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DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze
genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene
polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investi-
gated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1
(rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel elec-
trophoresis, we also examined TYMS 50 untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA
samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by
two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms
provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and
TYMS 50 untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%e47.5%; exact
binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%e14.3%) of cases, respectively,
whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE
material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based
PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution.
Independent repeated assays should be performed on all cases to assess potential discrepancies. (J Mol Diagn
2015, 17: 242e250; http://dx.doi.org/10.1016/j.jmoldx.2014.12.001)
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Measuring Biomarkers from FFPE DNA
Genetic and epigenetic variations, which govern acquisition
and progression of cancer as well as treatment-related re-
sponses and toxicities, are hallmarks of all human cancers.1

Numerous studies have described individual profiles of tu-
mors at the somatic mutation and germline polymorphism
level.2e4 Previous research has suggested that specific
germline polymorphisms may influence several important
cancer-relevant traits. For example, dihydropyrimidine de-
hydrogenase (DPYD), uridine monophosphate synthetase
(UMPS), and thymidylate synthase (TYMS) are involved in
the metabolism of 5-fluorouracil, a common chemotherapy
agent used to treat solid tumors, and polymorphisms in
these genes have been associated with 5-fluorouracil
resistance.5e8 ERCC1 and ERCC2 are involved in DNA
repair, and single-nucleotide polymorphisms (SNPs) in these
genes have been associated with response to chemotherapies,
such as cisplatin.9,10GSTT1 is a member of the glutathione-S-
transferase (GST) family, and 20% to 60% of individuals do
not express this gene because they carry homozygous GSTT1
deletions (GSTT1*0/0 allele). Individuals who carry
GSTT1*0/0 may have an impaired ability to metabolize
carcinogenic compounds and may exhibit worse responses to
platinum-/5-fluorouracilebased chemotherapies.11 Accurate
determination of germline polymorphisms are thus important
for predicting drug response, susceptibility to environmental
factors, and risk of cancer development.

The type of biological material that can be used for
measuring germline polymorphisms in cancer patients is often
limited by practical considerations. In particular for retrospec-
tive studies, blood samples from patients are rarely available. In
contrast, routine archival formalin-fixed, paraffin-embedded
(FFPE) tissue samples are readily available from all resected
specimens or from diagnostic biopsy specimens, providing
large and valuable collections for genetic studies. Thus, it is
important to determine the accuracy and potential limitations of
genetic polymorphism studies using this type of material.

Several factors should be considered when measuring ge-
netic polymorphisms inDNA fromFFPE samples. Specifically,
tissue fixation in formaldehyde and long-term storage at room
temperature can damage nucleic acids through denaturation,
fragmentation, and cross-linking. For example, A:T base pairs
within archival tissues may experience greater degradation and
increased transition-type mutations.12e14 The Taq polymerase
error rate for FFPE DNA has been reported to be 1 in 500 bp,
compared to 1 in 105 bp for fresh tissues.14 Agell et al15 reported
high rates of sequencing artifacts present in FFPE DNA but not
found in DNA extracted from fresh-frozen samples. However,
despite this high rate of artifacts, it was still possible to identify
true sequence variants through a second confirmatory PCR,
because the probability of finding the same artifactual mutation
in a second independent PCR was extremely low. This second
confirmation approach was used by Marchetti et al,16 who
initially observed several uncommon EGFRmutations in FFPE
DNA from lung cancer samples. However, these mutations
were nonreproducible across multiple PCR amplifications and
were eventually discarded.16
The Journal of Molecular Diagnostics - jmd.amjpathol.org
Germline polymorphisms can be divided into two
major categories: single-nucleotide variants/polymorphisms
(SNVs/SNPs) and copy number polymorphisms, such as
GSTT1*0/0. Regarding the former, previous analyses have
shown that with careful experimental planning, concordant
germline SNP genotyping results can be generated between
FFPE DNA and fresh-frozen DNA.17e20 However, many SNP
genotyping studieshavebeenperformedusingquantitative real-
time PCR, which is expensive, labor intensive, and not suitable
or scalable to the simultaneous genotyping of many SNPs. An
alternative platform for SNV/SNP genotyping is the MassAR-
RAY iPLEX system (Sequenom, San Diego, CA), which can
genotype as many as 40 SNPs in one single reaction.21,22

