 

effects of CCN5 are due to the absence of the CT domain, which is responsible for the 

hypertrophic actions of CCN2. Thus, CCN5 appears to act as a naturally occurring dominant 

negative molecule (501).

G. Proteins exhibiting some matricellular functions

In addition to the prototypical members of the matricellular protein family discussed above, 

several other proteins exhibit matricellular functions (Table 1). Some of these molecules 

also modulate biological functions acting as soluble mediators or as intracellular signals; 

thus, the in vivo significance of their matricellular effects is unclear. Of these proteins, the 

galectins, syndecans and PAI-1 play important roles in cardiac pathophysiology.

1. Galectins—Several members of the galectin family have been identified as matricellular 

proteins (127). For example, the matricellular actions of galectin-8 are well-characterized 

(259), (512): when immobilized to the matrix galectin-8 promotes cell adhesion activating 

integrin-mediated cascades. In contrast, as a soluble ligand galectin-8 has deadhesive 

effects. Galectin-3 is the best-studied member of the family in cardiovascular disease. Using 

microarray analysis Sharma and co-workers identified galectin-3 as the most robustly 

overexpressed gene in failing versus compensated hearts from transgenic hypertensive 

Ren-2 rats (407). Galectin-3 was primarily expressed by activated infiltrating macrophages. 

Infusion of low-dose galectin-3 into the pericardial sac of healthy rats caused ventricular 

dysfunction, inducing fibroblast proliferation and matrix deposition (407). A growing body 

of evidence suggests that galectin-3 may be a promising biomarker in patients with heart 

failure. Elevated plasma galectin-3 levels improved the prognostic ability of aminoterminal 

pro-brain natriuretic peptide (NT-proBNP) in patients with acute heart failure (462). Plasma 

galectin-3 levels were also elevated in ambulatory patients with heart failure and predicted 

prognosis in unadjusted analysis, but not in multivariable modeling that included NT-

proBNP levels (132).

2. Syndecans—The syndecans are widely expressed transmembrane heparan sulfate 

proteoglycans that modulate biological responses by regulating integrin-mediated adhesive 

interactions and by presenting growth factors to their primary receptors (486). Syndecans are 

composed of an extracellular ectodomain, a conserved transmembrane domain and a short 

cytoplasmic domain (131). Ectodomains can be shed from cells and often bind to the matrix 

where they may sequester growth factors or compete for cell surface binding; this property 

of syndecan fragments explains why syndecans have been occasionally considered 

matricellular proteins (375). There has been a recent surge of interest in the role of 

syndecans in heart disease. Increased expression of syndecan-1 in the infarcted heart exerted 

protective effects against dilative remodeling, attenuating inflammation and preventing 
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excessive matrix degradation (463). In the angiotensin II-treated heart syndecan-1 activates 

a pro-fibrotic program (144) enhancing matrix deposition and CCN2 expression (395). 

Syndecan-4 is also upregulated in the infarcted heart (264). Two independent studies have 

suggested protective effects of syndecan-4 during the early phase after acute myocardial 

infarction (284), (125). The mechanism for syndecan-4-mediated protection remains 

unclear; however, actions enhancing myofibroblast transdifferentiation and facilitating 

growth factor-dependent endothelial cell proliferation have been implicated (284).

3. PAI-1—PAI-1, a serine protease inhibitor, critically regulates matrix metabolism. 

Extensive evidence suggests that PAI-1 is involved in cardiac repair and fibrosis. PAI-1 −/− 

mice exhibited a high incidence of early cardiac rupture following infarction, related to 

accentuated proteolytic activity (20), and were protected from the development of fibrosis 

during the late reparative phase (440). Defective regulation of uPA activity in PAI-1 null 

mice is associated with spontaneous age-associated fibrosis in the myocardium, but not in 

other organs (301). Fibrotic remodeling of the PAI-1 null heart may involve spontaneous 

activation of TGF-β signaling and enhanced endothelial-to-mesenchymal transition (161). In 

addition to the established role of soluble PAI-1 as an inhibitor of proteolytic pathways, 

matricellular functions of matrix-bound PAI-1 have also been described (280). When bound 

to matrix proteins PAI-1 acts as part of a transitory anchoring complex regulating cell 

adhesion and migration (280). The contribution of the matricellular actions of PAI-1 in 

mediating its effects on the myocardium remains unknown.

IV. Conclusions

Discoveries made over the last 20 years have transformed our understanding on the role of 

the extracellular matrix in heart disease. Experimental studies have demonstrated that 

cardiac injury not only causes alterations of the structural matrix proteins, but also induces 

upregulation of matricellular proteins that play an essential role in regulating cellular 

responses to injury. Our knowledge, mostly derived through loss-of-function and 

overexpression studies, remains largely limited to the effects of specific matricellular 

proteins on cardiac function and geometry in various pathophysiologic conditions. The 

mechanisms of action of matricellular proteins in cardiac injury have not been dissected. 

