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Abstract

To better understand the mechanisms involved in the heavy metal stress response and tol-
erance in plants, a proteomic approach was used to investigate the differences in Cu-
binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding pro-
teins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-
sepharose column was applied prior to the Cu-IMAC column to remove metal ions from
protein samples. More than 300 protein spots were reproducibly detected in the 2D gel.
Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the
control. Twenty-four proteins contained one or more of nine putative metal-binding motifs re-
ported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs re-
ported by Kung et al. The intensities of seven protein spots were increased in the Cu-
tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein
spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein
spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In
contrast, two protein spots were significantly down-regulated in B1195, but unchanged in
B1139. These Cu-responsive proteins included those involved in antioxidant defense and
detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29
and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8
and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19,
30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress
(spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced pro-
tein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like pro-
teins. Our results suggest that these proteins, together with related physiological
processes, play an important role in the detoxification of excess Cu and in maintaining
cellular homeostasis.
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Introduction

Copper (Cu) is an essential micronutrient for plant growth and development, but excess Cu is
extremely toxic and interferes with numerous physiological processes, such as photosynthesis,
pigment synthesis, oxidative stress, nitrogen and protein metabolism and mineral uptake. Cu
binding can lead to inactivation and disturbance of protein structures [1]. Plants possess sever-
al metal-tolerance mechanisms, including compartmentation, exclusion, and chelation by or-
ganic ligands of amino acids, proteins, peptides and organic acids [1, 2]. Proteins contain
cysteine (Cys), methionine (Met), and histidine residues (His), which have high affinity to di-
valent metal ions, and play a key role in maintaining intracellular copper homeostasis and tol-
erance [3, 4]. Characterizing the metal-binding proteins in plant cells is important for
understanding the metal-protein interactions that may be responsible for the toxic effects of
metals; metal-binding proteins act as passive molecular targets of toxic metal ions and partici-
pate in metal tolerance.

A wide range of proteins involved in Cu detoxification and homeostasis has been identified
in plants [2, 5]. Identification of the metal-binding proteins involved in plant responses to
heavy metal toxicity aids understanding of the molecular mechanisms of metal tolerance. Re-
cently, immobilized metal affinity chromatography (IMAC) combined with mass spectrometry
[6] has been employed to identify putative metal-binding proteins in bacterial [7], mammalian
[8, 9], and plant cells [10, 11].

IMAC facilitates the separation of proteins from biological samples. It is based on specific
interactions between proteins in solution and metal ions immobilized on a solid support. Metal
ions are usually complexed with chelating ligands, such as iminodiacetic acid (IDA) or nitrilo-
triacetic acid (NTA). The proteins are separated according to their affinity for the chelated
metal ions, which depends on the coordination between the chelated metal ion and electron
donor groups on the protein surface. Smith et al. [9] used a Cu-IMAC approach to enrich Cu-
binding proteins in hepatocellular cells. In Streptococcus pneumoniae, 232 and 166 putative
metal-binding proteins were isolated using Cu- and Zn-IMAC columns, respectively [7]. In
Arabidopsis roots [10] and soybean seeds [12], 35 and 32, respectively, putative Cu-binding
proteins were identified. Tan et al. [11] identified 35 weak and 48 strong Cu**-IMAC-
interactors in Arabidopsis mitochondria. However, IMAC is unlikely to be suitable for specifi-
cally capturing metal-binding proteins in plants under excess metal stress conditions in which
the metal-binding sites might be occupied by metal ions. Under such a condition, the proteins
of interest would not interact with the immobilized metal ions and so pass through the IMAC
column [10, 13].

In a previous study, we developed a new IMAC method in which an IDA-sepharose column
was applied prior to the Cu-IMAC column to remove metal ions from protein samples and
separate and isolate Cu-binding proteins from Cu-treated rice roots [14]. The Cu stress-
induced protein expression profiles of Cu-tolerant and Cu-sensitive rice varieties were also in-
vestigated [15]. However, limited information is available on the metal-binding protein profiles
in plant genotypes with different tolerances to heavy metal stress. In this study, we identified
Cu-binding proteins using a Cu-IMAC column, and their respective binding motifs, in the
roots of two rice varieties using 2-DE and matrix-assisted laser desorption/ionization time-of-
flight/time-of-flight (MALDI-TOF/TOF) MS. The aim was to better understand the mecha-
nisms involved in the heavy metal stress response and tolerance in plants. To our knowledge,
this is the first comparative proteomic analysis of Cu-binding proteins in Cu-tolerant and Cu-
sensitive crop varieties.
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Materials and Methods
Plant growth and treatments

In this study, two varieties of rice (Oryza sativa L.), B1139 (Cu-tolerant) and B1195 (Cu-sensi-
tive), initially described by Song et al. [15], were used for comparative proteomic analysis of
Cu-binding proteins. Pre-germinated seeds were grown hydroponically for 7 days in Kimura B
nutrient solution. The seedlings were treated with 8 uM Cu®" or 0.32 uM Cu”" (control) for

3 days. Three replicates were set for each treatment, and one hundred plants were cultivated
for each replicates. Rice root samples were then harvested for protein extraction.

