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Abstract

We introduce a family of novel image regularization penalties called generalized higher degree 

total variation (HDTV). These penalties further extend our previously introduced HDTV penalties, 

which generalize the popular total variation (TV) penalty to incorporate higher degree image 

derivatives. We show that many of the proposed second degree extensions of TV are special cases 

or are closely approximated by a generalized HDTV penalty. Additionally, we propose a novel 

fast alternating minimization algorithm for solving image recovery problems with HDTV and 

generalized HDTV regularization. The new algorithm enjoys a ten-fold speed up compared to the 

iteratively reweighted majorize minimize algorithm proposed in a previous work. Numerical 

experiments on 3D magnetic resonance images and 3D microscopy images show that HDTV and 

generalized HDTV improve the image quality significantly compared with TV.

I. Introduction

The total variation (TV) image regularization penalty is widely used in many image 

recovery problems, including denoising, compressed sensing, and deblurring [1]. The good 

performance of the TV penalty may be attributed to its desirable properties such as 

convexity, invariance to rotations and translations, and ability to preserve image edges. 

However, the main challenges associated with this scheme are the undesirable patchy or 

staircase-like artifacts in reconstructed images, which arise because TV regularization 

promotes sparse gradients.

We recently introduced a family of novel image regularization penalties termed as higher 

degree TV (HDTV) to overcome the above problems [2]. These penalties are defined as the 

†Both authors have contributed equally to the paper.
1This is due to Euler’s rotation theorem [15] which states that every rotation in 3D can be represented as a rotation by an angle θ about 
a fixed axis u ∈ 2.
2We assume periodic boundary conditions in the convolution. Hence the resulting matrix operator is circulant.
3Or, more generally, the gram matrix A*A need be diagonalizable with the DFT.
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L1-Lp norm (p = 1 or 2) of the nth degree directional image derivatives. The HDTV penalties 

inherit the desirable properties of the TV functional mentioned above. Experiments on two-

dimensional (2D) images demonstrate that HDTV regularization provides improved 

reconstructions, both visually and quantitatively. Notably, it minimizes the staircase and 

patchy artifacts characteristic of TV, while still enhancing edge and ridge-like features in the 

image. The HDTV penalties were originally designed for 2D image reconstruction problems 

and were defined solely in terms of 2D directional derivatives. The direct extension of the 

current scheme to 3D is challenging due to the high computational complexity of our current 

implementation. Specifically, the iteratively reweighted majorize minimize (IRMM) 

algorithm that we used in [2] is considerably slower than state-of-the-art TV algorithms [3]–

[5].

In this work we extend HDTV to higher dimensions and to a wider class of penalties based 

on higher degree differential operators, and devise an efficient algorithm to solve inverse 

problems with these penalties; we term the proposed scheme generalized HDTV. The 

generalized HDTV penalties are defined as the L1-Lp norm, p ≥ 1, of all rotations of an nth 

degree differential operator. By design, the generalized HDTV penalties also inherit the 

desirable properties of TV and HDTV such as translation- and rotation-invariance, scale 

covariance, as well as convexity. Furthermore, generalized HDTV penalties allow for a 

diversity of image priors that behave differently in preserving or enhancing various image 

features—such as edges or ridges—and may be finely tuned for the specific image 

reconstruction task at hand. Our new algorithm is based on an alternating minimization 

scheme, which alternates between two efficiently solved subproblems given by a shrinkage 

and the inversion of a linear system. The latter subproblem is much simpler to solve if the 

measurement operator has a diagonal form in the Fourier domain, as is the case for many 

practical inverse problems, such as denosing, deblurring, and single coil compressed sensing 

magnetic resonance (MR) image recovery. We find that this new algorithm improves the 

convergence rate by a factor of ten compared to the IRMM scheme, making the framework 

comparable in run time to the state-of-the-art TV methods.

We study the relationship between the generalized HDTV scheme and existing second 

degree TV generalizations [6]–[12]. Specifically, we show that many of the second degree 

TV generalizations (e.g. Laplacian penalty [6]–[8], the Frobenius norm of the Hessian [9], 

[13], and the recently introduced Hessian-Shatten norms [12]) are special cases or equivalent 

to the proposed HDTV scheme, when the differential operator in the HDTV regularization is 

chosen appropriately. The main benefit of the generalized HDTV framework is that it 

extends to higher degree image derivatives (n ≥ 2) and higher dimensions easily. 

Furthermore, our current implementation is considerably faster than many of the existing TV 

generalizations. We also observe that some of the current TV generalizations may result in 

poor reconstructions. For example, the penalties that promote the sparsity of the Laplacian 

operators have a large null space [14], and inverse problems regularized with such penalties 

may still be ill-posed. Moreover, Laplacian-based penalties are known to preserve point-like 

features rather than line-like features, which is also undesirable in many image 

reconstruction settings.
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We compare the convergence of the proposed algorithm with our previous IRMM 

implementation. Our results show that the proposed scheme is around ten times faster than 

the IRMM method. We also demonstrate the utility of HDTV and generalized HDTV 

regularization in the context of practical inverse problems arising in medical imaging, 

including deblurring and denoising of 3D fluorescence microscope images, and compressed 

sensing MR image recovery of 3D angiography datasets. We show that 3D-HDTV routinely 

outperforms TV in terms of the SNR of reconstructed images and its ability to preserve 

ridge-like details in the datasets. We restrict our comparisons with TV since the 

implementations of many of the current extensions are only available in 2D; comparisons 

with these methods are available in [2]. Moreover, some of the TV extensions, like total 

generalized variation [11], are hybrid methods that combines derivatives of different 

degrees. The proposed HDTV scheme may be extended in a similar fashion, but it is beyond 

the scope of the present work.

