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Abstract

Stepped wedge designs are increasingly commonplace and advantageous for cluster randomized 

trials (CRTs) when it is both unethical to assign placebo and it is logistically difficult to allocate an 

intervention simultaneously to many clusters. We study marginal mean models fit with generalized 

estimating equations (GEE) for assessing treatment effectiveness in stepped wedge CRTs. This 

approach has advantages over the more commonly used mixed models that (1) the population-

average parameters have an important interpretation for public health applications and (2) they 

avoid untestable assumptions on latent variable distributions and avoid parametric assumptions 

about error distributions, therefore providing more robust evidence on treatment effects. However, 

CRTs typically have a small number of clusters, rendering the standard GEE sandwich variance 

estimator biased and highly variable and hence yielding incorrect inferences. We study the usual 

asymptotic GEE inferences (i.e., using sandwich variance estimators and asymptotic normality) 

and four small-sample corrections to GEE for stepped wedge CRTs and for parallel CRTs as a 

comparison. We show by simulation that the small-sample corrections provide improvement, with 

one correction appearing to provide at least nominal coverage even with only 10 clusters per 

group. These results demonstrate the viability of the marginal mean approach for both stepped 

wedge and parallel CRTs. We also study the comparative performance of the corrected methods 

for stepped wedge and parallel designs, and describe how the methods can accommodate interval 

censoring of individual failure times and incorporate semiparametric efficient estimators.
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1 Introduction

Cluster randomized trials (CRTs) randomize groups of individuals to interventions and 

assess population-level treatment effects. Examples of CRTs include smoking prevention 

trials where the unit of randomization is school or city1,2 and HIV prevention trials where 

the unit of randomization is community or workplace.3,4

We consider stepped wedge (SW) CRTs and standard parallel CRTs for comparison. The 

SW design is a one-way crossover CRT design that follows enrolled clusters for at least two 

“steps” of time intervals. Typically the clusters are crossed over from control to active 

vaccine/treatment. In our formulation at least one cluster receives vaccine in the first step 

while the remainder receive control and then are crossed over at randomly assigned steps to 

receive vaccine. Figure 1 (adapted from Hussey and Hughes5) illustrates the differences 

between the parallel, crossover, and SW designs.

While most CRTs have used parallel designs, recently SW designs have received attention 

for two main reasons. First, parallel designs assign some communities the control condition 

for the entire study, which poses an ethical and enrollment challenge if there is prior 

evidence for intervention/vaccine efficacy. Second, parallel designs implement the 

intervention simultaneously in all the randomized communities, but this is sometimes 

logistically impossible. For example, in an HIV prevention trial that evaluates circumcision 

versus control in 20 versus 20 villages, it may be difficult for medical/surgical teams to 

deploy immediately in all 20 villages, whilst a traveling team could service four villages at a 

time in five steps. In addition, there is a large need to develop a scientific framework to 

guide Phase 4 post-licensure health-care scale-up in developing countries, due to the 

“formidable gap between innovations in health and their delivery to communities in the 

developing world”.6 The SW design is a recent tool under development that contributes to 

this scientific framework as well as to the scientific framework for Phase 3 licensure trials.

SW trials are increasingly being conducted. Since it was introduced in the Gambia Hepatitis 

B study,7 several other trials have used this design for many different types of outcomes 

including those involving HIV infection,8–10 waterborn diseases,11 and childhood 

malnutrition.12 Statistical methods for SW designs, including power and sample size 

calculations, have been developed by Hussey and Hughes5, Moulton et al.,13 and others.14

Statistical analysis of SW designs must accommodate both within-cluster correlation and 

time effects (as treatment is stepped up in a one-way crossover manner). Traditional analyses 

of CRTs handle within-cluster correlation by either a cluster-level or individual-level 

analysis.15 Cluster-level analysis compares cluster-level summary statistics (e.g., averages) 

between groups using two-sample methods for independent data. Individual-level analysis 

uses the individual as the analysis unit and accounts for within-cluster correlation using 

either marginal mean models (typically fit by GEE with a sandwich variance estimator) or 

mixed models. The mixed models account for the within-cluster correlation either by 

including random cluster effects or by conditioning out the random cluster effects.