However, our growing understanding of the functional properties of matricellular proteins 

allows some general observations regarding their function in the remodeling myocardium:

First, matricellular protein expression in the remodeling heart is tightly regulated. Growth 

factors, such as TGF-β, angiotensin II and FGFs induce expression of several members of 

the matricellular family. Matricellular proteins are then incorporated into the matrix where 

they potentiate growth factor-mediated effects. Thus, the increased expression of growth 

factors in the remodeling myocardium triggers synthesis of the mediators necessary to 

facilitate their actions and to transduce their effects into the various cell types involved in 

the reparative process. Upregulation of matricellular proteins in uncomplicated cardiac 

repair is transient, but may be prolonged in the presence of a persistent insult. Disappearance 

of matricellular proteins from the myocardium marks the end of the dynamic phase of tissue 

remodeling, indicating a state of relative quiescence in the cardiac interstitium.
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Second, through direct interactions with structural extracellular matrix proteins, certain 

members of the matricellular family (such as TSP-2, SPARC and OPN) may play an 

important role in assembly and organization of the matrix in the injured myocardium. Most 

matricellular proteins also modulate the structure of the extracellular matrix through indirect 

effects on growth factor and protease activity.

Third, binding of the matricellular proteins to matrix components, growth factors, and 

cellular integrins may serve to localize transduction of specific signaling pathways in the 

areas of injury. Although direct evidence for the role of these interactions in cardiac 

remodeling is lacking, extensive associative data support this model. Certain matricellular 

proteins (such as TSP-1 and tenascin-C) show a strikingly selective localization in the 

matrix of the infarct border zone, a site of active tissue remodeling, characterized by intense 

activation of TGF-β signaling and marked accumulation of myofibroblasts. The unique 

spatial distribution of matricellular proteins highlights their potential impact on the 

reparative process.

Fourth, the de-adhesive actions of some members of the matricellular family (such as the 

TSPs, tenascin-C and SPARC) may play an important role in regulating motility of 

reparative cells while promoting an intermediate state of adhesion that prevents their 

apoptotic death. In the dynamic environment of the infarcted and remodeling myocardium 

these actions may be essential for cell migration into the healing wound.

Clearly, a lot remains to be learned on the role of the matricellular proteins in the heart. 

Although loss-of-function studies have suggested that several members of the matricellular 

family are important regulators of cardiac repair and remodeling, in most cases the specific 

cellular actions responsible for these effects have not been identified. Because all 

matricellular proteins are capable of exerting multiple effects through several distinct 

functional domains, dissection of the role of specific molecular interactions and 

identification of the cellular targets will be laborious and challenging. However, this 

knowledge could provide a unique opportunity to identify specific peptides derived from 

matricellular proteins that mediate important actions in vivo, and can be used therapeutically 

to optimize repair and to prevent adverse remodeling. Furthermore, the list of matricellular 

proteins with an important role in cardiac diseases is likely to be expanded as our knowledge 

on the basic biology of cell:matrix interactions continues to increase.

Perhaps the most challenging goal in advancing the field of matricellular proteins is to 

translate knowledge obtained from experimental studies into the human cardiac 

pathobiology. Because matricellular proteins bind to the cardiac extracellular matrix where 

they exert most of their actions, assessment of their expression in the human heart requires 

tissue sampling. Due to their negligible expression in the normal heart and intense 

upregulation in areas of injury and repair, certain members of the matricellular protein 

family may prove clinically relevant markers of cardiac remodeling. In particular tenascin-C 

is an excellent indicator of interstitial remodeling in pathologic samples from 

cardiomyopathic hearts (149) and a marker of activity in patients with acute myocarditis 

(300). Due to their selective localization in areas of injury, matricellular proteins are 
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generally not useful as biomarkers of cardiac injury in the serum, with the possible 

exception of OPN, tenascin-C and CCN2 which are also secreted in the bloodstream.