Protein extraction and separation of Cu-binding proteins

Cu-binding proteins were extracted and separated as described previously [14]. Briefly, fresh
rice roots were ground in liquid nitrogen then suspended in binding buffer (20 mM sodium
phosphate, pH 5.8, 500 mM NaCl, 0.1% w/v Triton X-100) containing 1 mM phenylmethyl sul-
fonyl fluoride, incubated, and centrifuged. The proteins in the supernatant were first pre-
chromatographed on a column with IDA-Sepharose to remove metal ions and then applied to
the Cu-IMAC column. Copper-binding proteins were eluted with elution buffer (10 mM sodi-
um acetate, 500 mM NaCl, pH 5.5) containing 40 mM imidazole.

2-DE, gel scanning and image analysis

Duplicate 2-DE gels were run three times for each treatment as described previously [14].
Briefly, for each replicate, 600 ug of copper-binding proteins were added to IPG dry strips dur-
ing the rehydration step. After isoelectric focusing, gel strips were equilibrated in equilibration
buffer. SDS-PAGE in the second dimension was then performed. Protein spots were visualized
using a modified Coomassie brilliant blue staining method [16].

The analyses of gel images were carried out using the PDQuest software (Version 8.0; Bio-
Rad). Student’s t-test was used for analysis of the difference between Cu-treated and control
samples. Only spots that exhibited significant and reproducible changes between treatments
were considered to be differentially expressed proteins.

In-gel digestion and MALDI-TOF/TOF MS analysis

Selected protein spots were excised, incubated, and dehydrated for MALDI-TOF/TOF MS
analysis [14, 17]. Next, peptide mass spectra were obtained using an Applied Biosystems 4700
Proteomics Analyzer MALDI-TOF/TOF mass spectrometer (Applied Bio-systems, Framing-
ham, MA). All spectra of proteins were searched against the NCBInr (National Center for Bio-
technology nonredundant database) using online MASCOT (http://www.matrixscience.com).
In these searches the peptide mass tolerance was set at 0.15 Da, mass tolerance of TOF—TOF
fragments was set to 0.25 Da, one missed cleavage by trypsin was allowed, and carbamido-
methyl of Cys as fixed modification, and oxidation of Met as variable modification were includ-
ed. Only significant hits, as defined by the MASCOT probability analysis (P<0.05),

were accepted.

Results
Separation and 2-DE analysis of Cu-IMAC-binding proteins

Rice seedlings were exposed to Kimura B nutrient solution containing 8 uM Cu®" for 3 days,
while control plants were grown in normal nutrient solution containing 0.32 uM Cu. Rice root
proteins were extracted with binding buffer containing 1 mM phenylmethylsulfonyl fluoride
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Table 1. Effect of copper stress on yield of copper-binding proteins in the rice roots of varieties
B1139 and B1195.

Rice varieties Copper-binding proteins yield(ug/mg protein) % of control
Control(0.32 pmol/Cu?*) 8 pmol/Cu?*

B1139 30.16+0.33 40.72+0.22 135.02 a

B1195 30.78+0.39 38.61+0.12 125.46 b

Note: The copper-binding protein yield is expressed in terms of micrograms copper-binding proteins per
milligrams total proteins. The letters of a and b about change of copper-binding proteins yield under copper
stress indicate a statistically significant difference (P<0.05) between two varieties by Duncan’s test.

doi:10.1371/journal.pone.0125367.t001

(PMSEF). A 24-mg protein sample was pre-chromatographed on a column with IDA-Sepharose
before being applied to a Cu-IMAC column for separation of Cu-binding proteins. Following
washing with nine bed volumes of washing buffer containing 10 mM imidazole, non-specifical-
ly bound proteins were removed from the column. Cu-binding proteins were obtained follow-
ing elution with elution buffer containing 40 mM imidazole (Table 1). The yields of copper-
binding proteins from the roots of the two rice varieties treated with 8 uM Cu** were markedly
higher than yields from control plants, indicating that Cu treatment increased the amount of
proteins specifically bound with the Cu-IMAC. The yield of Cu-IMAC-binding proteins from
the roots of the Cu-tolerant rice variety B1139 than was higher than that from the Cu-sensitive
variety B1195.

Copper-binding protein maps produced from 2-DE gels showed high reproducibility
among the three independent extractions. Fig 1 shows representative gels of Cu-IMAC-binding
proteins extracted from control and Cu-treated roots. Approximately 320 protein spots were
reproducibly detected on silver-stained gels using the PDQuest 8.0 software. Six typical regions
are enlarged in Fig 2. Quantitative image analysis revealed that a total of 35 protein spots exhib-
ited more than a 1.5-fold change in intensity between the control and copper treated samples
in at least one variety. Among these, the expression of six protein spots showed no significant
difference between the two rice varieties under Cu stress. Compared to the control, the 8 uM
Cu®" treatment resulted in increases in the intensity of 17 protein spots and decreases in 3
spots (spots 30, 31 and 32) in both varieties. Of these 17 up-regulated protein spots, 7 (spots 5,
8,10, 16, 18, 21 and 25) were increased in the Cu-tolerant variety B1139 compared to the Cu-
sensitive variety B1195 (p<0.05). Six spots were markedly up-regulated (spots 23 and 24) or
newly induced (spots 26, 27, 34 and 35) in B1139, but not detected in B1195 (p<0.05). Four
spots (spots 3, 14, 15 and 29) were significantly up-regulated in B1139, but unchanged in
B1195 under Cu stress. In contrast, protein spot 33 was up-regulated and spots 13 and 19 were
down-regulated in B1195, but were unchanged in B1139 under Cu stress. Spots 11 and 12 were
down-regulated in B1139, but not detected in B1.