For handling time effects, cluster-level analyses in SW trials are complicated by the fact that 

the treatment effect may change over time. Hussey and Hughes5 conducted cluster-level 
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analysis using a linear mixed model that summarized cluster responses with estimated 

means for each cluster at each time. Hussey and Hughes5 also described individual-level 

analyses via linear models using both random effects models and marginal mean models. 

Moulton et al.13,16 regard event times of individuals as right censored and used a Cox 

regression-type of analysis, where at each observed failure time they compare treatment 

groups by conditioning on the number of events and the number at risk. To account for 

within-cluster correlation, either a sandwich or bootstrap estimator of variance is used, with 

cluster as the unit.13 While methods using sandwich estimators of variance have been shown 

useful for large cluster trials not requiring bias-correction,17,18 standard sandwich estimators 

of variance are generally anti-conservative when there are a small number of clusters. 

Although various methods have been investigated to reduce the bias and under-coverage 

with small cluster sizes in CRTs,19–24 none have been evaluated in SW designs.

Whereas the predominant approach to analyzing CRTs has been to use individual-level 

outcomes and random effects models, e.g.,5,13 we focus on the marginal mean modeling 

approach that has target parameter “total vaccine efficacy” (V ET).25 This parameter 

combines direct and indirect vaccine efficacies in comparing outcomes for individuals in 

vaccinated populations versus those for individuals in unvaccinated populations, and is 

defined mathematically in Section 2.3.25 We focus on the V ET parameter (and its time-

varying version) because in Phase 3 and 4 trials it is of particular interest to use population-

average estimands of group-level summary statistics that are most relevant for guiding 

public health policy decisions. The population-average approach also has advantages in the 

weaker and more testable assumptions it requires compared to mixed model approaches. In 

particular, mixed models require untestable assumptions about latent variable distributions, 

require correctly specified error distributions for consistent estimation, and standard error 

estimates are not robust to model mis-specifications.26 In contrast, marginal mean models do 

not make assumptions about latent variables and do not require correctly specified error 

distributions for consistent estimation, and, consequently, results from the latter models may 

be interpreted as carrying a greater weight of evidence.26 A potential pitfall of the marginal 

mean models is insufficient numbers of clusters to allow unbiased and stable standard error 

estimation, however, which has limited its use in practice.27 The significance of this work is 

that we show that small cluster size methods for marginal mean models can be used for 

correct inference about total vaccine efficacy overall and over time, thereby justifying the 

restored use of the highly interpretable population-average target parameter that is 

appropriate for stepped wedge and parallel CRTs.

The article is organized as follows. Section 2 describes a marginal mean model for the 

cluster-step outcomes for the SW and parallel designs, and defines the intervention/vaccine 

efficacy estimands of interest in terms of parameters in the model. This model allows 

interval censored time to events. Section 3 summarizes five approaches to estimation and 

testing of the estimands, using standard sandwich SEs and four small-sample methods that 

better protect the type I error and improve the accuracy of confidence intervals19–22 with 

additional details in the Web Supplementary Materials. Section 4 provides a simulation 

study to evaluate the five methods and compare their operating characteristics in SW and 

parallel designs. Section 5 provides discussion. R code implementing the developed methods 

for CRTs is provided at the last author's website.
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2 Marginal mean model

2.1 Notation

We consider a prospective cohort CRT. Subjects testing HIV negative are enrolled during a 

fixed accrual period. Following the accrual period subjects are followed through J additional 

fixed calendar time intervals, each of duration M months, and are tested for HIV infection 

once within each calendar interval. Upon enrollment within the initial/first calendar interval, 

a subject's HIV testing date within the second calendar interval is scheduled, and evenly-

spaced HIV testing dates within the subsequent calendar intervals 3, …, J are scheduled.

As an example used throughout, we consider a 72-month study with 12-month accrual 

period and ten subsequent 6-month calendar intervals, such that J = 10 and M = 6 months. 

Corresponding to the J calendar intervals, each subject is followed through J “steps,” with 

Step 1 defined as the interval between enrollment and his/her scheduled HIV test in calendar 

interval 2, Step 2 defined as the interval between the scheduled HIV tests in calendar 

intervals 2 and 3, and so on. Thus the steps are defined based on study time and the HIV 

testing schedule, conforming to the usual approach for HIV prevention trial design. For the 

SW design, the ith cluster starts the intervention (crosses over from the control condition) at 

a randomly assigned calendar interval . Subjects in cluster i start 

vaccination a day or two after their HIV test (if it is negative) within calendar interval . 