Briefly, the iPLEX system exploits oligonucleotide PCR
extension over a SNP to produce different-sized products that
are allele specific,which are then detected usingmatrix-assisted
laser desorption/ionization time-of-flight mass spectrometry.
However, to date, relatively few studies have evaluated the
performance of the iPLEX platform using FFPE DNA.23e25

Our aim was to evaluate whether FFPE DNA can be used to
reliably test germline SNPs using the iPLEX system. We also
evaluated whether FFPE DNA can produce reliable results for
copy number/size-based PCR biomarkers, such as TYMS 50

untranslated region (UTR) 2R/3R repeats or GSTT1 deletion.
For the latter, we compared results between FPPE DNA and
DNA from fresh-frozen tissues and cell lines.

Materials and Methods

Primary Tissue and Cell Line Samples

FFPE blocks of nonmalignant tissues were selected from three
clinical cohorts: OEO2, MAGIC (Medical Research Council
adjuvant gastric infusional chemotherapy trial), and JUST
(Japan/UK/Singapore translation study). The OEO2 and
MAGIC cohorts were derived from patients enrolled in ran-
domized, multicenter, phase 3 clinical trials of neoadjuvant
chemotherapy versus surgery alone from the United Kingdom
(OEO2 patients recruited between 1992 and 1998, average
sample storage length, 16 years 2 months; MAGIC patients
recruited between 1994 and 2002, average sample storage
length, 12 years 3 months).26,27 The JUST cohort comprises
Japanese gastric cancer patients who underwent curative
resection followed by treatment with adjuvant S1 between 2001
and 2010 at Kanagawa Cancer Center (Yokohama, Japan),28

with an average storage length of 5 years 4 months. Normal
fresh-frozen colon tissues were obtained from the Singapore
General Hospital (Singapore) Tissue Repository. Gastric cancer
cell lines were obtained from ATCC (Manassas, VA) or from
collaborating institutions. This study was approved by the
respective Institutional Research Ethics Review committees.

Extraction of DNA from FFPE Samples

All hematoxylin and eosinestained tissue sections from
resection specimens were reviewed by a histopathologist
243
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Table 1 Sequences of PCR Primers Used for SNP Genotyping

Gene First PCR primer Second PCR primer

PCR
size,
bp Extension primer

DPYD
(rs1801159)

F: 50-ACGTTGGATGTGCGC-30

R: 50-TAGCAAGACCAAAAG-30
F: 50-ACGTTGGATGCTCCTAT-30

R: 50-TGATCTGGTGGAC-30
97 50-ATGGCCGGATTGAAGTTT-30

DPYD
(rs3918290)

F: 50-ACGTTGGATGTCACT-30

R: 50-GAACTAAAGGCTGAC-30
F: 50-ACGTTGGATGCACCAA-30

R: 50-CTTATGCCAATTCTC-30
100 50-GTTTTAGATGTTAAATCACACTTA-30

UMPS
(rs1801019)

F: 50-ACGTTGGATGAGAAT-30

R: 50-GTCTTTGTGGCAGCG-30
F: 50-ACGTTGGATGAAGCTG-30

R: 50-AGTTCTTTGGGTGC-30
93 50-TCCTTTATAGAAAGGGGAGAA-30

ERCC1
(rs11615)

F: 50-ACGTTGGATGGCACA-30

R: 50-TAGTCGGGAATTACG-30
F: 50-ACGTTGGATGGGCAAT-30

R: 50-CCCGTACTGAAGTT-30
90 50-CTGAAGTTCGTGCGCAA-30

ERCC1
(rs3212986)

F: 50-ACGTTGGATGTTTAG-30

R: 50-TTCCTCAGTTTCCCG-30
F: 50-ACGTTGGATGCACAGG-30

R: 50-CCGGGACAAGAAG-30
97 50-CCGGGACAAGAAGCGGAAG-30

ERCC2
(rs13181)

F: 50-ACGTTGGATGCTCAG-30

R: 50-AGCTGCTGAGCAATC-30
F: 50-ACGTTGGATGAGCCTG-30

R: 50-GAGCAGCTAGAATC-30
87 50-TAGAATCAGAGGAGACGCTG-30

F, forward; R, reverse; SNP, single-nucleotide polymorphism.

