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In ‘‘Omics’’ era of the life sciences, data is presented in many

forms, which represent the information at various levels of bio-
logical systems, including data about genome, transcriptome,
epigenome, proteome, metabolome, molecular imaging, molec-

ular pathways, different population of people and clinical/med-
ical records. The biological data is big, and its scale has already
been well beyond petabyte (PB) even exabyte (EB). Nobody

doubts that the biological data will create huge amount of val-
ues, if scientists can overcome many challenges, e.g., how to
handle the complexity of information, how to integrate the data
from very heterogeneous resources, what kind of principles or

standards to be adopted when facing with the big data. Tools
and techniques for analyzing big biological data enable us to
translate massive amount of information into a better under-

standing of the basic biomedical mechanisms, which can be fur-
ther applied to translational or personalized medicine.

Today, big data is one of the hottest topics in information

science, but its concept can be misleading or confusing. The
name itself suggests huge amount of data, which, however,
represents only one aspect. In general, big data has four impor-

tant features, so called four V’s: volume of data, velocity of
processing the data, variability of data sources, and veracity
of the data quality. These four hallmarks of big data require
to be characterized by special theory and technology; however,

currently there is no satisfactory solution. Now, more biolo-
gists are involved with the big data due to the rapid advance
of high-throughput biotechnologies. As an example, the

Human Genome Project utilized the expertise, infrastructure,
and people from 20 institutions and took 13 years of work with
over $3 billion to determine the whole genome structure of
approximately three billion nucleotides. But now we can

sequence a whole human genome for $1000 and within three
days. We have spent decades struggling to collect enough bio-
logical and biomedical data, but when big data overwhelms us,

are we ready to face the challenge? The new bottleneck to this
problem in biology is how to reveal the essential mechanisms
of biological systems by understanding the big noisy data. Life

sciences today need more robust, expressive, computable,
quantitative, accurate and precise ways to handle the big data.
As a matter of fact, recent works in this area have already
brought remarkable advantage and opportunities, which

implies the central roles of bioinformatics and bioinformati-
cians in the future research of the biological and biomedical
fields. In the following text, we describe several aspects of

big biological data based on our recent studies.

Expanding volume of the big biological data and its

bonanza

With the increasingly accumulated large volumes of informa-

tion about human, animals or microbe, researchers are starting
to grapple with massive datasets and further elucidate the
fundamental implications of those datasets in biology. For

instance, a recent genetics study about six dog breeds to
decipher adaption mechanisms under hypoxia in highland area
has produced 3.2 terabytes (TB) genome sequencing data of 60
dogs from different altitudes along the ‘‘Ancient Tea Horse

Road’’ [1]. After the data analysis, an important nonsynony-
mous mutation, G305S, was found on gene EPAS1enocding
endothelial Per-Arnt-Sim (PAS) domain protein 1 and this

mutation is most possibly involved in the adaption
mechanisms of hypoxia. In a milestone study of using
next-generation sequencing technology, Jay Shendure and his

co-workers captured 12 human exomes [2]. They obtained over
nces and
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30 gigabyte (GB) DNA sequencing data and found a SNP in
gene MYH3 straightforward, which is causative for a mono-
genic human disease called Freeman–Sheldon syndrome

(FSS). Another impressive big data based biomedicine study
was performed by Lupski and his colleagues [3]. In this work,
12 pedigree samples were sequenced to acquire their whole

genome DNA data for finding causative variations related to
Charcot-Marie-Tooth (CMT) disease. Over one TB of genome
sequencing data were analyzed, and then a novel missense

mutation Y169H on gene SH3TC2 was found associated with
CMT disease. All such studies show that big biological data
has become an essential part of biological discovery and bio-
medical research [4], and clearly, the aforementioned discover-

ies are inconceivable without big biological data. Exponential
growth in the amount of biological data undoubtedly means
potential bonanza opportunities; nonetheless, we need to

develop revolutionary measures for data management, analysis
and accessibility.

Hypothesis-driven study is still a key for big

biological data mining

Biological big data, in general, has the similar properties to the
4Vs of big data, in particular, at molecular levels. But, unlike
the data gathered by Google, WeChat and Ali Baba, the big

biological data is highly heterogeneous; even within the data,
there exist intrinsic structures determined by various biological
principles and experiment designs. Because of the 4-V features
of big data, association or correlation rather than causal rela-

tionships are expected to be built among certain elements, such
as genes, proteins, and pathways, across the whole big data.
However, biological studies always need to know driving force

or causal relationship among biological elements, which form
complex biological systems. Many studies show that the exist-
ing intrinsic structures determined by various biological princi-

ples and experiment designs have already provided biological
data miners or curators possible ways to identify causal rela-
tionship among biological molecules in big biological data. In

this case, ‘‘hypothesis-driven study’’ is a key for big biological
data mining, which can reduce the CPU time of data mining
and the occupation of computing resources effectively. In other
words, it is a key how we can rely on some reasonable hypoth-

eses to guide our big biological data mining by solving 4-V
problems efficiently. A remarkable example can be seen from
a research study by Yuan and her colleagues [5]. They found

that very diverse outputs are often generated when the same
gene expression data is analyzed using different algorithms,
i.e., low overlap and substantial false positives. The problem