The two-group parallel design is the same except the ith cluster is assigned either to  or 

to the control condition throughout the follow-up period of the study. Figure 2 describes the 

follow-up and HIV testing schedule for the SW design.

Let Yijk be the indicator of whether individual k in cluster i is HIV infected during step j for 

i = 1, …, I and j = 1, …, J. Let X1ij be the treatment indicator (1=vaccine; 0=control), and 

X2ij be a vector of other cluster-step level covariates that may be useful for bias-correction 

and/or improving precision. We study marginal mean models of cluster-step level responses 

Yij, with Yij an estimate of E[Yij], the incidence of new infections in cluster i during step j. 
(Recall that our approach analyzes cluster-level summary statistics, not the individual 

outcomes Yijk.) In Section 3.1 we discuss different possible estimators of the cluster-step 

incidences E[Yij].

2.2 Generalized linear model

We model the marginal mean μij = E[Yij] with a generalized linear model (glm)

(1)

where g(·) is a link function, β2 adjusts for calendar/secular trends, and , 

where  is the step (j) at which cluster i is randomized to start vaccination, and a+ = a if a > 

0 and 0 otherwise. While β2 measures how the marginal mean varies across steps defined 

based on an individual's HIV testing schedule, it approximately measures how the marginal 

mean varies over calendar time, because the accrual period is a small fraction of the total 
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study follow-up period. The term sij is the number of steps since cluster i started vaccination, 

and ranges from 0 to .

In model (1) with β3 = 0, β1 represents the treatment effect averaged over all clusters (i.e., 

the expected change in the response in the population when all clusters change from the 

control condition to the intervention). If the treatment effect changes with time, then the 

interaction coefficient β3 is nonzero. We use the coding sij for time effects because this 

allows assessment of how the treatment effect varies with time since vaccination. We focus 

on the identity link g(y) = y, although the method can also be implemented straightforwardly 

by modeling Yij as a count variable (the number of new infections in cluster i during step j) 
and using a log link, as was done in the first author's PhD dissertation.28 These approaches 

lead to different types of treatment efficacy estimands, as described in Section 2.3.

While standard glm modeling fit by GEE can be used for inference on β ≡ (β0, β1, β2, β3, 

β4)′, the fact that the number of clusters is small implies that the typical sandwich variance 

estimators for β̂ tend to underestimate the variance, which leads to anti-conservative 

inference.29,30 Accordingly, we will implement and evaluate four small-sample corrected SE 

methods for fitting model 1 for the CRT application with a small number of clusters.

2.3 Treatment efficacy/vaccine efficacy estimands

Vaccine efficacy, V E, is a measure of the form 1 − RR (one minus some measure of relative 

risk, see Halloran et al.25 Chapter 2). We use the term treatment efficacy, T E, as a more 

general term to denote any parameter that measures a treatment effect (e.g., a difference, a 

ratio, or 1 − RR). We focus on the glm with identity link and Yij the estimated incidence of 

cluster i in step j. From model (1), in the case that β3 = 0, the population-average parameter 

of interest is the total treatment efficacy T ET ≡ β1, which measures a combination of the 

direct and indirect effects of the intervention, as an additive difference (T ET is interpreted as 

the mean difference in cluster-step incidences for treated versus control clusters). In the 

general case where β3 may be nonzero, for a fixed s ∈ {1, …, J − 1}, define T ETs = β1 + β3 

* s, which is the treatment/vaccine effect s steps (i.e., sM months) after vaccination. The 

parameters T ETs measure how the treatment efficacy changes with time since vaccination.

While we do not evaluate it here, the glm with log link and Yij the estimated mean number 

of infections is also of interest. In this model the number of person-years at risk PYij is 

included as a fixed covariate (entered as an offset term). If β3 = 0, the population-average 

total treatment efficacy parameter of interest is T ET = 1 − exp(β1), the multiplicative 

reduction in the mean cluster-step incidences for treated versus control clusters. If the 

intervention is vaccine, then T ET equals V ET as defined by Halloran et al.31 The parameter 

T ETs = 1 − exp(β1 + β3 * s) is the treatment/vaccine effect s steps after treatment/

vaccination.

