
Optimal Design Strategies for Sibling Studies with Binary 
Exposures

Zhigang Li*,
Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, 
Geisel School of Medicine at Dartmouth, One Medical Center Drive, 7927 Rubin Building, 
Hanover, NH 03755, USA

Ian W. McKeague, and
Department of Biostatistics, Columbia University, 722 West 168th Street, New York, NY 10032, 
USA im2131@columbia.edu

Lambert H. Lumey
Department of Epidemiology, Columbia University, 722 West 168th Street, New York, NY 10032, 
USA lumey@columbia.edu

Abstract

Sibling studies have become increasingly popular because they provide better control over 

confounding by unmeasured family-level risk factors than can be obtained in standard cohort 

studies. However, little attention has been devoted to the development of efficient design 

strategies for sibling studies in terms of optimizing power. We here address this issue in 

commonly encountered types of sibling studies, allowing for continuous and binary outcomes and 

varying numbers of exposed and unexposed siblings. For continuous outcomes, we show that in 

families with sibling pairs, optimal study power is obtained by recruiting discordant (exposed–

control) pairs of siblings. More generally, balancing the exposure status within each family as 

evenly as possible is shown to be optimal. For binary outcomes, we elucidate how the optimal 

strategy depends on the variation of the binary response; as the within-family correlation 

increases, the optimal strategy tends toward only recruiting discordant sibling pairs (as in the case 

of continuous outcomes). R code for obtaining the optimal strategies is included.
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1 Introduction

In recent years, epidemiological studies involving siblings have become increasingly 

common [1–7], and this design has now also been recognized in popular textbooks [8]. 
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Sibling designs can provide better control over confounding by unmeasured family-level 

risk factors shared by the siblings (e.g. genetic, environmental, or socioeconomic) compared 

to other sampling strategies [9]. In addition, they can enhance study efficiency by reducing 

extraneous variability. Sibling studies are sometimes limited to two individuals per family, 

as in the case of twin studies [10], but more commonly comprise sibships of varying sizes, 

including singletons [11].

To estimate exposure effects with correlated data, two popular approaches are generalized 

linear models (or marginal models) using generalized estimating equations (GEE) to handle 

within-family correlations and random effects models (or mixed effects models). Marginal 

models have a population-average interpretation, whereas mixed effects models capture 

variation across families and allow for a family-specific interpretation. There has been 

extensive discussion in the literature of the relative merits of marginal models compared 

with mixed effects models [12, 13]. A recent study by Hubbard et al. [14] advises that mixed 

effects models should be approached with caution as they rely on unverifiable distributional 

assumptions. Specifically for sibling studies, a number of approaches have been employed 

to date including between–within (BW) models with fixed or random intercepts [15], 

conditional logistic regression models [16] for binary outcomes, and marginal models [9, 

17]. Several review articles [9, 15, 18] provided detailed comparisons of the various 

approaches. In the context of fixed effect BW models and marginal models, Sjölander et al. 

[18] and Frisell [9] pointed out that the estimation and interpretation of the model 

parameters depends on the shared and non-shared confounders of sibling sets. Specifically, 

within-sibling estimates from BW models have larger bias in the presence of non-shared 

confounders relative to those from marginal models [9]. Furthermore, within-sibling 

estimates will have larger bias if the within-family correlation of exposure is higher than that 

of confounders.

Still missing from the literature, however, is a comprehensive treatment of optimal design 

strategies for sibling studies and easy access to the calculation of study power in specific 

settings. Ideally, study power should be readily available for any combination of exposed 

and unexposed individuals in sibships of varying sizes, and take within-family correlations 

into account, for either continuous or discrete study outcomes. To address this need, we here 

present design strategies to optimize study power based on marginal models using GEE to 

handle the within-family correlations. GEE provides an explicit way of handling within-

family correlation, which for the purpose of power calculation is especially convenient. As 

far as we know, explicit power calculation methods for mixed effects models in the case of 

binary outcomes have only been developed under fixed alternatives [19], or rely on 

simulation [20] and the use of unverifiable distributional assumptions [14]. In the GEE 

setting we are able to explicitly calculate the asymptotic power (based on results in Li and 

McKeague [21]) and avoid the use of simulation methods. Throughout this paper, we use E 

and C to denote exposed and control (where “control” refers to unexposed) status, 

respectively. So an EC sibling pair (or an EC family) denotes two siblings with opposite 

exposure status, and an EE (or CC) sibling pair denotes two exposed (or unexposed) 

siblings.
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The paper is organized as follows. Preliminary materials setting up the statistical model 

appear in Section 2. The proposed design strategies are developed in Sections 3 and 4. 