Zhang et al
(H.I.G., OEO2 and JUST cohorts; MAGIC cohort was not
reviewed by an author). DNA was extracted from nonmalig-
nant tissues, either lymph nodes without evidence of meta-
static disease or nonneoplastic normal esophagus or stomach.
Five sections (10 mm thick) were cut and deparaffinized using
a standard protocol, and the area of interest was dissected
using a sterile scalpel blade. Genomic DNA was extracted
using a protocol based on the QIAmp DNA Micro Kit and
QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany),
following the manufacturer’s instructions. Briefly, after dew-
axing and rehydrating the slides, the area of interest was
microdissected and placed into a 1.5-mL Eppendorf tube with
buffer ATL and proteinase K for digestion (Qiagen). DNA
was eluted in buffer ATE (Qiagen) with an elution volume of
30 mL for OEO2 and JUST cohort samples and 60 mL for
MAGIC cohort samples. Quality control of the DNA was
performed on the basis of 260:230 and 260:280 ratio values
and visual inspection of the wavelength spectral pattern pro-
vided by the NanoDrop spectrophotometer (Thermo Scientific,
Wilmington, DE). A 260:230 ratio of approximately 2.0,
together with a 260:280 ratio of approximately 1.8 and the
presence of a peak at 260 nm with a steep decrease toward 280
nm in the wavelength spectrum, was considered sufficiently
good quality DNA.

Extraction of DNA from Normal Colon Tissues and
Cell Lines

Genomic DNA was extracted from frozen tissues and cell
lines using a blood and cell culture DNA extraction kit, ac-
cording to the manufacturer’s instructions (Qiagen, Valencia,
CA). Briefly, 10 to 15mg frozen tissue was homogenized and
incubated in buffer G2 containing RNase A and Qiagen
Protease K, then incubated at 50�C for 4 hours. DNA was
resuspended in 100 to 200 mL of nuclease-free water (Life
Technologies, Carlsbad, CA) and dissolved overnight on a
shaker. Human genomic DNA was purchased from Promega
(Madison, WI).
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Polymorphism Selection

For this study, we chose eight polymorphisms that have
been proposed as predictive biomarkers of chemotherapy
and prognosis in the literature.5e11 These included six SNPs:
DPYD (rs1801159), DPYD (rs3918290), UMPS (rs1801019),
ERCC1 (rs11615), ERCC1 (rs3212986), ERCC2 (rs13181),
and two non-SNV/SNP polymorphisms (GSTT1-null and
TYMS 50-UTR 2R/3R repeats), which we defined as copy
number/size-based polymorphisms.

Genotype Analysis

SNP Genotyping by MassARRAY iPLEX System
Genotype analysis was performed using the MassARRAY
iPLEX system (Sequenom), according to the manufacturer’s
instructions.The assayusedwas a six-plex assaydesignedusing
MassARRAY Online Design Tools (Sequenom). Briefly,
multiplexed PCR amplification was performed using 20 ng of
DNA in a 5-mL reaction containing 0.5 U of Taq polymerase
(Sequenom), 1� PCR buffer, 4 mmol/L MgCl2, 500 mmol/L
deoxynucleotide triphosphates, and 0.1 mmol/L of primers
(Table 1). RKO colon cell line DNA was used for interrun
controls and nuclease-free water as a nontemplate control
(Supplemental Table S1). The following program was used for
PCR amplification: 95�C for 2 minutes, followed by 45 cycles
of 95�Cfor30 seconds, 56�Cfor 30 seconds, 72�C for 1minute,
and afinal extensionstep of 72�Cfor 5minutes.Unincorporated
deoxynucleotide triphosphates were removed using 0.3 U of
shrimp alkaline phosphatase (Sequenom). Single-base exten-
sion was performed in a 9-mL reaction containing iPLEX
GOLD buffer, iPLEX termination mix, extend primer mix, and
iPLEX enzyme (Sequenom). The reactions were performed
using the following two cycling loop programs: 94�C for 30
seconds, followed by 40 cycles of 94�C for 5 seconds, 52�C for
5 seconds, and 80�C for 5 seconds. Within the 40 cycles, the
annealing and extension step was repeated five times (ie, 40 �
5Z 200 short cycles), before a final extension step of 3minutes
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 2 Sequences of PCR Primers Used for Size-Based
Polymorphisms