Identification of Cu-IMAC-binding proteins

The 34 differentially expressed protein spots were identified by MALDI-TOF/TOF MS. Table 2
shows the identity of 27 Cu-binding proteins after a database search. These Cu-responsive pro-
teins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28,
29 and 33), pathogenesis (spots 23 and 26, 24 and 25), regulation of gene transcription (spots 8
and 34), amino acid synthesis (spot 6 and 11 and 12), protein synthesis, modification, transport
and degradation (spots 1 and 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14),
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Fig 1. Representative 2-DE maps of the rice B1139 and B1195 roots copper-binding proteins eluted from a Cu-IMAC column with elution buffer
containing 40 mmol imidazole. The 7 days seedlings were treated with 8 umol Cu®* for 3 days. Seedlings without any treatment, grown in a full-strength
nutrient solution were used as a control (0.32 umol Cu*). 100 ug of copper-binding protein were loaded onto IPG dry strips (17 cm, pH 4-7 linear gradient;
Bio-Rad) during the rehydration step (13 h), followed by focusing for a total of 6,000 V-h usinga PROTEAN IEF CELL (Bio-Rad). SDS-PAGE in the second
dimension was carried out using 12% SDS—polyacrylamide gels. The protein spots were visualized by mass spectrometry-compatible silver staining.

doi:10.1371/journal.pone.0125367.g001

molecular signaling (spot 3), and salt stress (spots 7, 27 and 9); together with other proteins,
such as a putative glyoxylate induced protein (spot 18), proteins containing dimeric alpha-beta
barrel domains (spot 20), and adenosine kinase-like proteins (spot 13).

Analysis of metal-binding motifs

Metals often bind proteins at specific coordination sites involving Cys, His, and Met residues
[18]. Smith et al. [9] reported nine putative metal-binding domains, H-(X)n-H (n = 0-5) and
C-(X)n-C (n = 2-4). In Arabidopsis roots, Kung et al. [10] found that 29 of 35 identified Cu-
binding proteins possessed one or more of the H-(X),,-H (n = 0-5) and C-(X),,-C (n = 2-4)
metal-binding motifs suggested by Smith et al. [9]. Kung et al. [10] further described the top
six candidate motifs (H-(X)s-H, H-(X),-H, H-(X),,-H, H-(X)s-M, M-(X),-H and H-(X)5-C),
which were found in 31 of 35 proteins (89%). In this study, 27 proteins (in 34 protein spots)
were confidently identified. Among these 27 proteins, 22 contained one or more of the nine
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Fig 2. Enlargements of the framed areas shown in Fig 1. The framed regions A-E in Fig 1 are enlarged and compared in detail. The arrows indicate the
distinct copper-binding proteins between rice B1139 and B1195 roots.

doi:10.1371/journal.pone.0125367.9002
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Table 2. Differentially expressed copper-binding proteins identified by MS/MS.

Spot Fold-ch.” 39/95 NCBI Acc.

no.?

22

28

29

33

16

21

34

30

31

32

19

4.41/3.88 al/b]
2.4/3.2 bi/al

2.5/2.1 af/al

2.7/1.1 al/b-

1.2/4.6 bi/al

3.8/1.8 al/b]

3.3/1.5 al/b]

2.32/1.72 al/b}

new/none

0.57/0.01 a|/b]

0.14/0.6 b|/a]|

0.57/0.02 a|/b]

0.89/0.47 a-/b|

no.°

AAG46133
AAC04837

BAB92583

Q7XUP7

AAA33917

AAC64007

AAC64007

BAC65369

BAC66711

Protein name

Theoretical Observed

Mr/PI

SC? Score PM® MS/MS peptide sequence >95% C.I. (Indv.

(%)

Proteins involved in antioxidation and detoxification

Putative peroxidase  35.4/7.55
Germin-like protein 6 24.5/5.92

Putative quinone- 21.7/6.06

oxidoreductase(QR2)

Methionine sulfoxide 21.1/5.88
reductase A2-1

Copper/zinc 15.3/5.71
superoxide

dismutase

Gilutathione S- 24.3/5.77
transferase |l

Gilutathione S- 24.3/5.77

transferase |l

Proteins involved in transcriptional regulation

CHP-rich zinc finger  28.4/4.95
protein-like
Putative cold shock  19.0/6.28

protein-1

42.1/5.16
26.6/6.54

23.3/6.36

21.5/5.99

17.7/6.29

24.8/5.47

26/6.3

32.9/4.75

17.9/6.51

5
28

48

35

15

37

27

23

74

130
388

392

472

175

479

358

326

704

1(1)
6(5)

6(6)

8(5)

2(2)

6(6)

5(5)

5(4)

8(7)

ion score)

GLDAEDMVVLSGAHTVGR(130)