3 Estimation and testing

In this section we first describe approaches to estimating the HIV infection incidence for a 

given cluster-step. Second we summarize the standard sandwich SE and small-sample 

corrections.
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3.1 Estimation of cluster-step incidences

Estimates of the cluster-step incidences, E[Yij], are used as the summary statistic responses 

in the glm. As such the estimation of the E[Yij] and of the parameters in the glm are 

completely separate steps, and the goal in the first step is to choose an estimator that 

performs well in bias and variance. In the following, the beginning and end of step j for a 

subject is the time of the scheduled HIV test in calendar interval j − 1 and in calendar 

interval j, respectively. Let Nij be the number of subjects at-risk (HIV uninfected) and under 

follow-up at the beginning of step j, for j = 1, …, J − 1. If all subjects in cluster-step (i,j) 
have an HIV test at the beginning and end of the step, then Nij is known (based on HIV 

negative results at the beginning of the step) and E[Yij] may be estimated by p̂ij, the fraction 

of the Nij subjects with a positive test result at the end of the step. If some subjects are 

missing HIV test results at either edge of the step and if the missingness is completely at 

random, then the above estimator computed in subjects with complete testing data is 

consistent. However, if a missing at random (MAR) mechanism is more tenable and hence 

the complete-case estimator is not consistent, a method designed for MAR data is superior. 

(Here MAR means that whether HIV testing results are missing depends only on collected 

information from the subject, which could include individual- and cluster-level data.)

One MAR method would model the incidence of infections parametrically, and estimate 

E[Yij] by maximum likelihood. Because consistent estimation for this approach would rely 

on a correct parametric model, an alternative approach that would provide consistent 

estimation under a mis-specified parametric model would be augmented inverse probability 

weighting (AIPW)32. This method, while advantageous as a doubly robust method, could 

perform poorly if there is no reasonable model predicting whether a subject's HIV test 

results are observed, or if some of these estimated probabilities are outliers near zero33. The 

collaborative targeted maximum likelihood (collaborative tMLE) method is another option 

for a doubly robust method. It has been shown in simulations to often perform well in 

settings with outlying weights near zero, which is due to its targeting of the mean-variance 

tradeoff on the parameter of interest and to the fact that it is a substitution estimator that is 

guaranteed to fall in the parameter space34. Augmented GEE35 is another approach, which, 

like the above approaches, can increase precision for estimating E[Yij] by incorporating 

individual-level covariates that predict whether individuals are infected during the step.

A limitation of the methods described above is that HIV tests have a time-lag between the 

date of HIV acquisition and the time at which the test would yield a positive result (for 

antibody-based tests about 3 weeks and for antigen-based tests such as HIV-specific PCR 

about 1 week). Therefore, the most accurate way to assess HIV infection is to consider the 

infection time as interval censored, where there is a known window period during which 

each diagnosed infection is known to occur (for a typical HIV prevention trial the window 

would be 1 week before the last negative PCR test to 1 week before the first PCR positive 

test). To explicitly handle the interval censoring, a nonparametric maximum likelihood 

estimator of the distribution of all subjects may be used to obtain a consistent estimate of 

E[Yij] for each i, j.36
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3.2 Standard sandwich variance and corrections for handling a small number of clusters

We consider GEE for estimation and inference in model (1). This approach, introduced by 

Liang and Zeger,37 estimates β as the solution to an estimating equation (see Web Appendix 

A). GEE analysis typically uses the sandwich estimator of the variance matrix of β, which is 

consistent and asymptotically normal even when the working correlation is mis-specified; 

however, the estimator is biased (see Theorem 5.4 of Ziegler).29 This bias tends to 

underestimate the variance which leads to under-coverage of confidence intervals and 

inflated type I errors, particularly for the Wald test in small sample settings.

Numerous studies have been conducted and several solutions proposed to correct this bias 

and undercoverage (e.g., see Lu et al.38, the papers cited below, and the reviews of Ziegler29 

and Dahmen and Ziegler30). One solution is to abandon the use of the sandwich estimator 

and resort to either a Jackknife or bootstrap estimator of the variance. Other approaches use 

the sandwich estimator with adjustments to the Wald test, and less commonly to the score 

test39. We focus on the more common Wald tests in this paper.

