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Abstract

Ovarian cycling continues to similar ages in women and chimpanzees yet our nearest living 

cousins become decrepit during their fertile years and rarely outlive them. Given the importance of 

estrogen in maintaining physiological systems aside from fertility, similar ovarian aging in 

humans and chimpanzees combined with somatic aging differences indicates an important role for 

nonovarian estrogen. Consistent with this framework, researchers have nominated the adrenal 

androgen dehydroepiandrosterone (DHEA) and its sulfate (DHEAS), which can be peripherally 

converted to estrogen, as a biomarker of aging in humans and other primates. Faster decline in 

production of this steroid with age in chimpanzees could help explain somatic aging differences. 

Here, we report circulating levels of DHEAS in captive female chimpanzees and compare them 

with published levels in women. Instead of faster, the decline is slower in chimpanzees, but from a 

much lower peak. Levels reported for other great apes are lower still. These results point away 

from slowed decline but toward increased DHEAS production as one of the mechanisms 

underlying the evolution of human longevity.
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Humans have remarkably long lives compared to other members of the great ape clade 

(Raisz, 1999; Robson et al., 2006). Survival well beyond menopause is a distinctive feature 

of human life history (Bogin and Smith, 1996) and contrasts with patterns observed in most 

other mammals including all nonhuman primates (Levitis and Lackey, 2011). Because 

human life expectancies have nearly doubled in some populations since the nineteenth 

century (Oeppen and Vaupel, 2002), the human pattern is widely assumed to be a novelty of 

recent history. But those recent changes are largely due to reductions in infant and juvenile 

mortality (Oeppen and Vaupel, 2002). Where nutritional and technological advances 

responsible for the reduced old age mortality of some contemporary populations (Kirkwood, 
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2008; Hawkes, 2010) are absent, women have continued to be economically productive well 

beyond the fertile ages (Hamilton, 1966; Hawkes et al., 1989, 1997; Kaplan et al., 2000; 

Blurton Jones et al., 2002; Kaplan et al., 2010) and in hunter-gatherer socioecologies they 

show little decline in strength into their sixties (Blurton Jones and Marlowe, 2002; Walker 

and Hill, 2003).

Hypotheses about why natural selection favored slower aging in many human somatic 

systems (Hawkes et al., 1998; Kaplan et al., 2000; Hawkes, 2003; Kaplan et al., 2010) are 

silent on the physiological mechanisms that make it possible. This mechanism question is 

especially pressing because, aside from fertility, the steroid hormones collectively referred 

to as estrogen affect diverse tissues and cells (osteal: Raisz, 1999; cardiovascular: Kim and 

Levin, 2006; Turgeon et al., 2006; immunological: Wise et al., 2009; neurological: 

Lacreuse, 2006; Wise et al., 2005). While men produce testosterone, which is locally 

converted to estrogen in peripheral tissues throughout life, women produce ovarian estrogen 

only as ovarian follicles grow from a nonrenewing stock that begins declining before birth 

(Peters et al., 1978; McGee and Hseuth, 2000).

When follicle stocks fall below a threshold needed to support ovulation, cycling stops 

(Faddy and Gosden, 1996; McGee and Hsueh, 2000) and, estrogen secretion plummets to 

levels so low that it remains controversial whether postmenopausal ovaries produce any 

(Labrie et al., 2011). Many aspects of somatic aging in Western women have been linked 

with this drop (e.g., Riggs et al., 1998; Pfeilschifter et al., 1978; Turgeon et al., 2006; 

Stevenson and Thornton, 2007; Wise et al., 2009; Gibbs, 2010; Henn, 2010). Yet 

postmenopausal declines in physiological competence are not large enough to cause an 

inflection in mortality (Hamilton, 1966; Gavrilov and Gavrilova, 1991) or stop 

postmenopausal women from continuing high levels of economic productivity (e.g., Hawkes 

et al., 1989, 1997). If estrogen is important for physiological maintenance, postmenopausal 

women must produce it from nonovarian sources. Other steroids that can be converted to 

estrogen in peripheral tissues are obvious candidates.