Section 5 contains discussion.

2 Statistical model

In this section, we formulate the statistical model that is used throughout the paper. Let yij be 

the outcome, xij the exposure of interest for the jth sibling in the ith family, and μij = 

E(yijjxij) be the conditional mean of yij given xij. A marginal model [9, 12] to estimate the 

effect of exposure can be written as

(1)

where g(.) is logit link for binary outcome and identity link for continuous outcomes, 

parameter λ is the intercept and parameter β measures the association between exposure and 

outcome. The parameters associated with this model are estimated by the GEE approach [21, 

22] which requires specifying a working correlation matrix. We assume that siblings have 

positive correlations in terms of the outcome of interest.

We are interested in testing the hypothesis that a specific exposure is associated with a 

specific outcome of interest, i.e. H0 : β = 0 vs H1 : β ≠ 0. Our results are based on the use of 

a quasi-score test (rather than a Wald test) [21]. Quasi-score tests under marginal models 

have been studied extensively [23, 24] and provide a sound alternative to the score test when 

a score function is not available (the likelihood function is often intractable for correlated 

data). Unlike a score statistic, a quasi-score test is constructed from an estimating equation 

and an associated sandwich-type variance estimator, which results in a test that is 

asymptotically equivalent to a quasi-likelihood ratio test. The Wald test is a popular test, but 

Hauck and Donner [25] reported that the Wald statistic in logistic regression decreases under 

the alternative with increasing effect size because of increasing variance of the estimator of 

the regression parameter. This “aberrant” behavior of the Wald statistic raises difficulties for 

the study of optimal design strategies and is beyond the scope of the present paper.

Let m be the number of families in the study, α the type I error rate, and  the 100(1 − 

α)th percentile of the chi-square distribution with 1 degree of freedom. According to Li and 

McKeague [21], the test statistic asymptotically follows a chi-square distribution with 1 

degree of freedom and the power of detecting a specific β = β1 is the probability 

, where  is a non-central chi-squared random variable with 1 

degree of freedom and the non-centrality parameter νm is given in eq. (2) in the Appendix. It 

is straightforward to see that the statistical power increases with the non-centrality 

parameter. With this formula, we can calculate study power for family studies with varying 

sibship sizes and allocation schemes. As study power is uniquely determined by the non-

centrality parameter, a comparison of noncentrality parameters will provide the differences 

in statistical power for alternative design strategies. In the following sections, various 

common design issues that arise in sibling studies will be explored to provide 

recommendations for optimizing power.
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3 Optimal design strategies for studies with a continuous outcome

We first evaluate optimal design strategies for studies with a continuous outcome for the 

following scenarios: (1) studies including families with one singleton or two siblings; (2) 

studies adding siblings to existing families; and (3) studies in which all families have the 

same number of siblings. The within-family correlation of the outcome is denoted by ρ 

throughout this paper. R code for calculating statistical power and minimum detectable 

effect size is provided in Sections S3, S5, S8, and S10 of the Supplemental Materials.