The biology of matricellular proteins is complex; however, understanding their role and 

mechanism of action may eventually provide important new treatment modalities for 

patients with heart disease. Members of the matricellular family (including TSP-1, TSP-2, 

SPARC, and OPN) exert protective actions on the infarcted myocardium by regulating the 

reparative response; on the other hand in models of chronic pressure overload several 

matricellular proteins contribute to the development of fibrosis. Identification of the 

functional domains and pathways responsible for the effects of matricellular proteins will 

allow design of peptides that selectively reproduce specific protective actions, or inhibit 

detrimental profibrotic effects. Because of their localized and context-dependent function, 

matricellular protein-derived peptides may be effective and safe approaches to reduce 

cardiac remodeling.
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Figure 1. Morphology of the normal mammalian heart
The adult heart contains cardiomyocytes, non-cardiomyocytes and a complex network of 

extracellular matrix. Each myocyte is surrounded by collagen (endomysium); individual 

fibers are also enmeshed in connective tissue (perimysium). Interactions between the matrix 

and cardiomyocytes are essential for their survival and function. Non-myocytes outnumber 

cardiomyocytes in the normal adult heart. The heart contains a rich vascular network 

comprised of capillary (c), venous and arteriolar endothelial cells, pericytes (P) and smooth 

muscle cells. A large number of resident fibroblasts is also noted (F). Normal mammalian 

hearts also contain small numbers of macrophages, mast cells (MC), lymphocytes and 

dendritic cells.
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Figure 2. Structure of the TSPs
On the basis of their oligomerization status and architecture, TSPs are divided into trimeric 

(Group A) and pentameric (Group B) TSPs (see text). Abbreviations: NTD, N-terminal 

domain; vWF-C von Willebrand Factor homology domain; CTD, C-terminal domain.

Frangogiannis Page 79

Physiol Rev. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. The concept of “de-adhesion” in tissue remodeling
In remodeling tissues, induction of the prototypical matricellular proteins (TSP-1, tenascin-

C, SPARC) may stimulate disassembly of focal adhesions and stress fibers in strongly 

adherent cells, inducing a state of intermediate cell adhesion. This process, called “de-

adhesion” and may be important in promoting cell motility while preventing cell anoikis.
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Figure 4. Main in vivo actions of TSP-1
A. TSP-1 is an important activator of TGF-β. After proteolytic cleavage of TGF-β from its 

propeptide, the TGF-β dimer remains bound to the Latency-Associated Peptide (LAP) by 

non-covalent interactions forming the small latent complex. TSP-1 binds to the sequence 

LSKL in the LAP and alters the conformation of TGF-β making it accessible to its receptors, 

TβRII and TβRI. Other TSPs do not exert TGF-β-activating effects. B. TSP-1 is a potent 

angiostatic agent through actions involving CD36. TSP-1 inhibits angiogenesis by 

modulating angiogenic growth factor (GF) signaling and by inducing endothelial cell 

apoptosis through a CD36/fyn/p38 mediated cascade. C. TSP-1 inhibits protease activity. 

TSP-1 inhibits MMP-3-dependent MMP-9 activation and attenuates thrombin-induced 

MMP-2 activation.
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Figure 5. The role of TSP-1 in myocardial infarction
In the infarcted heart selective upregulation of TSP-1 in the infarct border zone may prevent 

expansion of the inflammatory infiltrate into the non-infarcted area A. 

Immunohistochemical staining of the infarcted canine heart demonstrates selective 

incorporation of TSP-1 (arrows) into the matrix of the infarct border zone (B). C, control 

non-infarcted myocardium; I, infarct B. Northern blotting shows marked TSP-1 upregulation 

in the infarcted canine myocardium. C. TSP-1 −/− mice exhibited accentuated dilative 

remodeling following myocardial infarction. D. Adverse remodeling in TSP-1 −/− mice was 

associated with expansion of the inflammatory infiltrate into the non-infarcted myocardium 

indicating failure of the protective “barrier” mechanism preventing expansion of the 

inflammatory infiltrate into the non-infarcted area. E. TSP-1 absence was associated with 

decreased Smad2 phosphorylation in the infarcted heart, suggesting impaired TGF-β 

signaling. TSP-1 deposition in the infarct border zone may protect the infarcted myocardium 

by inhibiting MMP activity, by exerting direct anti-inflammatory actions, by locally 
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activating TGF-β (thus reducing macrophage inflammatory activity) or through inhibition of 

uncontrolled angiogenesis. The TSP-1 “barrier” may be responsible for containment of the 

inflammatory and angiogenic response within the infarct, thus preventing expansion of 

granulation tissue formation in the viable myocardium (Data reproduced with permission 

from Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann 

K, Michael LH, Lawler J, Entman ML. Critical role of endogenous thrombospondin-1 in 

preventing expansion of healing myocardial infarcts Circulation 2005;111:2935–42. 