Gene PCR primer

Amplicon
length
(bp)

TYMS29 F: 50-AGGCGCGCGGAAGGGGTCCT-30

R: 50-CCGAGCCGGCCACAGGCAT-30
140

GSTT131 F: 50-GTGCAAACACCTCCTGGAGAT-30

R: 50-AGTCCTTGGCCTTCAGAATGA-30
229

ACTB F: 50-CAGTAGGTCTGAACAGACTCCCCA-30

R: 50-CTGGATAGCAACGTACATGGCTG-30
187

F, forward; R, reverse.

Table 3 Samples Exhibiting Discordant GSTT1 Genotyping
Results between Two Independent Runs

GSTT1 first run

GSTT1 second run

No. of
null samples

No. of
positive
samples

No. of null samples 17 7
No. of positive samples 9 16

Total number of samples analyzed Z 49 (excluding one failed sample).

Measuring Biomarkers from FFPE DNA
at 72�C. Reactions were desalted using 6 mg of clean resin
(Sequenom) and dilutedwith 16 mL water. A total of 10 nL of
each reaction was spotted onto the 384-spot SpectroChipII
using MassARRAY Nanodispenser (Sequenom). This was
followed bymatrix-assisted laser desorption/ionization time-
of-flight mass spectrometry analysis using the MassAR-
RAY Compact system (Sequenom). The mass spectra
analysis and genotype calls were generated using Seque-
nom TYPER software version 4.0.22

Size-Based Polymorphism Genotyping by Gel
Electrophoresis
TYMS 50-UTR 2R/3R repeats and GSTT1 size-based poly-
morphisms were examined by PCR DNA amplification,
followed by analysis in 4% agarose/1� Tris-borate-EDTA
gel electrophoresis.29,30 Intact gastric cell line DNA was
used as positive controls and nuclease-free water as negative
controls (Supplemental Table S1). For TYMS 50-UTR geno-
typing, 50 ng of genomic DNA was amplified in a 20-mL
PCR mixture containing 10 mL of GoTaq hot start Taq
colorless master mix (Promega) and 0.3 mmol/L of primers
(Table 2).29 PCR conditions were as follows: 95�C for 5
minutes, followed by 40 cycles of 95�C for 50 seconds, 58�C
for 50 seconds, 72�C for 60 seconds, and a final extension at
72�C for 10 minutes. After PCR amplification, PCR products
were directly electrophoresed in 4% agarose/1� Tris-borate-
EDTA gel stained with GelRed Nucleic Acid Stain (Biotium
Inc., Hayward, CA) for 50 minutes at 100 V, and visualized
under UV light. For the TYMS 50-UTR, the predominant al-
leles expected at TYMS 50-UTR are the 2R and 3R alleles.
PCR products from 2R and 3R alleles differ by a single 28-bp
repeat, which can be resolved using gel electrophoresis.