II. Background

A. Image Recovery Problems

We consider the recovery of a continuously differentiable d-dimensional signal f : Ω → ℂ 

from its noisy and degraded measurements b. Here Ω ⊂ ℝd is the spatial support of the 

image. We model the measurements as y = (f) + η, where η is assumed to be Gaussian 

distributed white noise and  is a linear operator representing the degradation process. For 

example,  may be a blurring (or convolution) operator in the deconvolution setting, a 

Fourier domain undersampling operator in the case of compressed sensing MR images 

reconstruction, or identity in the case of denoising. The operator  may be severely ill-

conditioned or non-invertible, so that in general recovering f from its measurements requires 

some form of regularization of the image to ensure well-posedness. Hence, we formulate the 

recovery of f as the following optimization problem

(1)

where ‖ (f) − b‖2 is the data fidelity term,  (f) is a regularization penalty, and the 

parameter λ balances the two terms, and is chosen so that the signal-to-error ratio is 

maximized.

B. Two-dimensional HDTV

In 2D, the standard isotropic TV regularization penalty is the L1 norm of the gradient 

magnitude, specified as

In [2] we showed that the 2D-TV penalty can be reinterpreted as the mixed L1–L2 norm or 

the L1-L1 of image directional derivatives. This observation led us to propose two families 

of HDTV regularization penalties in 2D, specified by
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(2)

(3)

where fθ,n is the nth degree directional derivative operator in the direction uθ = [cos(θ), 

sin(θ)], defined as

The family of penalties defined by (2) and (3) were termed as isotropic and anisotropic 

HDTV, respectively. It is evident from (2) and (3) that 2D-HDTV penalties preserve many 

of the desirable properties of the standard TV penalty, such as invariance under translations 

and rotations and scale covariance. Furthermore, practical experiments in [2] demonstrate 

that HDTV regularization outperforms TV regularization in many image recovery tasks, in 

terms of both SNR and the visual quality of reconstructed images. Our experiments also 

indicate that the anisotropic case, which corresponds to the fully separable L1-L1 penalty, 

typically exhibits better performance in image recovery tasks over isotropic HDTV.

III. Generalized HDTV Regularization Penalties

The 2D-HDTV penalties given in (2) and (3) may be described as penalizing all rotations in 

the plane of the nth degree differential operator . This interpretation suggests an extension 

of HDTV to higher dimensions, and to a wider class of rotation invariant penalties based on 

nth degree image derivatives, by penalizing all rotations in d-dimensions of an arbitrary nth 

degree differential operator  = ∑|α|=n cα∂α, where α is a multi-index and the cα are 

constants. Thus, given a specific nth degree differential operator , and p ≥ 1, we define the 

generalized HDTV penalty for d-dimensional signals f : Ω → ℂ as

(4)

where SO(d) = {U ∈ ℝd×d : UT = U−1, det U = 1} is the special orthogonal group, i.e. the 

group of all proper rotations in ℝd, and U is the rotated operator defined as

By design the generalized HDTV penalties are guaranteed to be rotation and translation 

invariant, and convex for all p ≥ 1. It is also clear they are contrast and scale covariant, i.e. 

for all α ∈ ℝ, (α · f) = |α| (f) and (fα) = |α|n−d (f), where fα(x) ≔ f(α · x). Below we 

discuss some particular cases for which (4) affords simplifications.
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1) Generalized HDTV penalties in 2D

The 2D rotation group SO(2) can be identified with the unit circle 1 = {(cos θ, sin θ) : θ ∈ 

[0,2π]}, which allows us rewrite the integral in (4) as a one-dimensional integral over θ ∈ 

[0,2τ]. By choosing  and p = 2, 1 we recover the isotropic and anisotropic HDTV 

penalties specified in (2) and (3). In this work we also consider 2D-HDTV penalties for 

arbitrary p ≥ 1,

(5)

For the p = 1 case we will simply write HDTVn, i.e. HDTVn = HDTV[n, 1].

For a generalized HDTV penalty in 2D, where  is an arbitrary nth degree differential 

operator, we may also write

(6)

where θf(r0) = [f(r0 + Uθr)]|r=0, and Uθ is a coordinate rotation about the origin by the 

angle θ.

2) Generalized HDTV penalties in 3D

The 3D rotation group SO(3) has a more complicated structure so that in general we cannot 

simplify the integral in (4). However, all rotations in 3D of the standard HDTV operator 

 are specified solely by the orientations u ∈ 2 = {u ∈ ℝ3 : ‖u‖ = 1}. Thus, in this case 

the integral in (4) simplifies to

(7)

where fu,n is the nth degree directional derivative defined as

Likewise, if an operator  is rotation symmetric about an axis, then all rotations of  in 3D 

can be specified by the unit directions1 u ∈ 2. For example, the 2D Laplacian Δ = ∂xx +∂yy 

embedded in 3D is rotation symmetric about the z-axis, so that any rotation of Δ is specified 

solely by the u ∈ 2 to which z = [0,0,1] is mapped. For this class of operator the integral in 

(4) simplifies to

(8)

where uf(r0) = [f(r0 + Ur)]|r=0 for any U ∈ SO(3) that maps the axis of symmetry of  to 

u.
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3) Rotation Steerability of Derivative Operators