There are three main ways of adjusting the Wald tests for small samples. One solution 

implements some form of bias correction on the variance, with approaches developed by Fay 

and Graubard,19 Mancl and DeRouen,20 Kauermann and Carroll,21 and Morel et al.22 

Theorem 5.21 of Ziegler29 shows that the Mancl and DeRouen,20 and modified Fay and 

Graubard29 (mFG) estimators are less biased than the usual sandwich variance estimator. 

This proof extends to the Kauermann and Carroll21 (KC) estimator since the KC variance-

covariance estimator is identical to that of mFG (proved in Web Appendix B). While the 

mFG and KC procedures are identical analytically, their implementation requires numerical 

inversion of different matrices. Typically this matrix has lower dimension for the mFG 

approach, such that the mFG method may be preferred to provide more numerically stable 

inference. Although we ran simulations with KC, the results are so close to those with mFG 

that the KC results are not presented. Based on the estimator formulas the Mancl and 

DeRouen20 (MD) variance estimator will tend to be larger than those of mFG and KC,38 

which is confirmed in the simulations. The Fay and Graubard variance estimator (see Web 

Appendix A) is similar to the mFG approach. The adjusted estimator of Morel et al.22 

(MBN) is additive and always positive such that the type I error rate of Wald tests is always 

smaller than Wald tests based on the uncorrected sandwich estimator. In summary, all three 

bias-corrected SE estimators (MD, mFG/KC, MBN) are guaranteed to confer better Type I 

error control of Wald tests in GEE than the standard sandwich estimator, and the simulation 

study provides insight into the comparative performance. Web Appendices A and B provide 

additional details on the four corrected SE methods that we study.

A second way of adjusting the Wald test is to assume that the working variance is correctly 

specified and there is a common correlation structure, and then to reduce the variability of 

the sandwich estimator by smoothing. For example, Pan (2001)40 smoothed by replacing 

individual Pearson residuals with their mean, Gosho et al. (2014)41 added a simple bias 

correction to Pan's method, and Wang and Long (2011)42 used regularization for smoothing. 

Since these approaches are less robust, we do not pursue these in this paper.

Scott et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A third adjustment takes into account the variability of the sandwich estimator and bases 

inferences on a t-distribution (or F-distribution) instead of a normal (or chi-square) 

distribution, an idea that parallels using a t-test instead of a Z-test.43 Combinations of the 

first and third solutions have been proposed19,21,43–45. Because (1) these combination 

approaches are often very similar, (2) the most recent work of Fan et al. (2012)45 does not 

show substantial improvement over the combination approach of Fay et al. (2001)19, and (3) 

the software is readily available in R to implement Fay et al. (2001), we focus on the latter 

combination approach in this article. In particular, in addition to studying three (mFG, MD, 

MBN) of the corrected-SE methods mentioned above using a reference normal distribution, 

we also study the Fay and Graubard19 δ5 (FG d5) approach (method=d5 in the saws R 

function). This approach uses the FG bias-corrected SE estimator and a reference t-

distribution with degrees of freedom estimated by a weighted average of covariance 

estimates of the terms of the estimating equation (d̃H in the paper). In models with more than 

one parameter, the FG d5 approach in general has different degrees of freedom for different 

parameters, which addresses the different amounts of variability in the variance estimator for 

each parameter.

Other small sample adjustments not explored in this paper are an adjustment to the mean 

parameters (as opposed to adjustments to the variance estimators noted above), see Paul and 

Zhang46. In addition to the F-statistic adjustments mentioned above, McCaffrey and Bell 

(2006)44 studied saddlepoint approximations for calculating p-values with bias corrected 

sandwich estimators.

4 Simulation study

4.1 Objectives of the simulation study

We address several scientific questions via a simulation study for a glm with identity link 

g(y) = y and hence a mean difference treatment/vaccine efficacy parameter T E. Negative 

values of T E indicate treatment/vaccine efficacy. For SW and parallel CRTs, we evaluate the 

following properties of inference based on GEE assuming asymptotic normality with the 

standard SE estimator and GEE with a small sample correction:

• Standard errors and coverage probabilities of Wald-based confidence intervals 

for the regression parameters in the glm.

