Skip to main content
. 2015 May 4;4(2):116–129. doi: 10.5492/wjccm.v4.i2.116

Table 1.

Closed mono-compartment mathematical marginal model simulating the body water space of distribution

Variables Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
Patient’s resulting variables
Na+ (mEq/L) 140 142 148 151 146 144
Cl- (mEq/L) 100 108 114 117 113 111
Fluid balance (mL) - 6000 0 800 800 0
Cumulative fluid balance (mL) - 6000 6000 6800 7600 7600
Distribution water volume and electrolyte data
Vd (L) 36 42 42 43 44 44
Total mass of Na+ (mEq) 5040 5964 6216 6493 6424 6336
Total mass of Cl- (mEq) 3600 4536 4788 5031 4972 4884
Fluids output
Diuresis (mL) - 2000 1200 1200 1200 2000
Urinary Na+ (mEq/L) - 30 50 70 90 110
Urinary Cl- (mEq/L) - 30 50 70 90 110
Fluids input
Volume 6000 2000 2000 2000 2000 2000
Na+ (mEq/L) 154 154 154 0 0 0
Cl- (mEq/L) 154 154 154 0 0 0

The main assumptions of this model are the absence of feces, sudoresis, renal replacement therapy, and the absence of Gibbs-Donnan effect. This patient was resuscitated with 4000 mL of 0.9% saline and received additional 2000 mL of 0.9 fluids during the Day 0. He received an amount of 0.9% saline during day 1 and day 2, afterwards the same 2000 mL of volume was infused without electrolytes due to hypernatremia. Vd: Denotes distribution volume.