The direct evaluation of the above integrals by their discretization over the rotation group is 

computationally expensive. The computational complexity of implementing HDTV 

regularization penalties can be considerably reduced by exploiting the rotation steerable 

property of nth degree differential operators. Towards this end, note that the first degree 

directional derivatives fu,1 have the equivalent expression

Similarly, higher degree directional derivatives fu,n(r) can be expressed as the separable 

vector product

where, s(u) is vector of polynomials in the components of u and Δnf(r) is the vector of all 

nth degree partial derivatives of f. For example, in the second degree case (n = 2) in 2D, we 

may choose

(9)

In the case of a general nth degree differential operator , by repeated application of the 

chain rule we may write the rotated operator U for any U ∈ SO(d) as

(10)

where s(U) is a vector of polynomials in the components of U, whose exact expression will 

depend on the choice of operator . For example, the second degree 2D operator  = ∂xx + 

α∂yy would have

Note that (10) shows that the choice of differential operator  defining a generalized HDTV 

penalty only amounts to a different choice of steering function s(U) as specified in (10). This 

property will be useful in deriving a unified discrete framework for generalized HDTV 

penalties.

We now study the relationship of the generalized HDTV scheme with second degree 

extensions of TV in the recent literature. We show that many of them are related to the 

second degree (n = 2) generalized HDTV penalties, when the derivative operator is chosen 

appropriately. Specifically, the general second degree derivative operator has the form  = 

∑|α|=2 cα∂α, and we will show that different choices of the coefficients cα and p in (4) 

encompass many of the proposed regularizers.
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A. Laplacian Penalty—One choice of  is the Laplacian Δ, where Δ = ∂xx + ∂yy in 2D 

and Δ = ∂xx + ∂yy + ∂zz in 3D. Note that the Laplacian is rotation invariant, so that ΔUf = Δf 

for all U ∈ SO(d). Thus, for any choice of p in (4), we obtain the penalty

which was introduced for image denoising in [6]. This penalty has two major disadvantages. 

First of all, it has a large null space. Specifically, any function that satisfies the Laplace 

equation (Δf(r) = 0) will result in Δ(f) = 0. As a result, the use of this regularizer to 

constrain general ill-posed inverse problems is not desirable. Another problem is that due to 

the Laplacian being isotropic, its use as a penalty results in the enhancement of point-like 

features rather than line-like features.

B. Frobenius Norm of Hessian—Another interesting case corresponds to the second 

degree 2D operator . The corresponding isotropic (p = 2) 

generalized HDTV penalty is thus given by

where fθ⊥,2(r) is the second derivative of f along . Using the rotation steerability of 

second degree directional derivatives we have fθ,2(r) = fxx(r) cos2 θ +fyy(r) sin2 θ +2fxy(r) 

cos θ sin θ, and the expression for [ , 2](f) simplifies to

(11)

for a constant c. This functional can be expressed as [ , 2](f) = ∫Ω ‖ℋf‖F dr, where ℋf is 

the Hessian matrix of f(r) and ‖·‖F is the Frobenius norm. This second order penalty was 

proposed by [9], and can also be thought of as the straightforward extension of the classical 

second-degree Duchon’s seminorm [14]. A similar argument shows an isotropic generalized 

HDTV penalty is equivalent to the Frobenius norm of the Hessian in 3D, as well.

C. Hessian-Shatten Norms—One family of second degree penalties that generalize (11) 

are the Hessian-Shatten norms recently introduced by Lefkimmiatis et al. in [12]. These 

penalties are defined as

(12)

where ℋf is the Hessian matrix of f, and ‖·‖ p is the Shatten p-norm defined as ‖X‖ p = 

‖σ(X)‖p, where σ(X) is a vector containing the singular values of the matrix X. The Schatten 

norm is equal to the Frobenius norm when p = 2, thus the penalty HS2 is equivalent to the 

generalized HDTV penalty [ , 2] given in (11). For p ≠ 2, the Hessian-Shatten norms are 
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not directly equivalent to a generalized HDTV penalty. However, there is a close 

relationship between the p = 1 case of (12) and the anisotropic second degree HDTV 

penalty, HDTV2. Specifically, we have the following proposition, which we prove in the 

Appendix:

Proposition 1: The penalties HDTV2 and HS1 are equivalent as semi-norms over 2(Ω, ℝ), 

Ω ⊂ ℝd, in dimension d = 2 or 3, with bounds

where δ = 0.37 for d = 2, δ = 0.43 for d = 3, and C is a normalization constant independent 

of f.

Note that in the Appendix we show C · HDTV2(f) = HS1(f) if the Hessian matrices of f at all 

spatial locations are either positive or negative semi-definite, i.e. have all non-negative 

eigenvalues or all non-positive eigenvalues. In natural images only a fraction of the pixels or 

voxels will have Hessian eigenvalues with mixed sign, thus we expect the HS1 and HDTV2 

penalties to be nearly proportional and to behave very similarly in applications. Our 

experiments in the results section are consistent with this observation.

D. Benefits of HDTV—The preceding shows that the generalized HDTV penalties 

encompass many of the proposed image regularization penalties based on second degree 

derivatives, or in the case of certain Hessian-Shatten norms, closely approximate them. The 

generalized HDTV penalties have the additional benefit of being extendible to derivatives of 

arbitrary degree n > 2. Additionally, a wide class of image recovery problems regularized 

with any of the various HDTV penalties—regardless of dimension d, degree n, choice of 

differential operator —can all be put in a unified discrete framework, and solved with the 

same fast algorithm, which we introduce in the following section.