• Size of tests for  and for  for s = 0, …, J − 1.

• Power of tests for  and  at various alternatives.

We study standard sandwich SE and MD-, MBN-, and mFG-corrected SEs; results for KC-

corrected SEs are not reported because the results were almost identical to those for mFG. 

We also study the FG d5 method.

We study three cluster sizes, 10, 20 and 50. The first choice was based on the need to have at 

least 10 clusters to allow adequately stable inference. The second and third numbers were 

chosen to represent a typical number and a number that should be representative of 

asymptotic results and is near the maximum of what is typically used in stepped wedge 

Scott et al. Page 8

Stat Methods Med Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRTs. A literature review of all published stepped wedge CRTs with at least 50 individuals 

per cluster on average showed that the mean and median number of clusters was 33 and 12, 

respectively, with interquartile range 7–29 (Supplementary Table 1 in Web Appendix C).

4.2 Simulation of vaccine trials

We study the following three scenarios for the true vaccine efficacy parameters:

Scenario 1:T ETs = T ET = 0 for all s = 0, …, J − 1 (complete null)

Scenario 2:T ETs = T ET for all s = 0, …, J − 1 and T ET < 0 (beneficial efficacy that is 

time-constant)

Scenario 3:T ETs decreasing in time s = 0, …, J − 1 (efficacy increases over the steps) CRTs 

are simulated in R version 2.14.0 by generating the number of infections for each cluster 

step from the linear marginal mean model in (1) without any extra covariates (X2ij):

(2)

where X1ij is defined as in Section 2.2 for cluster i and step j = 1, …, J. For parallel CRTs, 

 for all i, such that sij = j − 1 for all i, j, whereas for SW CRTs,  as 

described in Section 2.2.

The parameter β2 specifies how much the background incidence changes over time, and for 

simplicity we set β2 = 0. We choose β0 such that the mean HIV incidence over a step in non-

vaccinated cluster-steps is either 0.04 (Scenario 1) or 0.05 (Scenarios 2–3). Based on the fact 

that the additive difference vaccine efficacy parameters equal

in terms of model (2), we choose β1 and β3 to create the three scenarios: (1) T ETs = 0 for all 

s = 0, …, J − 1; (2) T ETs = −0.015 for all s = 0, …, J − 1; and (3) T ET0 = −0.008, T ET(J−1) 

= −0.03, and T ETs decreases linearly with s = 1, …, J − 2. Scenario 2 represents an 

antibody-based vaccine that protects only through a reduction in HIV acquisition, with 

protection established quickly without waning, whereas scenario 3 represents an antibody/T-

cell based combination vaccine that protects through indirect effects (on infectiousness and 

disease progression) that take time to accrue. Setting T ET0 near zero for scenario 3 is 

reasonable for a vaccine with no effect to reduce susceptibility, T ES = 0, given the time 

needed for indirect efficacy to accrue.

Vaccine trials are simulated to satisfy model (2). For each cluster i, the vector of estimated 

infection incidences (Yi1, …, YiJ)′ is generated from a multivariate normal distribution with 

E[Yij] = θij, Var[Yij] = 0.0005, and an AR-1 correlation structure (with linear correlation ρ = 

0.8) to account for the anticipated within-cluster correlation of the Yij's over the steps. In 
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addition, the case of independent Yij, j=1, …, J, for each i is considered to study sensitivity 

of inference to the within-cluster correlation structure (results presented in Web Appendix 

D).

To simulate SW and parallel trials via model (2) that follow each of the three scenarios 

above, simple math determines maps between values of θij and values of the true regression 

parameters β0, β1, and β3. In particular:

Scenario 1:θij = 0.04 for all i,j; β0 = 0.04, β1 = β3 = 0.

Scenario 2:θij = 0.05 for all i,j with X1ij = 0; θij = β0 + β1 = 0.035 for all i,j with X1ij = 1; 

β0 = 0.05, β1 = −0.015, β3 = 0

Scenario 3:θij = 0.05 for all i,j with X1ij = 0; θi1 = β0 + β1 = 0.042 with X1i1 = 1; β0 = 0.05, 

β1 = −0.008. For the parallel design, θij = 0.05 − 0.008 + β3(j − 1) for all i with X1ij = 1; β3 

= (0.02 − β0 − β1)/(J − 1) = −0.022/(J − 1). For the SW design, θij = 0.05 − 0.008 + β3(j − 1) 

for all i,j with sij = j − 1 and X1ij = 1; β3 = (0.02 − β0 − β1)/(J − 1) = −0.022/(J − 1).