AAMLDTPR(42); YVNADHFFK(57);
HSPVLVNGFACLDPK (98);
IDYAPLGENPPHTHPR(120);
GTIDWLQAQFWENNHY(71)

VYVVYYSMYGHVAK(74);
IWQVPETLHEEVLGK(83); WP
TEMELEHAFHQGK(36);
MFNMGEVQGGSPYGAGTFAAD GSR
(109);
MGAPPKPDVPTITPQELTEADGILFGFPTR
(90)

HNPTTLNR(55); IVTEILPATR(62);
TEVGYSQGHR(77); FYPAEEYHQR(65);
DVCGGGTGHAEVVR(137)

EHGAPEDETR(76); AVVVHADPDDLGK
(99)

VVEENLEK(65); VLEVYEAR(71);
GEHKAPDHLAR(60); LYGSTLSWNVTR
(91); NPFGQVPALQDGDLFLWESR(90);
CVAVLEEAGAEYEIVPLDFSK(101)

VVEENLEK(65); VLEVYEAR(75);
GEHKAPDHLAR(50); LYGSTLSWNVTR
(100); CVAVLEEAGAEYEIVPLDFSK(68)

DHDMKER(41); KMEDDFDAFTASK(75);
IAIAVDLSDESA YAVR(117);
LGSVSDYCVHHCVCPVVVVR(71);

GYGGGGGGYGGGDR(87);
GYGGGGGYGGGGGGGS R(107);
DCSQGGGGGGGYGGGGGGYR(136);
SLNDGDVV EFSVGSGNDGR(138);
GGGGGGGGGGCYNCGETGHI AR(102);
AVDVTAPGGGALTGGSRPSGGGDR(45);
GFGF ITPDDGGEDLFVHQSSLK(62)

Proteins involved in protein synthesis, modification, transport and degrdation

ABA98689

ABF98987

AAC67555

BAD26337

Putative eukaryotic ~ 17.8/5.6
translation initiation

factor 5A-2

Putative eukaryotic ~ 17.9/5.87
translation initiation

factor 5A-2

Translation initiation
factor 5A

17.7/5.77

Putative elongation =~ 94.9/5.85

factor EF-2

17.6/5.9

17.0/6.0

16.8/6.2

42.2/6.55

45

40

35

10

364

270

479

423

5(5)

6(4)

6(6)

7(6)

TYPQQAGTIR(59); LPTDDNLLSQIK(99);
CHFVAIDIFT AK(102);
DLVVTVMSAMGEEQICALK(38);
KLEDIVPSS HNCDVPHVNR(68)

NGHIVIK(37); TYPQQAGTIR(62);
CHFVAIDIFNGK(79);
DDLRLPSDEALLTQIK(43);

TYPQQAGTIR(57); LPTDDSLLGQIK(84);
CHFVAIDIFN GK(92);
DDLRLPTDDSLLGQIK(54);
LEDIVPSSHNCDVPHV NR(94);
KLEDIVPSSHNCDVPHVNR(100)

GGGQVIPTAR(41); VIYASQLTAKPR(73);
RVIYASQLTAKPR(56); ILSEEFGWDKDLAK
(81); AYLPVIESFGFSSQLR(103);
GHVFEEMQRPGTPLYNIK(46)

(Continued)
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Table 2. (Continued)

Spot Fold-ch.” 39/95 NCBI Acc.

no.? no.®

4 1.57/1.52 af/a} AAX85991
35 new/none ABA99827
15 1.7/1.1 al/b- BAA94966
10 3.23/2.23 al/b] AAX11351
1 2.21/2.34 af/a] P25776

2 2.28/2.07 af/a] P25776
23 1.8/none af/ BAC56823
26 new/none BAC56830
25 7.5/2.3 al/b] ABA99548
24 17.3/none al/  AAF85972
6 2.35/5.81 bj/a] P14656
11 0.34/none a|/ P14656

12 0.13/none a|/  AANO05339

Protein name Mr/PI
(%)
Theoretical Observed

Protein disulfide 57.05/4.95 71.5/49 18 466
isomerase
Putative ubiquitin- 16.8/6.42 16.5/6.52 46 292
conjugating enzyme
spm2
Epsilon-COP 1 31.7/5.23 27.5/5.18 32 551
Cathepsin B-like 40.4/6.25 30.9/5.11 23 550
cysteine protease
Oryzain alpha chain; 51.3/5.14 43.1/42 15 563
Flags: Precursor
Oryzain alpha chain; 51.3/5.14  42.1/4.24 8 222
Flags: Precursor

Pathogenesis-related protein
Putative 18.2/4.76  19.6/425 20 220
pathogenesis- related
protein
putative 19.4/4.37 11.7/4 41 216
pathogenesis-related
protein

Pathogenesis-related 17.2/4.96 16.9/499 63 711
protein Bet v | family

protein

Pathogenesis-related 16.9/4.95
protein PR-10a

Proteins involved in amino acid synthesis

14.2/4.81 18 165

Glutamine synthetase 39.4/5.51  40.8/5.32 13 407
shoot isozyme
Glutamine synthetase 39.4/5.51 31.5/5.27 13 250
shoot isozyme
Putative glutamine 38.8/5.73 33/5.36 17 456

synthetase root
isozyme

8(7)

6(4)

6(6)

8(8)

6(6)