IV. Fast Alternating Minimization Algorithm for HDTV Regularized Inverse 

Problems

A. Discrete Formulation

We now give a discrete formulation of the problem (1) with generalized HDTV 

regularization. In this setting we consider the recovery of a discrete d-dimensional image (d 

= 2 or 3), according to a linear observation model

where matrix A ∈ ℂM×N represents the linear degradation operator, x ∈ ℂN and b ∈ ℂM are 

vectorized versions of the signal to be recovered and its measurements, respectively, and n 
∈ ℂM is a vector of Gaussian distributed white noise.

We represent the rotated discrete derivative operators u for u ∈ , where  = SO(d) or 
d−1 where appropriate, by block-circulant2 N × N matrices Du; that is, the multiplication 
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Dux corresponds to the multi-dimensional convolution of x with a discrete filter 

approximating u. Thus, the image recovery problem (1) in the discrete setting with 

generalized HDTV regularization is given by

(13)

In the case that p > 1, designing an efficient algorithm for solving (13) is challenging due to 

the non-separability of the generalized HDTV penalty. Moreover, our experiments from [2] 

indicate the anisotropic case p = 1 typically exhibits better performance in image recovery 

tasks over the p > 1 case. Accordingly, for our new algorithm we will focus on the p = 1 

case:

(14)

Note that the regularization is essentially the sum of absolute values of all the entries of the 

signals Dux. Extending our algorithm to general p, including the nonconvex case 0 < p < 1, 

is reserved for a future work.

B. Algorithm

To realize a computationally efficient algorithm for solving (14), we modify the half-

quadratic minimization method [16] used in TV regularization [3], [17] to the HDTV 

setting. We approximate the absolute value function inside the ℓ1 norm with the Huber 

function:

The approximate optimization problem for a fixed β > 0 is thus specified by

(15)

Here, [x]j denotes the jth element of x. Note that this approximation tends to the original 

HDTV penalty as β → ∞. Our use of the Huber function is motivated by its half-quadratic 

dual relation [17]:

This enables us to equivalently express (15) as

(16)
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where zu ∈ ℂN are auxiliary variables that we also collect together as z ∈ ℂN × . We rely 

on an alternating minimization strategy to solve (16) for x and z. This results in two 

efficiently solved subproblems: the z-subproblem, which can be solved exactly in one 

shrinkage step, and the x-subproblem which involves the inversion of a linear system that 

often can be solved in one step using discrete Fourier transforms. The details of these two 

subproblems are presented below. To obtain solutions to the original problem (14), we rely 

on a continuation strategy on β. Specifically, we solve the problems (15) for a sequence βn 

→ ∞, warm starting at each iteration with the solution to the previous iteration, and 

stopping the algorithm when the relative error of successive iterates is within a specified 

tolerance.

C. The z-subproblem: Minimization with respect to z, assuming x fixed

Assuming x to be fixed, we minimize the cost function in (16) with respect to z, which gives

Note that since the objective is separable in each component [zu]j of zu we may minimize 

the expression over each [zu]j independently. Thus, the exact solution to the above problem 

is given component-wise by the soft-shrinkage formula

(17)

where we follow the convention . While performing the shrinkage step in (17) is not 

computationally expensive, the need to store the auxiliary variables zu ∈ ℂN for many u ∈ 

will make the algorithm very memory intensive. However, we will see in the next subsection 

that the rest of the algorithm does not need the variable z explicitly, but only its projection 

onto a small subspace, which significantly reduces the memory demand.

D. The x-subproblem: Minimization with respect to x, assuming z to be fixed

Assuming that z is fixed, we now minimize (16) with respect to x, which yields

The above objective is quadratic in x, and from the normal equations its minimizer satisfies

(18)

We now exploit the steerability of the derivative operators to obtain simple expressions for 

the operator  and the vector . The discretization of (10) yields Du = 

∑j sj(u)Ej, where Ej for j = 1, …, P are circulant matrices corresponding to convolution with 
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discretized partial derivatives and si(u) are the steering functions. This expression can be 

compactly represented as S(u)E, where  and S(u) = [s1(u) I, s2(u) I,…, sP 

(u) I]. Here, I denotes the N × N identity matrix, where N is the number of pixels (x ∈ ℂN). 

Thus,

The C matrix is essentially the tensor product between Q = ∫  s(u)T s(u) du and IN×N. 

Hence we may write , where qi,j is the (i, j) entry of Q. Note 

that the matrix Q can be computed exactly using expressions for the steering functions s(u). 

For example, with 2D-HDTV2 regularization (i.e. s(u) as given in (9)) one can show that up 

to a scaling factor,

which gives .

Similarly, we rewrite

(19)

To compute q we may use a numerical quadrature scheme to approximate the integral over 

, i.e. we approximate , where the samples ui ∈  and weights wi, i = 

1, …, K, are determined by the choice of quadrature; more details on the choice and 

performance of specific quadratures are given below. Note that the above equation implies 

that we only need to store P images specified by the vector q, which is much smaller than 

the number of samples K required to ensure a good approximation of the integral. This 

considerably reduces the memory demand of the algorithm.