After cholesterol, the adrenal androgen dehydroepiandrosterone (DHEA) and its sulfate ester 

dehydroepiandrosterone sulfate (DHEAS) are the most abundant steroids circulating in 

young human adults. They are the main products of the human adrenal gland (Longcope, 

1986), circulating at nanomolar and micromolar concentrations respectively (Longcope, 

1995; Baulieu, 1996; Longcope, 1996). Peripherally, DHEA and DHEAS are interconverted 

by sulfotransferase enzymes present in a wide variety of tissues (Fujikawa et al., 1997; Dalla 

Valle et al., 2006). As DHEAS has a longer circulating half-life and concentration several 

orders of magnitude higher, it is generally considered to be a reservoir for DHEA 

(Longcope, 1986; Rosenfeld et al., 1975; but see Hammer et al., 2005; Siiteri, 2005 for 

debate). Circulating levels are “1,000 to 10,000 times higher than those of estradiol” in 

women (Labrie et al., 1998:322), so that intracrine conversion of DHEA in peripheral target 

tissues may be responsible for “75% of estrogen before menopause and close to 100% after 

menopause” (Labrie, 1991:C116).

Faster decline in adrenal androgen production across adulthood might help explain why 

chimpanzees become decrepit while their ovaries are still secreting estrogen. Follicle stocks 
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decline with age at the same rate in chimpanzees and humans (Jones et al., 2007); and, like 

us, they can have last pregnancies into their forties (Roof et al., 2005; Emery Thompson et 

al., 2007). But chimpanzees display geriatric symptoms in their thirties (Goodall, 1986; 

Huffman, 1990; Nishida et al., 2003; Matsuzawa, 2007). Even in captivity where mortality 

is reduced (Dyke et al., 1995; Hill et al., 2001), chimpanzees rarely live beyond their cycling 

years (Lacreuse et al., 2008; Herndon et al., 2012).

Declines in circulating levels of DHEAS have been measured in several primate species; and 

those declines have been proposed as biomarkers of aging in humans and nonhuman 

primates (Lane et al., 1997; Kemnitz et al., 2000; Roth et al., 2002). Ingram et al. 

(2001:1030–1) say that

“The rate of age-related change in a candidate biomarker should be proportional to 

differences in lifespan among related species. For example, the rate of change in a 

candidate biomarker of aging in chimpanzees should be twice that of humans (60 

vs. 120 years maximum lifespan); in rhesus monkeys about three times that of 

humans (40 vs. 120 years maximum lifespan).”

This expectation is consistent with general scaling assumptions and supported empirically 

for circulating DHEAS data on captive rhesus and humans (Lane et al., 1997). Building on 

these observations we hypothesized that circulating levels of DHEAS would decline twice as 

fast with age in female chimpanzees when compared to published levels in women.

MATERIALS AND METHODS

To test this hypothesis, we requested blood samples from female chimpanzees at Yerkes 

National Primate Research Center. Samples were drawn only when subjects were sedated 

for reasons unrelated to this project with a protocol approved by IACUCs at the University 

of Utah and Yerkes. During 2007, 2009, 2010, and 2011, samples were taken from 70 

females then immediately processed for serum and kept frozen until analyzed for DHEAS by 

the Biomarkers Core Lab at Yerkes using RIA for samples from 2007 and LC-MS thereafter 

(Supporting Information Table S1). Here, we compare the results from 65 chimpanzee 

females over the age of 15 with a combined sample of published DHEAS levels for 71 

Czech women between the ages of 20 and 80 reported by Sulcova et al. (1997), 68 Italian 

women between the ages of 19 and 78 reported by Ravaglia et al. (1996), and 530 Australian 

women aged 20–76 reported by Davison et al. (2005) (see Supporting Information Table 

S2). We used these sources because their published figures allowed recovery of individual 

DHEAS levels, not just age class means and because they provided DHEAS levels across 

adulthood.