3(3)

3(3)

4(3)

7(7)

2(2)

5(5)

5(5)

6(5)

sC? Score PM® MS/MS peptide sequence >95% C.l. (Indv.

ion score)

NIQEYKGPR(40); GDAAVERPLVR(37);
TADEIVDFIK K(64); VVVADNVHDFVFK
(104); AHVEPDQIVSWLK(88);
SDYDFGHTLHANHLPR(50);
VVTFDKNPDNHPYLLK(56)

FSLLSNWR(39); EYTMEAILTQLKK(81);
LFCDKDYPDRPPTVK(53);
SWTGTIIGPHNTVHEGR(59)

AVSAEDNFER(68); LSHPDHVLVK(48);
EAYLIFQDFAE K(94);
EWLSDSAVGSNPVLR(119);
LIAGIIFMHEQDYTEA LK(112);
NLFYLGAYQAAINNSDVPGLDADAAAER
(109)

HFSVNAYR(66); GWGDDGYFK(62);
KHFSVNAYR(61); HITGGMMGGHAVK(78);
PGCEPAYPTPVCEK(90); GTNEC
GIEEDVVAGMPSTK(99);
GVVTDECDPYFDQVGCK(93)

SWGESGYVR(61); CGIAVEPSYPLK(71);
AFQLYSSGIFTGK (102); CGIAVEPSYPLKK
(70); AVANQPVSVAIEAGGR(99);
CGTALDHGVAAVGYGTENGK(159)

SWGESGYVR(42); AFQLYSSGIFTGK(88);
AVANQPVSVAIEAGGR(93)

STTSIGCAR(37); ADYVYSSNTCTR(72);
GALLDCGH YTQVVWR(111)

AGDCALIHSGSWEK(94);
RVEGVGEVVWDDAVAA YAENYAAER(37);
VDCDNGGVFITCNYNPAGNFQG ERPFER
(54)

AVAVSVER(55); APAFVSDER(94);
VCLDVHSLPK(69) IVVCDSATHVLK(76);
SHSTETKLEATGDATCVAK (158);
LTVEYELEDGASLSPEQEK(149);
VCAGFIDA VEVEGNGGPGTIHIMK(109)

VAVCDAASHVLK(55);
APACVSDEHAVAVSAER(109)

DIVDSHYK(60); NDGGYEIIK(74);
EHISAYGEGNE R(70);
HKEHISAYGEGNER(104);
HETADINTFSWG VANR(99);

DIVDSHYK(67); NDGGYEIIK(72);
EHISAYGEGN ER(91);
HKEHISAYGEGNER(105); IAEYIWIGGSG
MDLR(49)

DIVDAHYK(63); GPITDVSQLPK(81);
EHIAAYGEGNE R(86);
HKEHIAAYGEGNER(103);
IIAEYIWVGGSGID LR(109)

(Continued)
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Table 2. (Continued)

Spot Fold-ch.” 39/95 NCBI Acc. Protein name Mr/PI SC? Score PM® MS/MS peptide sequence >95% C.I. (Indv.
no.? no.” (%) ion score)
Theoretical Observed

Protein involved in cell wall synthesis

14 2.3/1.1 al/b- BAA81774 Putative 27.9/511 27.5/513 38 570 8(6) YVLDTTVLPR(59); YHEQLLQLVR(74);
caffeoyl-CoA ESYEIGRPFL EK(51);
O-methyltransferase1 GLEKLDELLAEEAAAGR(112);

IDVCQLAIAD GITICR(119);
EAAFDFAFVDADKPNYVK(108)

Protein involved in signal molecular

3 2.20/0.67al/b- BAAS8900 Calcium-binding 48.07/4.52 40.3/4.56 18 469 7(6) KVHTIFTK(56); NDKNHLIK(49);
protein TLVLQFSVK(43); HEQKLDCGGGYVK(118);
QSGSIYEHWDILPPK(89);
FYAISAEYPEFSNKDK(91)

Proteins induced by salt stress

7  5.32/522al/a] AAB53810 Salt gene product ~ 15.2/50  31.8/467 45 517 5(5) LLGVTIYSSDAIR(90); SGTLIDAIGIYVHP
(106); KLL GVTIYSSDAIR(110);
EFSIPLQDSGHVVGFFGR(84);
EISGTHGPVYDLADIVTYLK(126);

27 new/none AAB53810 Salt gene product  15.2/5 9.2/504 51 506 6(5) LLGVTIYSSDAIR(102); SGTLIDAIGIYVHP
(108); KLL GVTIYSSDAIR(93);
EFSIPLQDSGHVVGFFGR(92);
EISGTHGPVYDLADIVTYLK(103)

9 5.61/5.17 aj/al A2WPN7 Salt stress-induced  15.2/5 33.1/5 66 656 6(6) LLGVTIYSSDAIR(118); SGTLIDAIGIYVHP
protein (108); KLL GVTIYSSDAIR(113);
EFSIPLQDSGHVVGFFGR(118);
EISGTHGPVYDLADIVTYLK(121);
SIAFNYIGVDGQ EYAIGPWGGGEGTSTEIK
(79)
The other proteins