In general, the linear equation (18) may be readily solved using a fast matrix solver such as 

the conjugate gradient algorithm. Note that the matrices Ej are circulant matrices and hence 

are diagonalizable with the discrete Fourier transform (DFT). When the measurement 

operator A is also diagonalizable with the DFT3, (18) can be solved efficiently in the DFT 

domain, as we now show in a few specific cases:

1) Fourier Sampling—Suppose A samples some specified subset of the Fourier 

coefficients of an input image x. If the Fourier samples are on a Cartesian grid, then we may 

write A = Sℱ, where ℱ is the d-dimensional discrete Fourier transform and S ∈ ℝM×N is the 
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sampling operator. Then (18) can be simplified by evaluating the discrete Fourier transform 

of both sides. We obtain an analytical expression for x as:

(20)

Here, ℱ [ETCE] is the transfer function of the convolution operator ETCE. When the 

Fourier samples are not on the Cartesian grid (for example, in parallel imaging), where the 

one step solution is not applicable, we could still solve (18) using preconditioned conjugate 

gradient iterations.

2) Deconvolution—Suppose A is given by a circular convolution, i.e. Ax = h * x, then 

ℱ[Ax] = H · ℱ[x] and ℱ[AT y] = H̄ · ℱ[y], where H = ℱ[h] and H̄ denotes the complex 

conjugate of H. Taking the discrete Fourier transform on both sides, (18) can be solved as:

(21)

The denoising setting corresponds to the choice A = I, the identity operator, in which case H 
= 1, the vector of all ones.

E. Discretization of the derivative operators

The standard approach to approximate the partial derivatives is using finite difference 

operators. For example, the derivative of a 2D signal along the x dimension is approximated 

as q[k1, k2] = f[k1 +1, k2] − f[k1, k2] = Δ1 * f. This approximation can be viewed as the 

convolution of f by , where φ(x) = ∂B1(x)/∂x and B1(x) is the first degree B-

spline [18]. However, this approximation does not possess rotation steerability, i.e. the 

directional derivative can not be expressed as the linear combination of the finite differences 

along x and y directions.

To obtain discrete operators that are approximately rotation steerable, in the 2D case we 

approximate the nth order partial derivatives,  for all n1 + n2 = n, as the 

convolution of the signal with the tensor product of derivatives of one-dimensional B-spline 

functions:

(22)

for all k1, k2 ∈ ℕ, where  denotes the mth order derivative of a nth degree B-spline. 

In order to obtain filters with small spacial support, we choose the δ according to the rule
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The shift δ implies that we are evaluating the image derivatives at the intersection of the 

pixels and not at the pixel midpoints. This scheme will result in filters that are spatially 

supported in a (n+1)×(n+1) pixel window. Likewise, in the 3D case we approximate the nth 

order partial derivatives,  for all n1 +n2 +n3 = n, as

(23)

for all k1, k2, k3 ∈ ℕ with the same rule for choosing δ which results in filters supported in a 

(n + 1)3 volume.

While the tensor product of B-spline functions are not strictly rotation steerable, B-splines 

approximate Gaussian functions as their degree increases, and the tensor product of 

Gaussians is exactly steerable. Hence, the approximation of derivatives we define above is 

approximately rotation steerable; see Fig. 1. However, the support of the filters required for 

exact rotation steerability is much larger than the B-spline filters. These larger filters were 

observed to provide worse reconstruction performance than the B-spline filters. Thus the B-

spline filters represent a compromise between filters that are exactly steerable but have large 

support, and filters that have small support but are poorly steerable.

F. Numerical quadrature schemes for SO (d) and d−1

Our algorithm requires us to compute the projected shrinkage q in (19), which is defined as 

an integral over  = SO(d) or d−1. We approximate this quantity using various numerical 

quadrature schemes depending on the space . In the 2D case, we may simply parameterize 

u ∈ 1 as uθ = [cos(θ), sin(θ)], then approximate with a Riemann sum by discretizing the 

parameter θ as , for i = 1, …, K, where K is the specified number of sample points. In 

this case we find K ≥ 16 samples yields a suitable approximation, in the sense that the 

optimal SNR of reconstructions obtained under various generalized HDTV penalties are 

unaffected by increasing the number of samples; see plot (a) in Fig. 2.

In higher dimensions the analgous Riemann sum approximations become inefficient, and 

instead we make use of more sophisticated numerical quadrature rules. To approximate 

integrals over the sphere 2 we apply Lebedev quadrature schemes [19]. These schemes 

exactly integrate all polynomials on the sphere up to a certain degree, while preserving 

certain rotational symmetries among the sample points. This is advantageous because the 

number of sample points can be significantly reduced if the derivative operators Du obey 

any of the same rotational symmetries. In general, we find that Lebedev schemes with K ≥ 

76 sample points provide a suitable approximation; see plot (b) in Fig. 2. Additionally, we 

note that for integrals over SO(3) we may design efficient quadrature schemes by taking the 

product of a 1D uniform quadrature scheme and a Lebedev scheme. We refer the interested 

reader to [20] for more details.
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G. Algorithm Overview

Algorithm

FAST HDTV(A, b, λ)

M ← 1

β ← βinit, x ← ATb

while M < MaxOuterIterations

do

m ← 1

while m < MaxInnerIterations

do

Compute partial derivatives using (22) or (23)

Compute rotated operator outputs Duix using (10)

Update zui based on [Duix]j using shrinkage rule (17)

Compute projected shrinkage q using (19)

Update x based on q using (20), (21)

m ← m + 1

β ← β * βincfactor

M ← M + 1

return (x)

The pseudocode for the fast alternating HDTV algorithm is shown above. In our 

experiments we use the continuation scheme βn+1 = βinc · βn for some constant βinc > 1 and 

initial β0. We warm start each new iteration with the estimate from the previous iteration, 

and stop when a given convergence tolerance has been reached; we evaluate the 

performance of the algorithm under different choices of β0 and βinc in the results section. We 

typically use 10 outer iterations (MaxOuterIterations = 10) and a maximum of 10 inner 

iterations (MaxInnerIterations = 10). The algorithm is terminated when the relative change 

in the cost function is less than a specified threshold.