Copyright 2005, American Heart Association).
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Figure 6. The role of TSP-1 in cardiac fibrosis due to pressure overload
TSP-1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype 

and matrix metabolism. A. qPCR shows marked TSP-1 upregulation in the pressure-

overloaded myocardium in a mouse model of transverse aortic constriction. B. TSP-1 in the 

pressure-overloaded myocardium is localized in the cardiac interstitium. C. TSP-1 null mice 

exhibit worse dilative remodeling of the pressure-overloaded myocardium. Increased 

chamber dilation is associated with impaired TGF-β signaling (evidenced by reduced Smad2 

phosphorylation). D. TSP-1 null animals exhibit increased MMP-9 activity in the pressure 

overloaded heart associated with accentuated MMP-3 levels. EG. Cardiac fibroblasts 

isolated from TSP-1 null pressure overloaded hearts are functionally impaired exhibiting 

reduced collagen expression and defective myofibroblast transdifferentiation. TSP-1 protects 

the pressure overloaded heart from chamber dilation by promoting TGF-β-induced 

myofibroblast transdifferentiation and activation and by inhibiting MMP activity. (Data 

reproduced with permission from Xia Y, Dobaczewski M, Gonzalez-Quesada C, Chen W, 

Biernacka A, Li, N, Lee DW, Frangogiannis NG. Endogenous thrombospondin-1 protects 

the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix 

metabolism. Hypertension 2011;58: 902–911: Copyright 2011, American Heart Association)
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Figure 7. Actions of TSP-2 in the remodeling myocardium
Experimental evidence using loss-of-function approaches suggests an important role for 

TSP-2 in protection of the aging, infarcted and pressure-overloaded heart. TSP-2 null mice 

develop dilative cardiomyopathy; this may be due to loss of CD47/integrin-mediated pro-

survival signals in cardiomyocytes. TSP-2 absence is also associated with cardiac rupture 

and heart failure in models of myocardial infarction and angiotensin-II-mediated 

hypertrophy. TSP-2 may protect the remodeling heart by mediated essential actions on 

assembly and organization of the cardiac matrix, by inhibiting MMP activity, by activating 

pro-survival signals on cardiomyocytes, or by suppressing inflammation.
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Figure 8. The role of tenascin-C in cardiac remodeling
A. tenascin-C assembles into a hexamer; each subunit contains EGF-like repeats (EGFL), a 

series of fibronectin type III modules (FN-III) and a C-terninal globular fibrinogen-like 

region (FG). B. Immunohistochemical staining for tenascin-C in reperfused mouse 

myocardial infarction illustrates that tenascin-C is selectively localized in the infarct border 

zone. C. In patients with ischemic cardiomyopathy, interstitial tenascin-C expression marks 

areas exhibiting active remodeling. D. Tenascin-C absence is associated with reduced 

fibrosis and attenuated chamber dilation following myocardial infarction. E. The effects of 

tenascin-C on the remodeling heart appear to be related to its profibrotic actions. 

Furthermore, tenascin-C may modulate the inflammatory and angiogenic response and may 

facilitate cardiomyocyte slippage.
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Figure 9. The role of SPARC in cardiac remodeling
A. SPARC upregulation in the infarcted mouse myocardium. B-D. SPARC null mice have 

increased incidence of cardiac rupture (C, arrow), exhibiting intramural hemorrhages in the 

infarcted myocardium (D, arrows). Data reproduced with permission from: Schellings MW, 

Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen RE, d’Hooge J, Van de 

Werf F, Carmeliet P, Pinto YM, Sage EH, Heymans S. Absence of SPARC results in 

increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 

2009;206:113–123: Copyright 2009, Rockefeller University Press. E. The SPARC molecule 

contains an acidic region, a follistatin-like domain and an extracellular Ca2+-binding region 

(EC-module). F. The mechanisms involved in SPARC-mediated cardiac fibrosis are likely 

due to enhanced growth factor signaling and to effects on matrix assembly, MMP activity 

and fibroblast function.
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Figure 10. The role of OPN in cardiac remodeling
A. Structure of OPN. The RGD sequence is involved in several integrin-mediated actions of 

the OPN molecule. Ca2+-binding domains are indicated in red. B. Immunohistochemical 

staining for OPN in the infarcted canine myocardium. In the healing infarct, OPN is 

predominantly localized in macrophages and may be an indicator of their maturation and 

differentiation. C. OPN acts a) as a matricellular protein that binds to the matrix and 

modulates growth factor signaling and integrin-mediated actions and b) as a cytokine 