18  2.9/2.1 at/bt BAC83197 Putative glyoxylate ~ 34.2/5.98 31.1/6.43 30 515 7(7) DVNRDPLI(42); QPLLETPGEVFELR(102);
induced protein HSVISDE VTTLVIFER(132);
YTTIEGYHPDLIVGSTDK(44); A
TNPTLAPAHLQDLPGFTR(68);
RYTTIEGYHPDLIVG STDK(36);
EVHYNQHGLLLLEGQGIYR(90)

20 2.8/3.3 b1/al NP_001060247 Protein containing 26.5/7.11  25.5/6.01 16 373 4(4) VSFGENFSPAR(82); LKEGVEAHQLAEK

dimeric alpha-beta (89); SPAA EALGPTHVLHSR(117);
barrel domain LRSPAAEALGPTHVLHSR(85)

13 1.1/0.21 a-/b| AAO72629 Adenosine kinase-  40.6/5.57 37/5.45 35 780 8(8) KPENWALVEK(79); HLPMYDELASK(66);
like protein AGCYAAN VIIQR(82);

GNVEYIAGGATQNSIR(155); VRGWETE
NVEEIALK(76); VLPFVDYIFGNETEAR
(115); IAVIT QGADPVVVAEDGQVK(128);
NAQAAGVTAHYYEDE
AAPTGTCAVCVVGGER(79)

Note: Differentially expressed copper-binding proteins identified by MS/MS.;

& Spot no., numbering corresponds to the 2-DE gel;

® Fold-ch., Fold-changes, the fold-changes of each spot was calculated by %Vol in treated samples/%Vol in control samples;

!, up-regulated;

!, down-regulated;

-, no change;

¢ Acc. no., accession number in NCBI database;

9'3C, sequence coverage by MS/MS;

¢ PM, number of peptides matched;

The a and b of letter about fold-changes indicate a statistically significant difference (p<0.05) between B1139 and B1195 by Duncan’s test.

doi:10.1371/journal.pone.0125367.1002
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Table 3. Potential Cu-binding motifs of identified proteins.

Spot no.

0 N o b~ WN =

W W W W WMNDMNDMNDDNMNDNMNDMMNDNMNDNDN-=S =4 24 a4 a4 o
A WO 2+ O © 0NO OO P WON =+ O © 0O 00 b WN =+ O

35

Protein name

Oryzain alpha chain; Flags: Precursor

Oryzain alpha chain; Flags: Precursor
Calcium-binding protein

Protein disulfide isomerase

Putative peroxidase

Glutamine synthetase shoot isozyme

Salt gene product

CHP-rich zinc finger protein-like

Salt stress-induced protein

Cathepsin B-like cysteine protease

Glutamine synthetase shoot isozyme

Putative glutamine synthetase root isozyme
Adenosine kinase-like protein

Putative caffeoyl-CoA O-methyltransferase 1
Epsilon-COP 1

Glutathione S-transferase |

Putative glyoxylate induced protein

Putative elongation factor EF-2

Protein containing dimeric alpha-beta barrel domain
Gilutathione S-transferase ||

Germin-like protein 6

Putative pathogenesis-related protein
Pathogenesis-related protein PR-10a
Pathogenesis-related protein Bet v | family protein
putative pathogenesis-related protein

Salt gene product

Putative quinone-oxidoreductase(QR2)
Methionine sulfoxide reductase A2-1

Putative eukaryotic translation initiation factor 5A-2
Putative eukaryotic translation initiation factor 5A-2
Translation initiation factor 5A

Copper/zinc superoxide dismutase

Putative cold shock protein-1

Putative ubiquitin-conjugating enzyme spm2

Reported motif 12
C-(X)2-C; C-(X)4-C; H-(X)s-
C-(X)2-C; C-(X)4-C; H-(X)s-
C-(X)2-C; H-(X)2-H; H-(X)s-H
C-(X)4-C; H-(X)s-H

H-(X)-H

H
H

C-(X)3-C; H-Xo-H; H-(X)4-H; H-(X)s-H
C-(X)2-C; C-(X)3-C; C-(X)4-C
H-(X)2-H
H-(X)2-H
C-(X)>-C
H-(X)1-H; H-(X)2-
C-(X)5-C; H-(X)4-
H-(X)s-H
C-(X)3-C; C-(X)4-C; H-(X)2-H; H-(X)4-H
H-(X)2-H

C-(X)s-C; H-(X)4-H

H-(X)s-H

C-(X)4-C

H
H

C-(X)a-C
H-(X)o-H; H-(X)2-H;
H-(X)+-H
H-(X)o-H; H-(X)4
H-(X)o-H; H-(X)1
(X)
(X)

-H: H-
_H’ H-
H-(X)o-H; H-(X);-H; H-
H-(X)1-H; H-(X)o-H; H-
C-(X)>-C

H-(X)s-H

X)
X)s
X)
X)

)