3.1 Studies including families with one singleton or two siblings

We start with a simple situation where up to two subjects are available from a single family 

and identify exposed individuals in each family by the letter “E” and unexposed (control) 

individuals by the letter “C”. With this notation, the study may include the family structures 

EC, EE, CC, E, and C. A first question then is whether to recruit one or two individuals per 

family. As mentioned earlier, the idea is simply to compare the non-centrality parameter νm 

for the two competing strategies. Let mec, mee, mcc, me, and mc denote the number of EC, 

EE, CC, E, and C families in a study, respectively. For continuous outcomes, the link 

function g(.) in model (1) is the identity link. That is μij = λ + βxij, and the conditional 

variance is given by var(yijjxij) = σ2 which does not depend on the mean μij. Notice that the 

conditional variance σ2 is assumed to be constant across the exposure levels. The non-

centrality parameter in this case is given in eq. (3) in the Appendix. This allows for the 

comparison of various design strategies with different combinations of EE, CC, EC, E, and 

C families. These comparisons (in section “Non-centrality parameter for continuous 

outcomes involving EE, CC, EC, E and C families” in the Appendix) show that for a given 

number of subjects, the non-centrality parameter νm will be maximized when only EC 

families are included for the study. If this ideal design strategy is fully implemented, the 

non-centrality parameter reduces to

where β1 is the alternative value and 1 – ρ is the “design effect” in this case. As νm is an 

increasing function of ρ, study power will increase as ρ increases; largest study power is 

therefore obtained when outcomes are most highly correlated within sibships.

Sometimes in practice, not every exposed subject will have an unexposed sibling, in which 

case the above “ideal design strategy” cannot be implemented. However, from comparisons 

of the non-centrality parameter, it can be seen that recruiting two E (or C) families will be 

more efficient than recruiting a single EE (or CC) family. This also makes sense intuitively 

given that the positively correlated EE (or CC) siblings include redundant information 

whereas E (or C) singletons are independent.

From these observations, the following recruiting principles can be distilled:

(a) Recruit EC sibling pairs whenever possible,
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(b) When (a) is not possible, recruit an equal number of individuals from E and C 

families.

If these recruiting principles are followed, a mixture of E, C, and EC families will be 

recruited for study (unless the ideal recruiting strategy is possible and the study can be 

limited to EC families). The non-centrality parameter νm is then given by

Notice that νm is still an increasing function of the correlation ρ, associated with the benefit 

gain from EC sibling pairs. Figure 1 illustrates the ideal strategies in relation to other 

strategies in terms of statistical power for a specific situation with an example of 80 

subjects.

3.2 Adding siblings to available families

In typical epidemiologic studies, the number of exposed subjects is limited, but the number 

of unexposed controls is not. Let us therefore consider the situation in which some EC, E, 

and C families have been recruited for the study, and it is feasible to recruit additional 

control subjects. We could then recruit sibling controls either (a) from E families to form EC 

families, or (b) from EC families to form ECC families, or (c) to add C families.

Following the principles outlined above, attempts should first be made to recruit additional 

unexposed controls from existing E families to form EC sibling pairs. This will give a better 

within-sibship exposure contrast than forming ECC families or adding C families.

However, if additional controls are not available for E families, then should the extra 

controls be recruited from existing EC families to form ECC families or should C families 

be added? To compare the latter two scenarios we compare the corresponding values of νm. 

The expression of the non-centrality parameter is given in eq. (4) in the Appendix. The 

comparison shows that recruiting additional controls to form ECC families will generate 

greater statistical power than recruiting new C families, as illustrated in Figure 2, where 

extra controls are added to 40 EC pairs.

3.3 Studies in which all families have the same number of siblings

Next we consider the situation in which an identical number of siblings are recruited from 

each family. Let n be the number of siblings recruited from each family, ne of which are 

exposed and nc = n – ne are unexposed. The non-centrality parameter is given by

Notice that when ne is closest to one half of n, the non-centrality parameter νm is 

maximized. This means study power is largest when the exposure status within each family 

in the study is balanced. When n is an even number, power is maximized for ne = n/2. Then 
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the above formula becomes  where N is the total number of 

subjects in the study.

4 Optimal design strategies for studies with a binary outcome

It suffices to consider binary outcomes (e.g., a disease outcome) with a prevalence of less 

than 0.5 in both the exposed and unexposed groups because if the disease prevalence is 

greater than 0.5, “non disease” status can be used as the outcome with a prevalence less than 

0.5 for mathematical equivalence. R code for deriving optimal design strategies and 

calculating power and minimum detectable relative risk is provided in Sections S1, S2, S4, 

S6, S7, and S9 of the Supplemental Materials.