GSTT1 genotyping was performed in a multiplex PCR
format with ACTB as the internal control gene.30e32 Briefly,
multiplex PCR was performed in a 25-mL reaction mixture
including 100 ng of DNA and 12.5 mL of GoTaq hot start Taq
colorless master mix (Promega) and 0.3 mmol/L of primers
(Table 2). PCR conditions were the same as those used for
TYMS analysis. Complete absence of the GSTT1 product in
the presence of an amplicon in the control sample was inter-
preted as a homozygous deletion (GSTT1*0/0 null genotype).
The presence of a GSTT1 product was interpreted as GSTT1
positive. In this assay, we are unable to identify whether a
The Journal of Molecular Diagnostics - jmd.amjpathol.org
GSTT1-positive sample is diploid or heterozygous.30 All of
the above biomarkers were tested in two independent assays,
and the two assays were done within 1 week.

Statistical Analysis

Exact binomial confidence limits were calculated for the pro-
portion of concordant genotypes obtained on two independent
runs.33 The software used to compute confidence intervals was
Stata version 13 (StataCorp LP, College Station, TX).

Results

MassARRAY iPLEX SNP Genotyping Provides
Reproducible Genotypes Using FFPE DNA

We chose six SNPs that have been associated previously with
differential chemotherapy response and disease prognosis in
cancer.5e11 These SNPs were DPYD (rs1801159), DPYD
(rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1
(rs3212986), and ERCC2 (rs13181). We sought to test the
reproducibility of measuring these SNPs using FFPE DNA, by
comparing genotyping results across two independent runs.

By using the iPlex system, we designed a custom-
multiplex assay allowing us to genotype the DPYD, UMPS,
ERCC1, and ERCC2 SNPs in a single reaction (six SNPs).
This multiplexed assay was then tested on 56 randomly
selected FFPE DNAs (23 fromMAGIC and 33 from OEO2).
In the first run, only one case (from OEO2) experienced a
genotyping failure. In the second run, all samples were suc-
cessfully genotyped. Results from the two independent runs
revealed 100% concordance (55/55, with exact 95% CI,
93.5%e100%; exact binomial confidence limit test), indi-
cating that the SNP genotyping result is reproducible using
the MassARRAY iPlex system. As a benchmark, genotyping
of GSTP1 (lle105Val, rs1695), another SNP involved in
chemotherapy response, in 30 randomly selected MAGIC
cases by direct Sanger sequencing also confirmed concordant
genotypes in two independent runs (data not shown).

Copy Number/Size-Based Polymorphism Genotyping
Using Gel Electrophoresis Provides Discordant
Genotypes Using FFPE DNA

In addition to the SNV/SNP polymorphisms, we also evaluated
two copy number/size-based polymorphisms by size-based
245
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Figure 1 GSTT1 and TYMS 50 untranslated region (UTR) genotyping on formalin-fixed, paraffin-embedded (FFPE) samples. A: GSTT1 genotyping on 50 FFPE
samples. Samples 1 to 30 are from the MAGIC cohort and 31 to 50 from the JUST cohort. Complete absence of the GSTT1 product (top panel) in the presence of
an ACTB amplicon (bottom panel) was interpreted as a homozygous deletion (GSTT1 *0/0 null genotype). The presence of a GSTT1 product was interpreted as
GSTT1 positive. Samples labeled with stars exhibit discrepant results between two independent runs. Sample 21 (arrow) failed in the second run and was
excluded from the analysis. The concordance rate between the two runs was 69.4% for FFPE DNA. B: TYMS 50-UTR genotyping on 50 FFPE samples. Sequence
repeats in the TYMS 50-UTR enhancer region can be classified into 2R/2R, 2R/3R, and 3R/3R genotypes. Samples labeled with stars exhibited discrepant results
between the two independent runs. Sample 21 (arrow) failed in both runs, and sample 37 failed in the first run. The concordance rate between the two runs
was 95.8% for FFPE DNA. gDNA, genomic DNA; M, 100-bp DNA ladder; NC, negative control.

Table 5 Summary of GSTT1 and TYMS 50-UTR Genotyping Results

Genotype frequency

Zhang et al
PCR gel electrophoresisdthe GSTT1 deletion and the
TYMS 50-UTR 2R/3R repeats,8,11 in 50 randomly selected
cases (20 JUST and 30 MAGIC). Cases from OEO2 were
not evaluated in this exercise, because of sample availability
and access. However, because sample ages, fixation con-
ditions, storage conditions, collection, and DNA extraction
protocols for MAGIC and OEO2 are similar because they
are from the same hospitals in the United Kingdom,26,27 it is
reasonable to assume that findings for the MAGIC samples
will also apply to OEO2 cases.