(soluble OPN) that signals through CD44. D. The role of OPN in cardiac remodeling has 

been investigated using loss-of-function models. OPN absence is associated with impaired 

formation of the collagenous scar following myocardial infarction leading to accentuated 

dilative remodeling. In models of cardiac pressure overload, OPN null animals exhibit 

attenuation of fibrosis and hypertrophy. Thus, the effects of OPN in cardiac remodeling 

appear to be mediated primarily through actions on matrix organization, fibroblast function 

and cardiomyocyte hypertrophy. The contribution of myocardial OPN upregulation in 

modulating the inflammatory and angiogenic response following cardiac injury remains 

unknown.
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Figure 11. Role of periostin in myocardial infarction
A–B. Periostin expression if upregulated in the infarcted myocardium and is primarily 

localized in the infarct border zone (A) and in the remodeling myocardium (B). The dashed 

red line shows the infarct border zone. C. Periostin null mice exhibit a high incidence of 

cardiac rupture. D. However, surviving periostin −/− mice had attenuated dilative post-

infarction remodeling. E. Reduced remodeling in periostin null mice was associated with 

attenuated fibroblast infiltration and smaller and less abundant collagen fibers in the infarct 

border zone. Data reproduced Data reproduced with permission from: Shimazaki M, 

Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, 

Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A. Periostin is essential for cardiac healing 

after acute myocardial infarction. J Exp Med 2008;205:295:303: Copyright 2008, 

Rockefeller University Press.
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Table 1

The Main Characteristics of the Matricellular Proteins

Matricellular Proteins General properties of the matricellular proteins

Proteins with established credentials as matricellular 
proteins:
TSP-1, -2, -4
Tenascin-C, Tenascin-X
SPARC
Hevin
Osteopontin
Periostin
CCN1, CCN2, CCN3, CCN4, CCN5

Absence of a direct role in tissue structure.
Binding to extracellular matrix proteins, cell surface receptors, cytokines, 
growth factors and proteases modulates cell function and integrates signaling 
cascades.
Expression is generally low in most adult tissues, but is upregulated following 
injury.

Proteins exhibiting some matricellular functions
Small leucine rich proteoglycans
Syndecans
Galectins
Plasminogen Activator Inhibitor type I (PAI-1)
Fibulin-5
Autotaxin

Targeted disruption of most matricelllular genes results in relatively subtle 
abnormalities, suggesting a limited role in homeostasis.
De-adhesive or counteradhesive properties.
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Table 2

Role of the Thrombospondins in cardiac homeostasis and disease

TSP-1 TSP-2 TSP-3, TSP-4, TSP-5

Cardiac homeostasis Very low expression in normal hearts 
and no major role in cardiac 
homeostasis. TSP-1 −/− mouse hearts 
exhibit preserved systolic function and 
normal wall thickness (278). An 
association between TSP-1 deficiency 
and modest increases in vascular density 
(by 10–15%) and chamber dimensions 
(by 8%) has been reported (278). TSP-1 
has a limited role in blood pressure 
regulation: TSP-1 loss results in a 
modest increase in diastolic and mean 
blood pressure during activity (198).

Very low expression in normal 
adult hearts (436). No known 
role in cardiac homeostasis in 
young animals.

TSP-4 is highly expressed in 
normal hearts (250); however, 
its role in cardiac homeostasis is 
unknown.

Cardiac aging No known role in cardiac aging. TSP-2 plays an essential 
protective role in the aging 
myocardium (436). Aging TSP-2 
−/− mice have markedly 
increased mortality, associated 
with severe dilated 
cardiomyopathy, impaired 
systolic function and fibrosis. 
TSP-2-induced protection in the 
aging myocardium is due to 
activation of pro-survival Akt 
signalling in cardiomyocytes and 
to inhibition of MMPs.

No known role in cardiac aging.

Myocardial infarction TSP-1 is markedly upregulated in the 
infarct border zone and may serve as a 
“barrier” protecting the non-infarcted 
myocardium from extension of 
inflammation and matrix degradation, 
thus preventing adverse remodelling 
(148). TSP-1 null mice exhibit enhanced 
adverse remodelling following infarction 
associated with extension of the 
inflammatory reaction into the non-
infarcted myocardium and with impaired 
TGF-beta activation. Protective effects 
of TSP-1 may also be mediated through 
inhibition of MMP activity.

A protective role of TSP-2 in the 
infarcted heart has been 
suggested. TSP-2 loss was 
associated with a higher 
incidence of cardiac rupture 
suggesting a role in maintaining 
the structural integrity of the 
remodelling matrix network.

No known role in myocardial 
infarction.

Cardiac hypertrophy and 
fibrosis

TSP-1 protects the pressure-overloaded 
myocardium from dilative remodelling 
favouring matrix preservation (490). 
TSP-1 null mice exhibited attenuated 
dilation in a model of transverse aortic 
constriction. The protective effects of 
TSP-1 appear to be due to better matrix 
preservation mediated through inhibitory 
effects on MMP activity and through 
TGF-β activation. In diabetic animals 
with pressure overload a peptide 
antagonist of TSP-1-mediated TGF-β 
activation prevented the progression of 
cardiac fibrosis (35).