4.1 Studies including families with one singleton or two siblings

Consider the scenario with up to two available siblings per family. This corresponds to 

family structures EC, EE, CC, E, and C. For binary outcomes, the link function in model (1) 

is taken as logit.

As mentioned earlier, recruiting two E (or C) families will be more efficient than recruiting 

a single EE (or CC) family because the positively correlated EE (or CC) siblings include 

redundant information, whereas E (or C) singletons are independent and provide additional 

information. Therefore an optimal recruiting strategy will involve a combination of EC, E, 

and C families. To find the optimal allocation scheme for such families, numerical methods 

are required to maximize νm given in eq. (5) in the Appendix. There is no closed-form 

solution for the maximization; the R code designed to find the optimal allocation scheme is 

provided in Section S1 of the Supplemental Materials.

The optimal strategy for a binary outcome differs from the approach taken for continuous 

outcomes. In the extreme case of ρ = 0, where there is no within-family correlation of study 

outcomes (or when only E or C families are recruited), the number of recruited E and C 

families should be proportional to the standard deviations of the binary response 

in the two groups, where ν0 = p0(1 – p0) and v1 = p1(1 – p1). Here p0 and p1 denote the 

prevalence of the outcome in the unexposed and exposed groups, respectively. The reason 

for this change in strategy is that the variance of a binary outcome depends on its mean or 

prevalence. In this case of ρ = 0, the best strategy will be to have , 

and  such that , where pe and pc denote the 

proportions of E and C families, respectively. If however , as when the 

proportions p0 and p1 are close, the numbers of exposed and unexposed subjects should be 

balanced. This is consistent with results of Demidenko [26].

When ρ > 0, the recruiting strategy should include EC families. Examples are given in Table 

1 for optimal design strategies for selected values of ρ, p0, and p1, where pec denotes the 

proportion of EC families. As the correlation ρ increases, recruiting more EC families will 

provide larger benefits compared to selecting E and C families in proportion to the standard 

deviations of the binary outcome. In this scenario, the proportion pe will decrease as ρ 

increases.
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When the correlation exceeds a critical value depending on p0 and p1, the best strategy will 

be to only recruit EC families. As an example, with ρ = 0:4, p0 = 0:1, and p1 = 0:2, only EC 

siblings should be recruited (Table 1).

The effect size (i.e. the difference between p1 and p0) also matters. As illustrated in Table 1, 

the optimal proportion of exposed pe will be larger as the difference between p1 and p0 

increases. This follows from the change in the ratio of the two standard deviations 

 which also increases.

4.2 Adding siblings to available families

We next consider for binary outcomes the scenario with a fixed number of exposed study 

subjects available from EC, C, and E families and the possibility to recruit additional 

unexposed control subjects. Again, our options will be to recruit sibling controls either (a) 

from EC families to form ECC families, or (b) from E families to form EC families, or (c) to 

add C families. From the principles above it follows that one should first try to recruit 

additional unexposed controls from existing E families to form EC families. This will 

provide a better contrast of exposure status compared with adding C families or forming 

ECC families. The explicit formula of the non-centrality parameter is given in eq. (6) in the 

Appendix. With this formula, different recruitment strategies can be compared. As shown in 

Figure 3, where extra controls are added to 200 EC pairs, recruiting sibling controls from EC 

families will provide more statistical power compared to recruiting additional C families.

4.3 Studies in which all families have the same number of siblings

In the scenario where the same number of siblings are recruited from each family, the non-

centrality parameter is given by

In this case, vm is maximized when . Therefore the most efficient strategy 

is to assign the exposed and control study subjects according to the ratio  rather 

than balancing the numbers of exposed and unexposed siblings, unless  (i.e. 

p0 and p1 are close to each other).

