Table 1.
Positive data | Learner | Recall | Precision | Sensitivity | Specificity | F-measure | Accuracy |
---|---|---|---|---|---|---|---|
Human | SVM | 1.000 | 0.501 | 1.000 | 1.000 | 0.668 | 0.501 |
DT | 0.840 | 0.839 | 0.840 | 0.840 | 0.835 | 0.835 | |
MLP | 0.835 | 0.835 | 0.835 | 0.835 | 0.835 | 0.835 | |
NB | 0.845 | 0.843 | 0.845 | 0.845 | 0.838 | 0.837 | |
BLR | 0.840 | 0.800 | 0.840 | 0.840 | 0.765 | 0.741 | |
RF | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | |
Rodent | SVM | 1.000 | 0.501 | 1.000 | 1.000 | 0.668 | 0.501 |
DT | 0.859 | 0.851 | 0.859 | 0.859 | 0.840 | 0.837 | |
MLP | 0.907 | 0.904 | 0.907 | 0.907 | 0.890 | 0.888 | |
NB | 0.897 | 0.890 | 0.897 | 0.897 | 0.871 | 0.866 | |
BLR | 0.864 | 0.812 | 0.864 | 0.864 | 0.761 | 0.728 | |
RF | 0.918 | 0.918 | 0.918 | 0.918 | 0.916 | 0.916 |
Note: The best results for each learner given either human or rodent positive data with pseudo hairpins as negative data. RF performs best for this dataset (F-measure bolded). General performance among classifiers does not differ greatly even without parameter optimization. SVM, support vector machine; DT, decision tree; MLP, multi-layer perceptron; NB, naïve Bayes; BLR, Bayesian logistic regression; RF, random forest.