results from the extreme heterogeneousness of gene expression
data and there is no guarantee that a pure statistical model will
solve it. A recent effort was made to present a methodology,
aimed to circumvent the limitations of pure statistical models

and general gene expression data analysis strategy. The method
was based on a simple biological assumption: ‘‘If a number of
genes that are conservatively co-expressed emerge as a dynam-

ically-cooperative group across certain biological processes,
these genes are most likely functionally closely related with
physiological and pathological processes’’ [5]. Then, according

to this ‘‘hypothesis’’, the data mining is just to be converted to
finding those gene clusters with strongly cooperative and con-
servative properties across cancer progression stages.
Computational systems biology plays a central role

in big biological data era

There are four key features related with systems biology: inte-

gration – the whole biological system is more than the sum of
its parts; network – biological function is a phenotype of inher-
ent biological network structure; emergency – new function is

emerged through interactions among the elements of the bio-
logical system; interference – it implies correlation or coherence
between biological molecules in a single biological pathway or

between several biological pathways. The nature of biological
big data can be summarized as: hierarchy – data is generated
at different levels ranging from molecules, cells, tissues to sys-

tems; heterogeneous – data is generated using different meth-
ods ranging from genetics, physiology, pathology to imaging;
complexity – data can be simultaneously recorded in the forms
of multi-level information from over thousands of cells or even

more; dynamics – biological processes or states change with
conditions and over time. It is undeniable that the association
study only is too superficial to meet the needs of scientists,

and our aspirations are to reveal the driving force or causal
relationship among biological elements, which can be used
for deciphering the mechanisms of biological processes and dis-

eases, such as cancer, diabetes, and Alzheimer’s disease. The
main challenge for big data mining then would be how we
can achieve a transition from association study to causality
study. From this point of view, computational systems biology

[6,7] provides a new way for system-wide study and could play a
key role in such a transition in big-data era.
The impacts of engineering, cooperation,

standardization and pipeline to big data analysis

Because of the nature of big biological data, conducting
research in life science to some extent has to change its style
in the era of big data, e.g., from academic exploration individ-

ually to more cooperative study in systematic, standardized
and pipelining ways. The main challenges here could be to
establish interoperable databases, make sustainable tools

available to the research community, create tool development
centers, construct resources and infrastructure, such as cloud
computing to serve the huge amount of researches, generate
standards, vocabularies and ontologies of big biological data,

develop new systems of infrastructure and tools, and obtain
buy-in from the scientific community, such as cloud service.
Clearly, aforementioned challenges can be solved in a more

engineering manner, and a well-designed experiment system
matching some systematic, standardizing data processing pipe-
line will be an important factor for a successful study.
Big-data medicine by dynamical network biomarkers

It is commonly recognized that a complicated living organism

cannot be completely appreciated by merely analyzing individ-
ual components. Phenotypes and functions of an organism are
ultimately determined by interactions between these compo-

nents or networks in terms of structures and dynamics [2]. Net-
work and dynamics are two key aspects in computational
systems biology [6,7–13]. However, majority of traditional
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research focuses on the static and statistic properties (e.g.,
GWAS) of big data, rather than the essential dynamics and
networks of life in living organisms. Generally, a disease is a

problem resulting not from malfunction of individual mole-
cules but from failure of the relevant system or network, which
can be considered as a set of interactions among molecules.

Thus, rather than single molecules, the networks are stable
forms as biomarkers to reliably characterize complex diseases.
The era of big data [14,15] provides great opportunities for

predictive, preventive, personalized and participatory (P4)
medicine, which is expected to lead to big-data medicine.
The study of network and interactions of biological elements
rather than biological elements themselves, can capture the

previously-unobserved features at the levels of both network
(or edges) and dynamics. Therefore, with the demand from
both theoretical and clinic aspects, biomarkers are evolving

from single molecules (e.g., individual genes) to multiple mol-
ecules (e.g., gene set), associated molecules (e.g., molecule net-
work) and dynamical interactive molecules (e.g., dynamical

molecule network) due to the availability of big data, in partic-
ular, high-dimensional data, which can be categorized as node
biomarkers [14,15], network-based biomarkers [16–18], net-

work biomarkers [19,20] and dynamical network biomarkers
(DNBs) [21,22], respectively. By exploiting the network infor-
mation from big data, recent studies on EdgeMarker [14,20]
demonstrate that non-differentially expressed genes, which

are usually ignored by traditional methods, can be as informa-
tive as differentially expressed genes in terms of classifying dif-
ferent biological conditions or phenotypes of samples. By

exploiting the dynamical information from big data, a novel
biomarker, DNB, was recently developed [22]. In contrast to
the disease state detected by traditional biomarkers, DNB is

able to identify the pre-disease state before the occurrence or
serious deterioration of diseases, which can actually be used
to prevent from further disease progression before deteriorat-

ing into their irreversible states [21–24]. In other words, by
high-dimensional data (such as gene expression, RNA-seq,
protein expression, and imaging data), this new type of bio-
markers can achieve the early diagnosis of ‘‘pre-disease’’ state

or ‘‘un-occurring disease’’ state, which is a concept raised in
‘‘Yellow Emperor’s Canon of Internal Medicine’’ (one of the
earliest books for Traditional Chinese Medicine) [14].
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