V. Results

We compare the performance of the proposed fast 2D-HDTV algorithm with our previous 

implementation based on IRMM. We also study the improvement offered by the proposed 

2D- and 3D-HDTV schemes over classical TV methods in the context of applications such 

as deblurring and recovery of MRI data from under sampled measurements. We omit 

comparisons with other 2D-TV generalizations since extensive comparisons were performed 

in our previous paper [2]. In each case, we optimize the regularization parameters to obtain 

the optimized SNR to ensure fair comparisons between different schemes. The signal to 

noise ratio (SNR) of the reconstruction is computed as:

(24)
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where x̂ is the reconstructed image, xorig is the original image, and ‖·‖F is the Frobenius 

norm.

A. Two-dimensional HDTV using fast algorithm

1) Convergence of the fast HDTV algorithm—We investigate the effect of the 

continuation parameter β and the increment rate βinc on the convergence and the accuracy of 

the algorithm. For this experiment, we consider the reconstruction of a MR brain image with 

acceleration factor 1.65 using the fast HDTV algorithm. The cost as a function of the 

number of iterations and the SNR as a function of the CPU time is plotted in Fig. 3. We 

observe that with different combinations of starting values of β and increment rate βinc, the 

convergence rates of the algorithms are approximately the same and the SNRs of the 

reconstructed images are around the same value. However, when we choose the parameters 

as β = 15 and βinc = 2, which are the smallest among the parameters chosen in the 

experiments, the SNR of the recovered image is comparatively lower than the others. This 

implies that in order to enforce full convergence the final value of β needs to be sufficiently 

large.

2) Comparison of the fast HDTV algorithm with iteratively reweighted HDTV 
algorithm—In this experiment, we compare the proposed fast HDTV algorithm with the 

IRMM algorithm in the context of the recovery of a brain MR image with acceleration factor 

of 4 in Fig. 4. Here we plot the SNR as a function of the CPU time using TV and second 

degree HDTV with the IRMM algorithm and the proposed algorithm, respectively. We 

observe that the proposed algorithm (blue curve) takes around 20 seconds to converge 

compared to 120 seconds by IRMM algorithm (blue dotted curve) using TV penalty, and 30 

seconds (red curve) compared to 300 seconds (red dotted curve) using second degree HDTV 

regularization. Thus, we see that the proposed algorithm accelerates the problem 

significantly (ten-fold) compared to IRMM method.

3) Comparison of related algorithms—In order to demonstrate the utility of HDTV, 

we compare its performance with standard TV and two state-of-the-art schemes using higher 

order image derivatives, i.e, 1) the Hessian-Shatten norm p = 1 regularization penalty [12], 

which we refer to as HS1 regularization; 2) the total generalized variation scheme [11], 

referred to as TGV regularization. In Fig. 5, we have compared second and third degree 

HDTV with TV, HS1, and TGV regularization in the context of deblurring of a microscopy 

cell image of size 450×450. The original image is blurred with a 5×5 Gaussian filter with 

standard deviation 1.5, with additive Gaussian noise of standard deviation 0.05. We observe 

that the TV deblurred image has patchy artifacts and washes out the cell textures, while the 

higher degree schemes, including HDTV2, HDTV3, and HS1, gave very similar results 

(shown from (c) to (f)) with more accurate reconstructions, improving the SNR over 

standard TV by approximately 0.5 dB.

In Table I we present quantitative comparisons of the performance of the regularization 

schemes on six test images, in the context of compressed sensing, denoising, and deblurring. 

We observe that HDTV regularization provides the best SNR among schemes that only rely 

on single degree derivatives. The comparison of the proposed methods against TGV, which 
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is a hybrid method involving first and second degree derivatives, show that in some cases 

the TGV scheme provides slightly higher SNR than the HDTV methods. However, we did 

not observe significant perceptual differences between the images. All higher degree 

schemes routinely outperform standard TV.

We also note that in Proposition 1 we demonstrated a theoretical equivalence between 

HDTV2 and HS1 regularization penalties in a continuous setting. These experiments 

confirm that the discrete versions of these penalties perform similarly in image 

reconstruction tasks.

B. Three-dimensional HDTV

In the following experiments we investigate the utility of HDTV regularization in the 

context of compressed sensing, denoising, and deconvolution of 3D datasets. Specifically, 

we compare image reconstructions obtained using the second and third degree 3D-HDTV 

penalty versus the standard 3D-TV penalty.

1) Compressed Sensing—In these experiments we consider the compressed sensing 

recovery of a 3D MR angiography dataset from noisy and undersampled measurements. We 

experiment on a 512×512×76 MR dataset obtained from [21], which we retroactively 

undersampled using a variable density random Fourier encoding with acceleration factor of 

1.5. To these samples we also added 5 dB Gaussian noise with standard deviation 0.53. 

Shown in Fig. 6 are the maximum intensity projections (MIP) of the reconstructions 

obtained using various schemes. We observe that there is a 0.4 dB improvement in 3D-

HDTV over standard 3D-TV, and we also note that 3D-HDTV preserves more line details 

compared with standard 3D-TV. In Fig. 7 we present zoomed details of the two marked 

regions in Fig. 6. We observe that 3D-HDTV provides more accurate and natural-looking 

reconstructions, while 3D-TV result has some patchy artifacts that blur the details in the 

image.