For theGSTT1 copy number polymorphism, 98% of samples
were successfully genotyped. All samples were successfully
analyzed in the first experiment, and oneMAGIC sample failed
in the second experiment. In the first experiment, there were 25
GSTT1-positive samples (50%) and 25 GSTT1 *0/0 null sam-
ples (50%). In the second experiment, there were 23 GSTT1-
positive samples (46%) and 26 GSTT1 *0/0 null samples
(52%). Notably, although the distribution of genotypes was
Table 4 Samples Exhibiting Discordant TYMS 50-UTR Genotyping
Results between Two Independent Runs

TYMS 50-UTR first run

TYMS 50-UTR second run

2R/2R
samples

2R/3R
samples

3R/3R
samples

No. of 2R/2R samples 10 0 0
No. of 2R/3R samples 0 23 1
No. of 3R/3R samples 1 0 13

Total number of samples analyzed Z 48 (excluding two failed samples).
UTR, untranslated region.
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similar between experiments, 16 (32.7%) of 49 samples (16/49,
with exact 95% CI, 19.9%e47.5%) had a different genotype in
the two independent experiments. Seven samples (14.3%) were
GSTT1 *0/0 null in the first experiment and GSTT1 positive in
the second experiment, whereas nine samples (18.4%) were
GSTT1 *0/0 positive in the first experiment and GSTT1 null in
the second experiment (Table 3). The GSTT1 genotype of 33
samples (66%) (33/49, with exact 95%CI, 52.5%e80.1%) was
the same in both experiments. The concordance rate between
two runs was thus 67.3% using FFPE DNA (Figure 1A).
To assess if this relatively low level of concordance might

also be encountered for other copy number/size-based
polymorphisms, we performed TYMS 50-UTR 2R/3R
enhancer genotyping in 50 samples. Two samples (MAGIC)
Gene polymorphism

(n Z 50) Genotype
concordance
in runs 1
and 2 (%)

Run 1,
No. (%)
of samples

Run 2,
No. (%)
of samples

GSTT1* 0/0 null 25 (50) 26 (53)* 66.70
GSTT1 positive 25 (50) 23 (47)*
TYMS 50-UTR 2R/2R 10 (20.8)y 11 (22.9)y 95.80
TYMS 50-UTR 2R/3R 24 (50)y 23 (47.9)y

TYMS 50-UTR 3R/3R 14 (29.2)y 14 (29.2)y

*Excluding one failed case.
yExcluding two failed cases.
UTR, untranslated region.

jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 2 GSTT1 and TYMS 50 untranslated re-
gion (UTR) genotyping on fresh-frozen gastric cell
lines and normal tissues. A: GSTT1 (top panel) and
TYMS 50-UTR (bottom panel) genotyping on
gastric cell lines. B: GSTT1 (top panel) and TYMS
50-UTR (bottom panel) genotyping on normal
tissues. There is no discrepancy found between the
two independent runs on both fresh-frozen gastric
cell lines and normal tissues. gDNA, genomic DNA;
M, 100-bp DNA ladder; NC, negative control.

Measuring Biomarkers from FFPE DNA
failed in the first experiment, and of these, one also failed in
the second experiment. In total, 96% of samples were suc-
cessfully genotyped in both experiments. For the first run,
there were 10 (20.8%) 2R/2R samples, 24 (50%) 2R/3R
samples, and 14 (29.2%) 3R/3R samples. In the second run,
there were 11 (22.9%) 2R/2R samples, 23 (47.9%) 2R/3R
samples, and 14 (29.2%) 3R/3R samples. Two (4.2%) of 48
samples (2/48, with exact 95% CI, 0.5%e14.3%) demon-
strated different genotypes in the two independent runsd
one case changed from 3R/3R in the first run to 2R/2R in
the second run, and another case changed from 2R/3R in the
first run to 3R/3R in the second run (Table 4). Forty-six
cases (95.8%) (46/48, with exact 95% CI, 85.7%e99.5%)
remained unchanged. The concordance rate between two
assays was thus 95.8% (Figure 1B). The overall GSTT1 and
TYMS 50-UTR genotyping results are summarized in
Table 5.