Some of our chimpanzee measurements came from subjects on hormonal contraception 

(Supporting Information Table S1). As exogenous hormone supplements reduce DHEAS 

levels 26–32% in women (White et al., 2005), we looked for a similar effect in chimpanzees 

by splitting our sample into the 53 measurements taken when a subject was not on hormone 

contraception and the 12 when on. Comparison of models fitted to these subsamples 

(Supporting Information Fig. S1) showed no substantial differences.
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Methods differed slightly among the human studies, so we used R statistical package (R 

Development Core R Development Core Team, 2011) to fit models of DHEAS 

concentrations against age for each dataset separately (Supporting Information Fig. S2) and 

found that the 95% confidence intervals overlap. To evaluate representativeness of our 

sample for women, we extracted 5-year age class means of DHEAS levels from figures 

reported by Orentreich et al. (1984), fit a model using the procedure described above, and 

found very close agreement between models of human DHEAS decline in our combined 

human sample and that of Orentreich and colleagues (Table 1).

We then compared our combined human sample to our chimpanzee sample by fitting a 

number of functional forms, both linear and nonlinear, with maximum likelihood estimation 

in order to approximate the relationship between DHEAS concentrations and age. Using 

Akaike Information Criterion (Akaike, 1974) we determined the best fitting models for each 

species.

RESULTS

A logarithmic function where DHEAS (μg/dL) = 189.73−33.86 × ln(age) best fit the 

chimpanzee data, while an exponential model where DHEAS (μg/dL) = eˆ(6.24−0.03 × age) 

fit the human data best (Table 1). Using these models, we estimated peak concentrations of 

DHEAS at the start of adulthood (using 15-years-old for chimpanzees and 20 years for 

humans because these are close to the beginning of adulthood in each species and allow 

comparison of 5-year age class means; Table 1) and average rates of DHEAS decline across 

5-year age classes (Table 2). We calculated the ratio of chimpanzee to human slope for each 

5-year age class after peak in Table 2 to simplify comparison. Figure 1 shows the 

distribution of individual DHEAS concentrations by age and species, with the best-fit models 

for each.

Contrary to the hypothesis that circulating levels of DHEAS would decline twice as fast in 

chimpanzees as they do in humans, declines are more gradual in chimpanzees. Average 

declines in chimpanzee DHEAS range between 21 and 25% of human rates (Table 2). 

Compared to chimpanzees, women begin adulthood with more than three times the 

circulating levels of DHEAS (281.46 vs. 89.04 μg/dL for chimpanzee females; Table 1). 

Human concentrations do not fall to the highest chimpanzee levels until the tenth 5-year 

interval—starting at 65 and ending at 69.

DISCUSSION

Circulating levels of DHEAS in our chimpanzee sample do not support the hypothesis of a 

faster decline with age. Instead, when compared to women, female chimpanzees begin 

adulthood with DHEAS concentrations less than one-third as high that decrease at less than 

one fourth the rate. Assuming that DHEAS levels are an index of investment in somatic 

maintenance, we should have anticipated that maximum circulating levels would be 

substantially higher in humans. Evolutionary theories of aging link slower senescence and 

longer average adult life spans to increased somatic investment (Williams, 1957; Hamilton, 

1966; Williams, 1966; Kirkwood and Rose, 1991). More investment in maintenance reduces 
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vulnerability to mortality (e.g., Ricklefs, 1998), and selection favors more maintenance 

when that tradeoff increases lifetime fitness (Hamilton, 1966; Williams, 1966; Kirkwood 

and Rose, 1991; Hawkes, 2003).

The chimpanzee-human DHEAS comparison is consistent with the inference that adrenal 

steroids play an important role in somatic maintenance. In humans—and we assume in 

chimpanzees as well—estrogenic bioactivity is important for both fertility and somatic 

maintenance. This link between higher DHEA/S levels and increased somatic maintenance 

in humans is consistent with a broader hypothesis that higher circulating levels of DHEAS in 

primates versus nonprimate mammals (Labrie et al., 2001; Nguyen and Conley, 2008) 

contribute to greater longevity in our order (e.g., Austad and Fischer, 1992; Charnov and 

Berrigan, 1993). But this generalization warrants further scrutiny in light of complex 

variation in adrenal glands across the order (Conley et al., 2004; Nguyen and Conley, 2008). 