2) Deconvolution—We compare the deconvolution performance of the 3D-HDTV with 

3D-TV. Fig. 8 shows the decovolution results of a 3D fluorescence microscope dataset 

(1024 × 1024 × 17). The original image is blurred with a Gaussian filter of size 5 × 5 × 5 

with standard deviation of 1, with additive Gaussian noise of standard deviation 0.01. The 

results show that 3D-HDTV scheme is capable of recovering the fine image features of the 

cell image, resulting in a 0.3 dB improvement in SNR over 3D-TV.

The SNRs of the recovered images in the context of different applications are shown in 

Table. II. We observe that the HDTV methods provide the best overall SNR for all of the 

cases, in which 3D-HDTV2 gives the best SNR for compressed sensing settings, and the 

3D-HDTV3 method provides the best SNR for denoising and deblurring cases. Compared 

with 3D-TV scheme, the 3D-HDTV schemes improve the SNR of the reconstructed images 

by around 0.5 dB.
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VI. Discussion and Conclusion

We introduce a family of novel image regularization penalties called generalized higher 

degree total variation (HDTV). These penalties are essentially the sum of ℓp, p ≥ 1, norms of 

the convolution of the image by all rotations of a specific derivative operator. Many of the 

second degree TV extensions can be viewed as special cases of the proposed penalty or are 

closely related. We also introduce an alternating minimization algorithm that is considerably 

faster than our previous implementation for HDTV penalties; the extension of the proposed 

scheme to three dimensions is mainly enabled by this speedup. Our experiments demonstrate 

the improvement in image quality offered by the proposed scheme in a range of image 

processing applications.

This work could be further extended to account for other noise models. We assumed the 

quadratic data-consistency term in (1) for simplicity. Since it is the negative log-likelihood 

of the Gaussian distribution, this choice is only optimal for measurements that are corrupted 

by Gaussian noise. However, the proposed framework can be easily extended to other noise 

distributions by replacing the data fidelity term by the negative log-likelihood of the 

specified noise distribution. We do not consider these extensions in this work since our 

focus is only on modifying the regularization penalty.

Another direction for future research is to futher improve on our algorithm. The proposed 

version is based on a half-quadratic minimization method, which requires the parameter β to 

go infinity to ensure the equivalence of the auxiliary variables zu to Du (see (16)). It is 

shown by several authors that high β values are often associated with slow convergence and 

stability issues; augmented Lagrangian (AL) methods or the split Bregman methods were 

introduced to avoid these problem in the context of total variation and ℓ1 minimization 

schemes [22], [23]. These methods introduce additional Lagrange multiplier terms to 

enforce the equivalence, thus avoiding the need for large β values. However, these schemes 

are infeasible in our setting since we need as many Lagrange multiplier terms as the number 

of directions ui needed for accurate discretization; the associated memory demand is large. 

We implemented AL schemes in the 2D setting, but the improvement in the convergence 

was very small and did not justify the significant increase in memory demand. The challenge 

then is to design an algorithm for HDTV that exhibits the enhanced convergence properties 

of the AL method while maintaining a low memory footprint. This is something we hope to 

explore in a future work.

Acknowledgments

This work is supported by grants NSF CCF-0844812, NSF CCF-1116067, NIH 1R21HL109710-01A1, ACS 
RSG-11-267-01-CCE, and ONR-N000141310202.

APPENDIX

A. Proof of Proposition 1

The HDTV2 penalty can be expressed using the Hessian matrix as
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where Φ(ℋf(r)) ≔ ∫ d−1 |uTℋf(r)u| du. Since the Hessian is a real symmetric matrix, it has 

the eigenvalue decomposition ℋf(r) = Udiag(λf (r))UT where U = U(r) is a unitary matrix, 

and λf (r) is a vector of the Hessian eigenvalues. Thus, by a change of variables

(25)

Because the singular values of a symmetric matrix are the absolute value of its eigenvalues, 

we have ‖ℋf(r)‖ 1 = ‖λf (r)‖1, and together with (25) this gives the factorization

(26)

To prove the claim it suffices to establish bounds for Φ0. By the triangle inequality we have

If we further suppose the Hessian eigenvalues λf (r) = (λ1(r), …, λd(r)) are all non-negative, 

then u*diag(λf (r))u ≥ 0 for all u ∈ d−1, and so we may remove the absolute value from the 

integrand in Φ0. Consider the vector-valued function F(v) = diag(λf (r))v defined on the unit 

ball Bd = {v ∈ ℝd : |v| ≤ 1}. Note that for u ∈ d−1, the surface normal n(u) = u, hence we 

have

and so by the divergence theorem

where Vd is the volume of Bd. A similar argument holds when the Hessian eigenvalues λf (r) 

are all non-positive. Thus, for Φ0 (re-scaled by Vd) we have

where equality holds when the Hessian eigenvalues λf (r) are all non-negative or non-

positive. We now derive lower bounds for Φ0 in the 2D and 3D cases.
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1) 2D Bound

Fix r, and let λf (r) = (λ1, λ2). In 2D we have

We have Φ0(λ1, λ2) < 1 only when λ1 and λ2 are both non-zero and differ in sign. By a 

scaling argument, it suffices to look at the case where λ1 = 1 and λ2 = −α, for some α with 0 

< α ≤ 1. Thus, the minimum of Φ0 coincides with the function

By the identity  we have 

. Setting Ψ′ (α) = 0 gives the necessary condition 

, which is true only if α = 1. Therefore, we obtain the bound 

.