Reported motif II°
H-(X)s-H; H-(X)s-C
H-(X)s-H; H-(X)5-C
H-(X)s-H

H-(X)s-H
H-(X)s-C

H-(X)s-H; H-(X)e-M; H-(X)5-C
H-(X)7-H
H-(X)7-H; H-(X)3-C; H-(X)12-H
H-(X)s-C

H-(X)7-H; H-(X)s-C

H-(X),-H

H-(X),-H

M-(X)7-H;H-(X)s-C

Note:—indicates not present; X represents any amino acid, C represents cysteine, H represents histidine, M represents methionine;
@ Motifs that were reported by Smith et al.;
P Motifs that were reported by Kung et al

doi:10.1371/journal.pone.0125367.t003

putative metal-binding motifs reported by Smith et al. [9] (Table 3), while 17 contained one to

three of the top six motifs reported by Kung et al. [10] in rice roots. Fourteen proteins con-
tained both the motifs reported by Smith et al. [9] and the top six motifs reported by Kung
etal. [10] Three proteins (calcium-binding protein (CBP), putative caffeoyl-CoA O-methyl-
transferase 1, and a salt gene product), contained neither the motifs reported by Smith et al. [9]
nor the top six motifs reported by Kung et al. [10]. CBP and CCoAOMT 1 respectively con-
tained 8 (H-(X)e-H, H-(X)o-H, H-(X)5-C, H-(X),-C, C-(X)¢-H, C-(X),-H, M-(X)s-H and
M-(X)5-C) and 7 (H-(X);1-H, M=(X)5-M, M-(X);,-M, C-(X)10-H, C-(X)o-M, H-(X),-M and
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M-(X)s-H) of the 117 potential metal-binding motifs. Among these motifs, H-(X)s-M, M-(X)s-
H, M-(X)3-M, M-(X);;-M and H-(X),-M are thought to be enriched motifs in Cu-IMAC pro-
teins [10].

Discussion

In our previous study, the Cu-IMAC plus IDA-Sepharose pre-chromatography method was
used for the separation and isolation of Cu-binding proteins extracted from the roots of rice
seedlings exposed to excess Cu, and six novel Cu-binding proteins (peroxidase, quinone-oxido-
reductase QR2, epsilon1-COP, NADPH-dependent mannose 6-phosphate reductase, cytidine/
deoxycytidine deaminase, and caffeoyl-CoA O-methyltransferase 1) were identified [14]. In
this study, 26 Cu-binding proteins were found to be differentially expressed in Cu-stressed rice
roots. Of these proteins, 10 (elongation factor EF-2, glutamine synthetase, calcium-binding
protein, adenosine kinase, glutathione S-transferase, peroxodase, quinone-oxidoreductase
QR2, protein disulfide isomerase, epsilon-COP1 and caffeoyl-CoA O-methyltransferase 1)
were identified as Cu-IMAC-binding proteins in Arabidopsis [10, 11], soybeans [12] and rice
[14]. However, to our knowledge, the other 16 proteins (spots 1, 2, 7, 27, 8, 9, 10, 18, 20, 22, 23,
26, 24, 25, 29, 30, 31, 32, 33, 34 and 35) have not been reported as Cu-IMAC-binding proteins
in plants or animals. Further studies are required to clarify their roles in plant cells.

In this study, six proteins involved in antioxidant defense and detoxification were identified
as Cu-IMAC-binding proteins: a putative peroxidase (spot 5), germin-like protein 6 (spot 22),
a putative quinone-oxidoreductase (QR2) (spot 28), methionine sulfoxide reductase A2-1 (spot
29), copper/zinc superoxide dismutase (spot 33) and glutathione S-transferase II (spots 16 and
21). Significant up-regulation of these detected Cu-binding proteins was observed in both rice
varieties. Plant responses to Cu-induced oxidative stress are often mediated through antioxi-
dant defense systems, which include enzymatic components, such as superoxide dismutase
(SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APx), dehydroascorbate re-
ductase and glutathione reductase (DHAR). Song et al. [15] reported that the up-regulation of
POD, APX and DHAR was more pronounced in the Cu-tolerant variety B1139 than in the Cu-
sensitive variety B1195. The up-regulation of another APX was observed only in the Cu-toler-
ant variety B1139. It was suggested that the B1139 variety has a greater ability to scavenge
H,0, than B1195 under Cu stress. In this study, the up-regulation of four proteins (putative
peroxidase, putative quinone-oxidoreductase, methionine sulfoxide reductase A2-1 and gluta-
thione S-transferase II) was also more pronounced in the B1139 variety than in B1195. In con-
trast, the up-regulation of CuZn-SOD (spot 33) and germin-like protein 6 (spot 22) was more
pronounced in the Cu-sensitive variety B1195 than in the Cu-tolerant variety B1139. SODs,
which catalyze the dismutation of O, to H,0, and O,, are metalloenzymes that occur in three
molecular forms containing manganese (Mn-SOD), iron (Fe-SOD) or copper and zinc (CuZn-
SOD) as prosthetic metals.