5 Discussion

In this paper, we have investigated the design efficiency of sibling studies with binary 

exposures using a novel GEE-based [21] approach to calculate study power and estimate 

required sample sizes. Correlations of (continuous or binary) study outcomes between 

siblings are taken into account. Our results are obtained by maximizing explicit expressions 

for the non-centrality parameters of the (chi-squared) limiting distributions of quasi-score 

test statistics under local alternatives. The optimal design strategies for continuous and 

binary study outcomes are found to differ while sharing some common elements.
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For studies with at most two siblings per family and a continuous study outcome, the 

optimal design strategy is to recruit EC sibling pairs. When the same number (more than 

two) of siblings is to be recruited from all families, the optimal strategy is to balance the 

exposure status within each family as evenly as possible. However, for studies with a binary 

outcome, the variation of the outcome is different across the two exposure groups due to its 

dependence on the mean (or prevalence). This needs to be taken into account and results in a 

more complex form for the optimal design strategies. Unknown values of p0 and p1 will 

make implementation of the proposed optimal strategies challenging. In practice, the 

underlying prevalence will almost always be unknown and will have to be estimated from 

the literature. In the absence of any empirical estimates, design strategies could be evaluated 

for a plausible range of values and then conservative estimates selected. Besides the 

aforementioned differences, studies with continuous and binary outcomes also share some 

common elements. Recruiting an EE or a CC sibling pair is less efficient in terms of study 

power compared to recruiting two E singletons or two C singletons. Furthermore, adding an 

additional control to E or EC families to form EC or ECC families is more efficient than 

adding a new C family with only a singleton.

Our results show that all study subjects in family studies contribute to study power, albeit in 

different degrees in different settings. The efficiency of a family study will therefore be 

compromised by the exclusion of any study subjects, even if these subjects are not easily 

compared to siblings who differ in exposure status. As pointed out by Frisell [9], even 

results from sibling designs have to be interpreted with caution as they can be biased by 

confounders not shared by the siblings. Given the availability of analytic techniques that 

account for correlated and non-paired data, approaches that do not include all available 

study subjects [5, 6, 27, 28] should be avoided in the interests of validity and study power.

We have limited our focus to scenarios involving families with no more than three siblings, 

or the same number of siblings in each family; this should be sufficient for evaluating the 

most commonly used sibling designs. R code is included. Optimal recruiting strategies for 

settings with more complex family structures are not presented, because the maximization of 

the non-centrality parameter becomes highly computer intensive, and it would be beyond the 

scope of the article to present the results in any detail.

Our approach was developed and illustrated for cross-sectional sibling studies without 

repeated measurements. In a longitudinal sibling study with repeated measures, the key 

difference is that the correlation structure will be more complex because of the added 

within-subject correlation. The theoretical basis for the approach developed here [21] does 

not assume a specific correlation structure, so the formula provided in section “General 

formula for the non-centrality parameter” in the Appendix could potentially be used to 

provide guidelines for longitudinal sibling studies as well.

We have focused on the quasi-score test, but in practice the Wald test is popular, despite its 

limitations for binary outcomes mentioned earlier. The optimal strategies proposed in this 

paper also apply to the Wald test in the case of continuous outcomes. An interesting topic 

for future research would be to compare the quasi-score, quasi-likelihood, and Wald tests in 

terms of optimal design strategies for binary outcomes.
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Our analysis defines study efficiency in terms of statistical power, ignoring any 

considerations relating to the relative cost of recruiting either exposed or unexposed siblings 

in different family settings. It can already be seen, however, that in common situations 

where study outcomes are positively correlated between siblings, the recruiting of EE or CC 

families might be easier and more cost effective compared to the recruiting of EC or E or C 

families, although this will be less efficient in terms of statistical power alone for a given 

sample size. When required, the trade-off between study cost and statistical efficiency could 

further be explored using the formulas in this paper given the costs of recruiting siblings and 

singletons.
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Appendix

General formula for the non-centrality parameter

Let ψ = (λ, β), B = (0, 1), and Ri(α) denote the working correlation matrix for the ith family. 