An implicit corollary of the hypothesis that DHEAS plays a role in primate longevity is that 

similarities in somatic maintenance between chimpanzees and other great apes derive partly 

from similarities in DHEAS levels. Bernstein and collaborators (Bernstein et al., 2012) 

recently presented data inconsistent with this corollary.

They reported serum levels of DHEA and DHEAS across the life span in captive great apes 

and showed, as do our data here, that circulating levels of DHEAS are much lower in 

chimpanzees than humans. Although they did not analyze changes across adulthood, their 

findings are generally concordant with those of our sample. Surprisingly they found marked 

differences between genus Pan and the other great apes. As ages at last birth and maximum 

lifespans are similar among the nonhuman great apes, we had assumed mechanisms of 

ovarian and somatic aging would be similar as well. But Bernstein and colleagues found 

otherwise. The level they calculated for gorillas (Gorilla gorilla)—again averaging both 

sexes—was only 34% that of Pan. Even more striking, orangutans (Pongo abelii and P. 

pygmaeus of both sexes) had average levels only 16% of Pan, the lowest average reported 

among catarrhines.

The differences in DHEAS levels across the nonhuman great apes suggest that androgens we 

have not investigated may be important in somatic maintenance. Lasley et al. (2012) further 

highlighted this possibility by suggesting the importance of another adrenal androgen, 

Androstenediol (Adiol), in perimenopausal women. They found (McConnell et al., 2012) 

that the transient increase in circulating DHEAS observed in perimenopausal women 

(Crawford et al., 2009) is accompanied by similar changes in the circulating levels of other 

adrenal androgens. Adiol is of particular interest because, in contrast to DHEA/S, it activates 

the estrogen receptor without intracrine conversion. Circulating at levels substantially higher 

than estrogen in postmenopausal women, Adiol may be vital to estrogenic bioactivity 

(Lasley et al., 2012).

Before concluding, we consider some limitations of our sample. Although often collapsed 

into age class averages, the individual variation in DHEAS levels in European, Australian, 

and American women is marked (see review in Enea et al., 2008). Yet Western women and 

captive chimpanzees do not represent the likely range of variation. For chimpanzees, captive 

conditions are known to affect ovarian hormone levels compared to those measured in the 
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wild (Emery and Whitten, 2003; Emery Thompson, 2005) and adrenal steroid levels may 

vary between captivity and the wild as well. In the same way, human variation may be even 

wider if non-Western subjects were included. Ovarian hormone levels are known to differ 

between industrial and traditional populations, with covariates including diet, work, and 

disease load (e.g., Ellison et al., 1993; Ellison, 1994; Jasienska and Jasienski, 2008; 

Vitzthum, 2008). Adrenal steroid levels may also differ.

If research into variation in male steroid levels is a guide to the magnitude of differences in 

women, differences in adrenal androgen levels may be smaller than differences in gonadal 

levels. Campbell et al. (2006, 2007) reported levels of both for Turkana men in nomadic and 

settled communities. Levels were significantly different for testosterone, but—except in the 

oldest subjects—DHEAS levels were not. On the other hand, Crawford et al. (2009) found 

dramatic differences in both DHEAS level and rate of change with age for American women 

of different ethnic groups between the ages of 42 and 52. Through those ages some of the 

women in their dataset had DHEAS levels that overlap our chimpanzee sample. However, 

little difference between African American and Caucasian women has been found in studies 

of DHEAS levels in younger adults (e.g., Kitabchi et al., 1999; An et al., 2001), and levels in 

these younger women are substantially higher than those of chimpanzees.

With those caveats we conclude that declines in circulating levels of DHEAS are not steeper 

in female chimpanzees than in women; but levels are substantially lower in chimpanzees; 

and the human difference from the other great apes is even larger than the difference from 

genus Pan. Contrasts among the other hominids raise additional questions, but also further 

distinguish the high DHEAS production in humans, a distinction consistent with the 

likelihood that this mechanism contributes to the extraordinary longevity of our own lineage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Concentrations of DHEAS (μg/dL) as a function of age in both human (n = 698) and 

chimpanzee (n = 65) females. Lines represent best-fit models of DHEAS decline with age in 

humans and chimpanzees. See Table 1 for parameter estimates.
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