Copy Number/Size-Based Polymorphism Genotyping
Using Gel Electrophoresis Provides Concordant
Genotypes Using Fresh-Frozen Extracted DNA

We considered whether discrepancies encountered in the copy
number/size-based polymorphism analysis might be due to
either the nature of the DNA material (FFPE) or intrinsic to the
PCR primers used. To distinguish between these possibilities,
we decided to evaluate the GSTT1 and TYMS 50-UTR poly-
morphisms in DNA isolated from fresh-frozen samples. We
randomly selected eight gastric cell lines, eight fresh-frozen
normal colon tissues, and a commercially available human
genomic DNA sample. We successfully genotyped the GSTT1
The Journal of Molecular Diagnostics - jmd.amjpathol.org
and TYMS 50-UTR 2R/3R polymorphisms in all cell lines and
fresh tissue samples. Three cell lines showed GSTT1 *0/0 null
(37.5%), and five cell lines showed GSTT1 positivity (62.5%).
Among the colon tissues and commercial human DNA sam-
ples, four primary tissues showedGSTT1 *0/0 null (44.4%) and
five primary tissues showed GSTT1 positivity (55.6%). For
TYMS 50-UTR, four cell lines showed 2R/2R (50%) and four
cell lines showed 2R/3R repeats (50%). All nine primary tissues
showed 2R/3R (100%) (17/17, with exact 95% CI, 80.5%e
100%). Most important, both GSTT1 and TYMS 50-UTR
genotyping results showed 100% concordance in the two in-
dependent runs (Figure 2) using DNA extracted from cell lines
or from fresh-frozen tissue samples.

Discussion

PCR approaches targeting well-conserved genomic sequences
are widely used for SNP genotyping. However, most tech-
niques currently used for SNP genotyping, such as quantitative
real-time PCR, are not scalable, in both time and cost, for high-
throughput measurements of multiple SNPs in large series of
samples.22 As an alternative, the MassARRAY iPLEX System
may facilitate high-throughput SNP analysis, because it permits
multiplexing of up to 40 SNPs in a single reaction and can
process up to 384 samples in parallel. Input DNA requirements
of the iPLEX system are also as little as 10 to 20 ng DNA per
sample,22,34 which is another technical advantage.

To date, few reports have investigated the ability of the
MassARRAY iPLEX System to accurately genotype SNVs/
SNPs in FFPE DNA.35,36 However, determining the applica-
bility of the iPLEX system on FFPE DNA is important, given
247
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that many retrospective clinical series may not have blood or
buccal epithelial cell samples available, thereby necessitating
the use of FFPE samples for molecular analysis. Compared to
DNA extracted from frozen samples, FFPE DNA is highly
fragmented, with an average fragment size of 200 to 300 bp,
and with wide variation in lengths between samples.37 To in-
crease the efficacy of PCR, in our study, each amplicon was
approximately 100 bp for iPLEX genotyping. By using the
iPLEX system, we tested the reproducibility of six separate
SNPs in a cohort of FFPE DNAs. These SNPs were chosen for
the previous association with cancer chemotherapy response
and disease prognosis. Our investigation demonstrated that
germline SNVs/SNPs were associated with reproducible results
whenmeasured by iPLEX.A potential caveat of this conclusion
is that the SNPs we evaluated are known SNPs common to the
general population, and our overall frequencies were generally
concordant with previous population studies (Supplemental
Table S2).38e43 Formally, it still remains unknown if similar
levels of reproducibility will be observed if such assays are
extended to rare or private germline variants observed in single
individuals.