TSP-2 protects the pressure 
overloaded myocardium my 
maintaining matrix integrity. 
Following angiotensin infusion 
TSP-2 null mice exhibit 
increased mortality due to 
cardiac rupture, reflecting 
defective collagen fibril assembly 
(401).

Expression of pentameric TSPs 
is upregulated in remodeling 
hearts, particularly during the 
transition to heart failure. 
Myocardial TSP-3 mRNA 
expression is upregulated in 
hypertensive renin-
overexpressing rats showing 
evidence of decompensation 
(401). TSP-4 expression is 
increased in pressure-
overloaded hearts (373) and in 
the myocardium of animals 
undergoing angiotensin or 
arginine-vasopressin infusion 
(311)..

Toxic cardiomyopathies No known role. TSP-2 protects the myocardium 
from doxorubicin-induced 
cardiomyopathy by promoting 
cardiomyocyte survival and by 
inhibiting matrix degradation 
(460).

TSPs in human heart 
disease

TSP-1 expression is increased in 
chronically ischemic myocardium from 

TSP-2 expression is increased in 
hypertrophied (401) and 

TSP-4 expression is increased in 
hypertrophied, failing and 
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TSP-1 TSP-2 TSP-3, TSP-4, TSP-5

patients undergoing bypass surgery 
(158). TSP-1 in blood cells predicted 
functional deterioration in patients with 
acute myocardial infarction (113). The 
Ser-700 TSP-1 variant is associated with 
enhanced platelet aggregation and 
premature coronary disease (454).

chronically ischemic human 
myocardium (158). A TSP-2 
variant has been associated with 
protection from myocardial 
infarction (454).

chronically ischemic human 
myocardium (445), (158). A 
TSP-4 missense variant (A387P) 
is strongly associated with 
myocardial infarction (454).
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Table 3

Role of the tenascins in normal and diseased hearts

Tenascin-C Tenascin-X

Role in cardiac 
homeostasis

In the normal adult myocardium tenascin-C expression is found only at 
the chordate tendinae of the papillary muscles (383). There is no known 
role for tenascin-C in cardiac homeostasis.

Tenascin-X is abundantly 
expressed in the normal adult heart 
(287). However, tenascin-X 
absence did not result in any gross 
cardiac abnormalities (279). 
Systematic studies of cardiac 
function and geometry in tenascin-
X null mice have not been 
reported.

Role in cardiac aging No known role. Not known.

Role in myocardial 
infarction

Tenascin-C is markedly upregulated in the infarcted myocardium and is 
predominantly localized in the border zone and in remodelling areas 
(190). Tenascin-C −/− mice are protected from adverse post-infarction 
remodeling and have reduced fibrosis in the non-infarcted areas (323). 
The detrimental effects of tenascin-C in the healing infarct may be 
mediated through accentuation of pro-fibrotic growth factor signalling.

Not known.

Role in cardiac 
hypertrophy and fibrosis

Tenascin-C is upregulated in the pressure-overloaded myocardium (491). 
However, its role in hypertrophy and fibrosis is unknown.

Not known.

Role in myocarditis, 
cardiomyopathies and 
cardiac allograft

Tenascin-C upregulation is a hallmark of cardiac remodelling regardless 
of etiology. Tenascin-C induction was reported in autoimmune 
myocarditis (191). In a model of cardiac transplantation, tenascin-C null 
mice had impaired allograft vascularisation (28).

Not known.

Tenascins in human heart 
disease

Tenascin-C upregulation is consistently found in human cardiomyopathic 
hearts and is a marker of active remodeling (149). Tenascin-C has 
potential as a marker of disease activity (reflecting inflammation, fibrosis 
and remodeling) in human myocarditis and cardiomyopathy (300), (382).

Occasional cases of valvular 
disease have been reported in 
human patients with tenascin-X 
deficiency, a condition that causes 
a distinct form of the Ehlers-
Danlos syndrome (347).
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Table 4

SPARC in cardiac homeostasis and pathophysiology

Expression Role

Cardiac homeostasis Highly expressed in the embryonic 
heart; expression levels are 
significantly decreased in the adult 
myocardium (377)

SPARC contributes to the formation of the collagen network in the adult 
heart. SPARC null mice have thinner collagen struts. Effects of SPARC 
deficiency on cardiac function are relatively subtle: SPARC −/− hearts 
have normal systolic function but exhibit decreased passive stiffness (50), 
(51).

Cardiac aging Aging hearts have increased 
expression of SPARC (51).

Aging SPARC −/− mice have decreased collagen deposition and reduced 
collagen cross-linking resulting in protection from age-associated diastolic 
stiffness (51).

Myocardial infarction SPARC is abundantly expressed in 
the infarcted myocardium, primarily 
localized in myofibroblasts and 
macrophages infiltrating the 
myocardium (227), (118).