B. 3D Bound

In the 3D case we have

where we use spherical coordinates (x, y, z) = (cos θ sin ϕ sin θ sin ϕ, cosϕ), with 0 ≤ θ ≤ 2π, 

0 ≤ ϕ ≤ π. Note that Φ0(λ1, λ2, λ3) < 1 only if for some i ≠ j, λi and λj are both non-zero and 

differ in sign. By a scaling argument, it suffices to look at the case where λ1 = −α, λ2 = −β, 

and λ3 = 2 for some α and β with 0 ≤ α, β ≤ 2. Thus, it is equivalent to minimize the function

Using the identity x2 + y2 + z2 = 1, one can show that
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where we have set a = β − α and b = α + β. We may write this as A cos(2θ)+B, where 

 and B = B(b, ϕ) is given by the above equation. Then the minimum of 

Ψ coincides with the minimum of the function

Observe that

which implies Ψ̃ (a, b) ≥ Ψ̃ (0, b), and so a necessary condition for a minimum is a = 0, or 

equivalently α = β. Thus, we evaluate

which can be shown to have a minimum of ≈ 0.57 at α ≈ 1.1.
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Figure 1. 
2D and 3D B-spline directional derivative operators at different angles. Note that the 

operators are approximately rotation steerable.
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Figure 2. 
Performance of proposed quadrature schemes. In (a) and (b) we display the SNR (as defined 

in (24)) in a denoising experiment as a function of the number of quadrature points K used to 

approximate the integral in (14). The same inputs were used for each K, except for the 

regularization parameter λ was tuned in each case to optimize the resulting SNR. In both the 

2D and 3D case we observe an initial gain in SNR, demonstrating the value in better 

approximating the integral, but the change in SNR slows after a certain threshold. Namely, 

in the 2D experiment (a) we see that the change in SNR is within 0.01 dB after K ≈ 16 for 

both the HDTV2 and HDTV3 penalties. Likewise, in the 3D experiment (b), the change in 

SNR is within 0.05 dB after K ≈ 76.
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Figure 3. 
Performance of the continuation scheme. We plot the cost as a function of the number of 

iterations in (a) and SNR as a function of CPU time in (b). We investigate four different 

combinations of the parameters β and βinc. It is shown in (a) that the convergence rates of 

different combinations are approximately the same. We also observe in (b) that the SNR’s of 

the reconstructed images in four settings are similar except that when the final value of β is 

not large enough (β = 15, βinc = 2) the SNR is comparatively lower than the others.
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Figure 4. 
IRMM algorithm versus proposed fast HDTV algorithm in different settings. The blue, blue 

dotted, red, red dotted curves correspond to HDTV1 using proposed algorithm, HDTV1 

using IRMM, HDTV2 using proposed algorithm, HDTV2 using IRMM algorithm, 

respectively. We extend (solid lines) the original plot by dotted lines for easier comparisons 

of the final SNRs. We see that the proposed algorithm takes 1/6 of the time taken by IRMM 

for HDTV1, and 1/10 of the time taken by IRMM for HDTV2.
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Figure 5. 
Deblurring of a microscopy cell image. (a) is the actual cell image. (b) is the blurred image. 

(c)–(f) show the deblurred images using TV, HDTV2, TGV, and HS1 schemes, respectively. 

The results show that TV brings in patchy artifacts, while higher degree TV schemes 

preserve more details. HDTV2, TGV, and HS1 methods provide almost similar results both 

visually and in SNR, with a 0.5 dB SNR improvement over standard TV.
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Figure 6. 
Compressed sensing recovery of MR angiography data from noisy and undersampled 

Fourier data (acceleration of 1.5 with 5dB additive Gaussian noise). (a) through (h) are the 

maximum intensity projection images of the dataset. (a) is the original image. (b) to (d) 

show the reconstructions with acceleration of 5, using direct iFFT, 3D-TV, 3D-HDTV2, 

separately. (e) to (h) indicate the reconstructed images with acceleration of 1.5, using 3D-

TV, direct iFFT, 3D-HDTV2, 3D-HDTV3, separately. We observe that 3D-HDTV method 

preserves more details that are lost in 3D-TV reconstruction. The arrows highlight two 

regions that are shown in zoomed detail in Fig. 7.
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Figure 7. 
The zoomed images of the two regions highlighted in Fig. 6. The first two rows display the 

zoomed region (a) of the reconstructions with acceleration of 1.5 and 5 using direct inverse 

Fourier transform, 3D-TV, 3D-HDTV, separately. The third and fourth rows display the 

zoomed region (b) of the reconstructions. We observe that 3D-HDTV methods preserve 

more line-like features compared with 3D-TV (indicated by green arrows).
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Figure 8. 
Deconvolution of a 3D fluorescence microscope dataset. (a) is the original image. (b) is the 

blurred image using a Gaussian filter with standard deviation of 1 and size 5 × 5 × 5 with 

additive Gaussian noise (σ = 0.01). (c) to (e) are deblurred images using 3D-TV, 3D-

HDTV2, 3D-HDTV3, separately. We observe that the 3D-TV recovery is very patchy and 

some small details are lost, while the HDTV methods preserve the line-like features 

(indicated by green arrows) with a 0.2 dB improvement in SNR.
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