The working covariance can be written as  which may not equal the 

true variance, where Δi = diag[var(yi1), . . . , var(yini)]. When the working correlation R(α) is 

the true correlation, the working variance equals the true variance denoted by . Suppose 

there are L possible combinations of exposure patterns and family sizes denoted by (ul, sl), l 

= 1, . . . , L. Let then ωl, l = 1, . . . , L denote the proportion of the lth pattern. We can view 

this distribution as a particular allocation scheme given at the design stage. The general 

formula for non-centrality parameter is given by

(2)

with ψ1 = (λ0, β1), ψ0 = (λ0, 0), Dl = Di = ∂ui/∂ψ, and Vl = Vi evaluated under ψ = ψ0 and (xi, 

ni) = (ul, sl) and  evaluated under ψ = ψ1 and (xi, ni) = (ul, sl). Here λ0 denotes the 

value of the intercept.

Non-centrality parameter for continuous outcomes involving EE, CC, EC, E, 

and C families

According to eq. (2), the explicit expression of the non-centrality parameter νm for 

continuous outcomes involving EE, CC, EC, E, and C families in a study is given by
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(3)

where A1 = 2(mec + mee + mcc)=(1 + ρ) + me + mc, and

To show that the non-centrality parameter νm in eq. (3) is maximized when only EC families 

are included for the study, it suffices to show that recruiting one EC family generates a 

larger νm compared with recruiting one E and one C singletons, or recruiting two E 

singletons, or recruiting two C singletons, or recruiting one EE family or recruiting one CC 

family.

For the first case comparing recruiting one EC family with recruiting one E and one C 

singletons, we need to show that the νm increases if we change me, mc, and mec to me — 1, 

mc – 1, and mec + 1, respectively. If we do so, after some fundamental calculations, it is 

straightforward to see that the new A1 in eq. (3), say , becomes A1 – 2ρ=(1 + ρ) indicating 

that the denominator in eq. (3) decreases, and the new B1, say , becomes 

 indicating the numerator in eq. (3) increases and 

consequently the non-centrality parameter νm in eq. (3) increases. Thus, recruiting one EC 

family does result in a larger non-centrality parameter compared with recruiting one E and 

one C singletons.

Using a similar approach, it can be shown that recruiting one EC family also generates a 

larger noncentrality parameter compared with recruiting one EE family or recruiting one CC 

family. Therefore, the non-centrality parameter in eq. (3) is maximized when only EC 

families are included for the study for a given number of subjects. If the given number of 

subjects is an odd number say 2k + 1, then it is straightforward to see that νm is maximized 

when there are k EC siblings and one E singleton (or equivalently one C singleton).

Non-centrality parameter for continuous outcomes involving ECC, EC, E, 

and C families

Let mecc denote the number of ECC families. According to eq. (2), the explicit expression of 

the noncentrality parameter νm for continuous outcomes involving ECC, EC, E, and C 

families in a study is given by

(4)

where , and
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Non-centrality parameter for binary outcomes involving EC, E, and C 

families

According to eq. (2), the explicit expression of the non-centrality parameter νm for binary 

outcomes involving EC, E, and C families in a study is given by

(5)

where , v0 = p0(1 – p0), v1(1 – p1), and

Non-centrality parameter for binary outcomes involving ECC, EC, E, and C 

families

According to eq. (2), the explicit expression of the non-centrality parameter νm for binary 

outcomes involving ECC, EC, E, and C families in a study is given by

(6)

where

and θ is defined in the display following eq. (5).
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Figure 1. 
Power of sibling (solid) and singleton (dashed) designs; n = 80 individuals with 40 exposed, 

40 unexposed, as the number of exposure–control sib pairs increases from 0 to 40
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Figure 2. 
Additional power from adding extra unexposed individuals to existing EC families (solid) 

and as singletons (dashed) starting from 40 exposure-control sib pairs
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Figure 3. 
Additional power from adding extra unexposed individuals to existing EC families (solid) 

and as singletons (dashed) starting from 200 exposure-control sib pairs
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Table 1

Optimal design strategy based on a binary outcome

p0 = 0.10 and p1 = 0.20 p0 = 0.10 and p1 = 0.30

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4

Optimal proportions of siblings and singletons pe = 57% pe = 7% pe = 0% pe = 60% pe = 15% pe = 8%

pc = 43% pc = 0% pc = 0% pc = 40% pc = 0% pc = 0%

pec = 0% pec = 93% pec = 100% pec = 0% pec = 85% pec = 92%
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