Findings on the role of SPARC in cardiac repair and post-infarction 
remodelling are somewhat contradictory. Schellings et al found that 
SPARC upregulation plays an important role in maintaining matrix 
integrity following myocardial infarction (394). SPARC loss was 
associated with increased incidence of cardiac rupture due to formation of 
disorganized granulation tissue and deposition of immature collagen 
fibers. SPARC overexpression, on the other hand, improved the quality of 
the scar preventing adverse remodeling. The actions of SPARC were 
mediated at least in part through enhancement of TGF-β signaling. In 
contrast, McCurdy et al reported that SPARC null mice had attenuated 
systolic dysfunction during the early post-infarction phase (289).

Cardiac hypertrophy 
and fibrosis

SPARC expression is markedly 
increased in models of cardiac 
hypertrophy and fibrosis (50).

Much like in the infarct, in the pressure-overloaded myocardium, SPARC 
regulates matrix remodeling. In a model of pressure overload cardiac 
fibrosis SPARC null mice have reduced collagen content and attenuated 
diastolic dysfunction (50).

SPARC in human heart 
disease

Because of its binding to matrix proteins and growth factors, SPARC appears to have a limited role as a circulating 
biomarker (404), despite its marked upregulation in the myocardium following cardiac injury.
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Table 5

Expression and role of osteopontin (OPN) in cardiac homeostasis and disease

Expression Role

Cardiac homeostasis Low level expression of OPN is observed in 
the normal adult myocardium.

No significant role in cardiac homeostasis. OPN null hearts have 
normal structure and function. However, OPN −/− mice exhibit a 
modest reduction in systolic blood pressure (312).

Cardiac aging Aging induces no significant changes in 
myocardial OPN expression. An age-
associated increase in aortic OPN levels has 
been reported (293).

Not known.

Myocardial infarction Marked and consistent upregulation of OPN 
expression in the infarcted myocardium, 
primarily localized in macrophages (310), 
(118).

OPN upregulation in the infarcted myocardium protects the heart 
from adverse remodeling. OPN −/− mice have exaggerated 
chamber dilation following infarction associated with marked 
reductions in collagen deposition in the healing scar (456). The 
protective effects of OPN may be mediated through facilitated 
matrix assembly, activation of growth factor signaling and actions 
on fibroblast function and wound angiogenesis.

Cardiac hypertrophy 
and fibrosis

OPN expression is markedly upregulated in 
models of cardiac hypertrophy and fibrosis 
due to pressure overload or angiotensin II 
infusion (285), (416).

OPN mediates both fibrogenic and hypertrophic responses. In a 
model of angiotensin II-induced fibrosis, OPN −/− mice had 
markedly reduced fibrosis (285), (100). Excessive disruption of 
the matrix network in angiotensin II-treated OPN −/− mice 
resulted in systolic dysfunction. In a model of pressure overload 
hypertrophy, OPN loss resulted in reduced cardiomyocyte 
hypertrophy (493).

Valvular disease OPN is markedly induced in stenotic valvular 
lesions, primarily associated with calcific 
changes (333).

OPN may inhibit valvular calcification. In a model of ectopic 
valvular calcification, OPN loss resulted in accelerated and 
enhanced calcification (428).

Human heart disease Peak plasma OPN levels after myocardial infarction correlate with left ventricular dilation (435). Plasma OPN 
levels are elevated in patients with heart failure, reflect the severity of disease and predict mortality (371). OPN 
levels are elevated in patients with stenotic valvular lesions (505).
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Table 6

Expression and role of periostin in normal and diseased hearts

Expression Role

Cardiac development Highly expressed in the embryonic 
myocardium. Although absent from 
cells of cardiomyocyte lineage, 
periostin is a marker for mesenchymal 
cells. In adult hearts periostin 
expression decreases and is primarily 
localized in the tendinous supporting 
structures of the valves (236), (220), 
(328).

In contrast to most other matricellular proteins, periostin plays an 
important role in cardiac development. Periostin null mice exhibit 
increased early postnatal mortality due to valvular defects and had 
atrial septal defects (419). During development periostin promotes 
mesenchymal to fibroblast differentiation while inhibiting 
cardiomyocyte differentiation; because of the critical role of 
fibroblast-like cells in valve formation, periostin null mice have 
defective valves (330), (331).

Neonatal cardiac remodeling Periostin expression is high in neonatal 
hearts and is primarily expressed in 
fibroblasts.

Adaptive changes of the myocardium occurring during the 
neonatal period include a 2-fold increase in fibroblast numbers 
and maturation of the endomysial collagenous network. Periostin 
is critically involved in modulation of fibroblast phenotype in 
neonatal hearts (338), (326). However, these effects have limited 
functional consequences: systolic function is preserved in adult 
periostin null mice, whereas chamber dimensions are slightly 
reduced.