In addition to SNVs/SNPs, we also tested copy number/
size-based polymorphisms, specifically GSTT1 null and
TYMS 50-UTR 2R/3R, using previously described PCR-
based methods, followed by agarose gel electropho-
resis.29,30 Our result revealed that in contrast to SNVs/SNPs,
copy number/size-based polymorphisms showed greater
variability between two independent runs when performed
using the same FFPE DNA. Specifically, GSTT1 showed
significant discordance (33.30%), whereas TYMS 50-UTR
2R/3R showed a minor 5% discordance. Compared to the
SNP genotypes, size-based polymorphism measurements,
such as those for TYMS, were also less concordant with
previous population studies, particularly for MAGIC samples
(Supplemental Tables S3 and S4).44e47 The latter may be due
to the extended storage type of the MAGIC samples
compared to Japanese samples (12 versus 5 years) and our
small sample size.

In the case ofGSTT1, similar discordant rates have recently
been reported in a study genotyping pediatric brain tumors
using FFPE tumor tissue as a DNA source.31 In that study
comparing 50 frozen tissue samples to their matched FFPE
counterparts,GSTM1 andGSTT1 deletion polymorphisms had
a relatively low genotype concordance (77% and 82%,
respectively), and subsequent retesting of the FFPE DNA for
GSTM1 and GSTT1 demonstrated irreproducible genotype
results.31 Our results independently confirm that GSTT1
deletion polymorphism results cannot be reproduced with
confidence when FFPE DNA is used. One potential explana-
tion for the lower reproducibility of the FFPEDNA, compared
to frozen DNA, is the low level at which FFPE detection is
occurring, which can cause stochastic sampling effects despite
using more DNA (50 ng for TYMS 50 UTR and 100 ng for
GSTT1 assay) compared to 20 ng of DNA for the SNP gen-
otyping assay.48 Unfortunately, the low levels at which FFPE
DNA analysis usually occurs is not revealed by standard
248
spectrophotometric analysis because many elements in FFPE
DNA extracts may provide absorbance at 260 and 280 nm.
Also, spectrophotometric analysis counts both fragments long
enough for amplification and those that are not.
For TYMS 50 UTR, the discordance rate was minor (5%)

but still more than that experienced for SNPs. We have since
repeated the TYMS 50-UTR 2R/3R genotyping on 241 FFPE
DNAs on independent runs spaced apart by 1.5 years, and in
this setting the TYMS 50-UTR 2R/3R discordance rate was
10.37% (data not shown). These results show that TYMS
50-UTR 2R/3R genotype results can be discordant, albeit at
a minor level, when applied to FFPE DNA.
Several reasons may explain the differences in discor-

dance rates between the GSTT1 and TYMS 50-UTR 2R/3R
results. First, for example, differences in the sequences of
the targeting primers may have resulted in subtle effects on
primer binding, leading to differences in PCR amplification
rates (eg, melting temperature for 50 TYMS primers were
63�C, but 58�C for GSTT1 primers). Second, alternatively,
differences in the target amplicon size (50 TYMS versus
GSTT1: 140 versus 229 bp) may also contribute to the
discordance, particularly when applied to FFPE DNA that is
highly fragmented. Third, the use of a multiplex PCR
involving a control gene (ACTB) in the GSTT1 may have
resulted in within-reaction competition between PCR
primers and template DNA, exacerbating the ability of
certain fragments to be amplified and not others. Further
research should be directed to exploring these possibilities,
such that important polymorphisms, such as GSTT1 dele-
tion, can be reliably determined from FFPE DNA. Another
possibility is to explore the use of other technology plat-
forms for measuring such size-based polymorphisms, such
as real-time PCR.31,32

In conclusion, our data suggest that DNA from FFPE
material can be used to reliably test germline SNVs/SNPs
by the MassARRAY iPLEX system, particularly when
assessing common variants. However, our results based on
GSTT1 and TYMS 50-UTR 2R/3R suggest that results using
FFPE DNA to measure copy number/size-based biomarkers
may need to be interpreted with caution. On a practical
level, our results suggest that when measuring size-based
polymorphisms using FFPE DNA, independent repeated
assays should routinely be performed on all samples, to
determine the potential existence and rate of discrepancies.
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