In practice, lacking evidence of the interaction effect in scenarios 1–2 (i.e., analysis 

consistent with β3 = 0) would result in fitting a reduced form of model (2) excluding the 

interaction term. Consequently, we report operating characteristics for β1 in scenarios 1–2 

based on this reduced model.

This simulation approach supposes that complete HIV testing results are available; we focus 

on this relatively simple setting to focus attention on the performance of estimation and 

inference in the marginal mean model. Given the separation of the steps to estimate E[Yij] 

and to estimate the marginal mean model parameters, we can infer that the marginal mean 

inferences would perform similarly well (or better) if any of the AIPW, collaborative tMLE, 

or interval censoring approaches for estimating the E[Yij] were used, as long as they perform 

well for estimating the E[Yij]. For HIV prevention trial data sets the interval-censoring 

approach is appealing given that real data sets tend to have interval-censored infection times; 

however future work would be needed to conjoin this approach with the AIPW or 

collaborative tMLE methodology. The simulations use 5000 iterations.

4.3 Simulation results

The simulated data are analyzed with the standard sandwich approach and the four small 

sample corrections, using both the assumed correlation structure matching and mismatching 

the true correlation structure (as AR-1 for both the truth and the methods or as AR-1 for the 

truth and exchangeable for the methods), yielding very similar results. We report results for 

the mismatched case, as in practice some degree of mis-specification is expected. For all 

methods, we evaluate finite-sample bias of the standard errors of β̂1 and β̂3 in model (2) (or 

the reduced model for β1 in scenarios 1–2), as well as coverage probabilities of Wald-based 

95% confidence intervals for β1 and β3. (We also explored a null reference t-distribution 

with J-p degrees of freedom with p the number of coefficients in the linear predictor, but it 

yielded overly conservative Wald tests.) In addition, we investigate power of the Wald tests 

to reject  and to reject .
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Figure 3 and Web Figure 1 show that all standard error estimators accurately reflect the true 

variability in coefficient estimation for the setting with a large number of clusters (I=50), as 

expected. Also as expected, with a small number of clusters the uncorrected GEE standard 

error estimator is too small whereas all of the corrected estimators are more accurate. The 

mFG and FG d5 estimators appear to be the most accurate, closely tracking the sample 

standard errors calculated across the simulation runs, although in Web Figure 1 FG d5 

appears to slightly overestimate the SEs. MBN, MD and FG tend to be close or slightly 

conservative.

Figure 4 and Web Figure 2 show results on coverage probabilities. Recall that MBN, MD 

and mFG use the normal reference distribution, while FG d5 uses different t-distributions for 

β1 and β3. For MBN and MD, the combination of the conservative SE and the anti-

conservative use of the normal distribution can lead to close to nominal coverage in many 

cases. However, considering AR-1 within-cluster correlation, the MBN method has slightly 

low coverage probabilities for β3. In contrast to MBN and MD, the coverage of mFG tends 

to be anti-conservative because although its SE is close to the empirical SE, the use of the 

normal distribution leads to under-coverage. The best method in terms of guaranteeing 

coverage is the FG d5 method, giving at least nominal coverage even with only 10 clusters 

per group. The coverage for FG d5 can be overly large for some cases with 10 clusters.

Figure 5 and Web Figure 3 show that all of the corrected-GEE Wald tests have closer to 

nominal size than the standard Wald test. The apparent gain in power of some methods over 

others appears to be due primarily to the anti-conservative sizes, since the order of the sizes 

and the powers appears consistent across scenarios (with Standard having the highest size 

and power, and mFG having the next highest). Differences in power between the methods 

become negligible for larger numbers of clusters.