Myocardial infarction Marked and prolonged upregulation of 
periostin is noted in infarcted hearts 
and is primarily localized in infarct and 
border zone fibroblasts (427), (338), 
(410).

Both loss-of-function and gain-of-function studies demonstrated 
that periostin protects the infarcted heart from cardiac rupture by 
promoting migration and activation of myofibroblasts (427), 
(338). Increased incidence of rupture in periostin null mice is 
associated with reduced fibroblast recruitment and impaired 
matrix deposition. However, prolonged expression of periostin in 
the infarct may be detrimental. Periostin −/− mice surviving the 
acute phase had significantly reduced fibrosis and attenuated 
systolic dysfunction 8 weeks after the acute infarct.

Cardiac hypertrophy and 
fibrosis

Periostin expression is consistently 
elevated in experimental models of 
cardiac hypertrophy and fibrosis (426). 
In contrast, physiologic adaptive 
hypertrophy due to strenuous exercise 
does not increase myocardial periostin 
expression (338)

Periostin upregulation in the myocardium activates cardiac 
fibroblasts, inducing their migration and transdifferentiation, but 
also induces cardiomyocyte hypertrophy that may be mediated 
through integrin signaling. As a result periostin loss is associated 
with reduced myocardial fibrosis and attenuated hypertrophy in 
models of pressure overload (338).

Valvular disease Valve thickening in mice fed a high-fat 
diet is associated with periostin 
upregulation (173).

Emerging evidence suggests a role for periostin in acquired 
valvular conditions. Periostin absence attenuates valve thickening 
in mice fed a high fat diet reducing fibrosis and decreasing MMP 
expression (173).

Periostin in human heart 
disease

Limited evidence is available on the expression and role of periostin in human heart disease. High levels of 
myocardial periostin were found in patients with advanced heart failure (426) and in a patient with acute 
myocardial infarction (410). Periostin expression in diseased human valves seems to be dependent on the 
underlying pathology.
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Table 7

Role of the CCN family of matricellular proteins in heart disease

Role in cardiac homeostasis Role in heart disease

CCN1 CCN1 −/− mice die during the 
embryonic period exhibiting 
defective vessel formation and 
large AVSDs. 20% of CCN1 +/− 
have ostium primum ASDs 
(294), (295).

CCN1 is rapidly upregulated in experimental models of myocardial infarction and pressure 
overload hypertrophy. Although in vitro experiments suggest potential effects on inflammatory 
leukocytes, fibroblasts and cardiomyocytes, the role of CCN1 in cardiac remodeling remains 
unknown. In a model of autoimmune myocarditis CCN1 overexpression attenuated cardiac 
inflammation (179), (485), (502), (372).

CCN2 CCN2 −/− mice die minutes after 
birth due to respiratory failure 
induced by skeletal abnormalities 
(204).

Myocardial infarction: CCN2 is markedly upregulated in the infarcted myocardium; its 
induction is mediated through angiotensin II and TGF-β/Smad3 signaling. In vitro studies and 
CCN2 overexpression experiments suggest functions in potentiation of TGF—β signaling, 
profibrotic and angiogenic actions and pro-survival effects on cardiomyocytes (82), (9), (110), 
(117), (336), (8).
Cardiac hypertrophy and fibrosis: CCN2 is consistently upregulated in models of cardiac 
hypertrophy and fibrosis. CCN2 may mediate hypertrophic and pro-fibrotic actions potentiating 
TGF-β-mediated effects. CCN2 overexpression studies suggest that by itself CCN2 is not 
sufficient to induce fibrosis (205), (134), (476), (473), (10), (501), (344), (41), (475).

CCN3 CCN3 −/− mice exhibit septal 
hypertrophy, ventricular dilation 
and ectopic septal calcifications 
(178).

Not known

CCN4 Not known Myocardial infarction: CCN4 is upregulated in the infarcted heart. Although in vitro studies 
suggest that CCN4 stimulates fibroblast proliferation and transduces hypertrophic and pro-
survival signals in cardiomyocytes, the in vivo significance of these observations is unclear 
(101), (464), (465).

CCN5 Not known Cardiac hypertrophy and fibrosis: CCN5 overexpression inhibits hypertrophy and fibrosis 
induced by cardiac pressure overload attenuating TGF-β/Smad3 signaling (501). Due to the 
absence of the CT domain, CCN5 appears to act as a dominant negative form of CCN2.

CCN6 No effects Not known

Physiol Rev. Author manuscript; available in PMC 2015 April 27.