We observe that the underlying within-cluster correlation structure impacts relative 

efficiency and power comparing the SW versus parallel design. For example, independence 

of the Yij's leads to superiority of the parallel design in terms of efficiency and power for β1 

in scenario 2, whereas an AR-1 correlation leads to superiority of the SW design in the same 

setting. Overall, the small sample corrected methods have size closer to the nominal level, 

with the FG d5 being conservative or close to nominal, and MD or MBN being anti-

conservative or close to nominal. Thus, the choice between FG d5 and either MD of MBN 

depends on the importance of guaranteeing coverage versus maximizing power. The 

Standard or mFG methods are not recommended unless the cluster size is large.

5 Discussion

This article considers the use of generalized linear models for inference on population-

average parameters measuring total treatment efficacy over time in stepped wedge and 

parallel cluster randomized trials (CRTs). We focused on overcoming the challenge that 

CRTs typically have a small number of clusters, yet in this context the standard sandwich 

variance estimator for GEE is anti-conservative. We found that for this setting small-sample 

corrected GEE inferences allow GEE to provide Wald hypothesis testing procedures with 

closer to nominal size and confidence intervals with more correct coverage probabilities. In 
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particular, our analytical and empirical evaluation suggests that FG d5 has close to nominal 

or conservative coverage, MD and MBN have close to nominal or anti-conservative 

coverage, and mFG/KC has generally anti-conservative coverage. Therefore, for settings 

where anti-conservative inference is strongly unacceptable, we recommend the FG d5 

method, and, for settings where a slight inflation of the type I error rate is tolerable and 

maximizing power is at a premium, we recommend the MD or MBN method. Overall the 

spread between these three different methods is useful because it allows choices based on 

the context-dependent relative utility of maintaining type I error versus maximizing power.

A contribution of this work lies in the fact that most stepped wedge design analyses have 

used mixed models, yet marginal mean models may be preferred because they avoid the two 

drawbacks of mixed models that they rely on untestable assumptions about latent variable 

distributions and they require correctly specified error distributions for consistent estimation. 

Moreover, we discussed ways in which the approach can be combined modularly with 

methods to estimate the cluster-step disease incidences, for example allowing use of 

semiparametric efficient methods and allowing use of the methods that accommodate 

interval censoring of disease times. While GEE methods with finite-sample corrections have 

been evaluated for CRTs for parallel designs,23,38,47 we compared the performance of the 

four small sample corrected methods for stepped wedge versus parallel designs. We found 

that the level of correlation of cluster-step disease incidences across steps affects their 

relative power, where greater correlation implies greater relative power of the stepped wedge 

design, likely due to accounting for within-cluster information as well as between-cluster 

information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Treatment schedules for basic parallel, crossover, and stepped wedge cluster randomized 

trial designs. A “0” represents control and a “1” represents active treatment/vaccine.
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Figure 2. 
A sample of three participants from each of five clusters are shown, each randomized to start 

vaccine in different steps. The dashed lines represent the non-vaccinated follow-up while the 

solid lines represent the vaccinated follow-up. The hash marks during the accrual period 

represent participants' dates of entry into the study. The open circles denote the times at 

which participants are tested for HIV infection and the filled circles denote the times at 

which the participants are tested for HIV infection and vaccinated if HIV negative.
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Figure 3. 
Median standard-GEE, bias-corrected and empirical standard error (SE) estimates of β̂1 and 

β̂3 using the stepped wedge and parallel designs in simulation scenarios 1–3 with cluster-

step incidences satisfying the AR-1 correlation structure. The empirical SE estimate is 

computed as the sample standard deviation of the β̂ estimates. In scenarios 1–2, a reduced 

form of model (2) excluding the interaction term is considered for inference about β1.
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Figure 4. 
Coverage probabilities (CP) of 95% standard-GEE and small sample corrected Wald 

confidence intervals for β1 and β3 using the stepped wedge and parallel designs in 

simulation scenarios 1–3 with cluster-step incidences satisfying the AR-1 correlation 

structure. The horizontal band represents ±2 × Monte Carlo standard error. In scenarios 1–2, 

a reduced form of model (2) excluding the interaction term is considered for inference about 

β1
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Figure 5. 
Size and power of standard-GEE and small sample corrected Wald tests to reject the null 

hypotheses  and  at 5% significance level using the stepped wedge and 

parallel designs in simulation scenarios 1–3 with cluster-step incidences satisfying the AR-1 

correlation structure. For readability of the estimated sizes, size and power are plotted on the 

log scale. The horizontal band represents ±2 × Monte Carlo standard error.
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