Germin-like proteins (GLPs) are ubiquitous plant glycoproteins belonging to the cupin
super family, which play important roles in plant development and plant defense responses.
Some GLPs possess SOD activity and each GLP contains two amino acid sequence motifs [19,
20]. Six germin proteins (which each bind a single manganese ion) comprise a stable hexamer
structure. The omission of Mn®" from GLP4 in barley resulted in the loss of SOD activity [20].
Overexpression of OsGLP1 in tobacco led to the hyper-accumulation of H,0, and reinforce-
ment of the cell wall components and increased tolerance against biotic and abiotic stresses
[21]. SOD and GLP lead to the production of H,O,. Li et al. [22] reported that 100 uM Cu de-
creased the expression of a GLP subfamily 3 member precursor in the Cu-tolerant plant
Elsholtzia splendens.
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Proteomic analyses of proteins responsive to ion toxicity in several plant species also showed
that expression of CuZn-SOD was stimulated by Cd and Al [23, 24]. Increased expression of
certain GLPs or genes was also observed in various plants under drought, salt, Al and heavy
metal stresses (Cd**, Cu** and Co**), and pathogen invasion [19, 25, 26]. However, to our
knowledge, no proteomics-based study on metal-induced alterations of CuZn-SOD and GLPs
as Cu-IMAC-binding proteins in plants has been published.

Protein spot 28 was identified as quinone oxidoreductase 2 (QR2) and its intensity was
markedly increased by Cu stress. In plants, quinones are redox-active compounds that can oxi-
dize the thiol groups of proteins and glutathione. Quinone redox changes are catalyzed by QRs,
a subfamily of medium-chain dehydrogenase/reductases. At least two major types of QR exist
in plants: the {-crystallin-like QR1s, which catalyze single electron reductions of quinones to
semiquinone radicals, and the DT-diaphorase like QR2s, which catalyze two electron reduc-
tions of quinones to hydroquinones. Up-regulation of the QR2 protein may contribute to pre-
venting excessive oxidative damage in plants under stress. The expression level of QR increases
in Capsicum annuum leaves in response to herbivore attack [27] and in tomato roots to Al
stress [28]. In contrast, Li et al. [22] reported that 100 uM Cu decreased the expression of a qui-
none oxidoreductase-like protein in Elsholtzia splendens roots.

It was suggested that GST's play a role in stress-response pathways in rice [29]. A major
function of GSTs is to detoxify a variety of hydrophobic, electrophilic compounds by catalyzing
their conjugation with GSH. Biochemical studies have shown that Cu ions interact with GST's
by directly binding to the peptide [10, 30]. In this study, spots 16 and 21 were identified as GST
IT and were up-regulated in rice roots exposed to Cu. GSTs were up-regulated by Cu [15, 31],
Zn [32], Al [33] and osmotic stress [34] in rice, as well as in other plant species exposed to Cu
[35] or Cd [36]. Whether GST proteins are involved in Cu homeostasis or stress through direct
binding remains to be determined.

One of the identified proteins (spot 29) was methionine sulfoxide reductase A2-1 (MsrA2-
1). Quantitative analysis showed that Cu treatment significantly increased the levels of this pro-
tein in the Cu-tolerant variety B1139 and had no significant effect in the Cu-sensitive variety
B1195. Under a range of environmental stresses, ROS oxidize Met to two diastereoisomers of
Met sulfoxide (MetO), S-MetO and R-MetO, depending on the position of the oxygen atom on
sulfur. This amino acid conversion could lead to changes in the activity and conformation of
proteins [37]. S-MetO and R-MetO are reduced back to Met by MsrA and MsrB, respectively.
Thus, Msrs are known to play an important role in the response of plants to environmental
stresses [38, 39]. Differential expression of MsrA2 was observed in Chlamydomonas reinhardtii
cells under Mn deficiency [40]. MsrA2, encoding a cytosolic isoform of the enzyme, is pre-
sumed to repair oxidized proteins in the dark, thus preventing cellular oxidative damage [41].
The overexpression of plastidial MsrA4 (PMSR4) in Arabidopsis confers resistance to methyl
viologen (MV)-induced oxidative damage, whereas knockout leads to susceptibility [42].

Four of the identified protein spots were putative pathogenesis-related (PR) proteins (spots
23 and 26), PR-10a (spot 24) and pathogenesis-related Bet v 1 family proteins (spot 25). Bet v 1
is a member of the PR-10 multigene family. Bet (spot 25) was up-regulated in B1139 compared
to B1195, as were the expressions of other PRs (spot 26, 23 and 24). The up-regulation of PR
proteins has also been observed in other plant species exposed to heavy metal stress (Cd, Cu
and Zn) [22, 31, 36, 43]. PR proteins participate in a wide range of cell functions, including cell
wall rigidity, signal transduction, and antimicrobial activity. Overexpression of PR proteins in
plants or cells increased tolerance to salt, osmotic [44, 45], cold [46], heavy metal and pathogen
stresses [47].

In this study, spot 34 was identified as a putative cold-shock domain protein (Oryza sativa
CSD protein); its homolog has been reported as OsCSP2. This protein was detected only in the
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Cu-treated B1139 variety. Cold-shock proteins (CSPs) function as RNA chaperones by destabi-
lizing the RNA secondary structure and promoting translation and transcription [48], and play
a critical role in the adaptation of bacteria to low temperatures. CSPs contain a specialized
DNA/RNA binding domain known as a cold-shock domain (CSD). The CSD includes two
consensus RNA-binding motifs (RNP1 and RNP2). In rice, OsCSP1 and OsCSP2 contain an
N-terminal CSD and glycine-rich regions that are interspersed by four and two CX2CX4HX4C
(CCHC) retroviral-like zinc fingers, respectively. “Zinc-finger” refers to a type of protein do-
main in which a zinc atom is surrounded by Cys and/or His residues. The zinc finger proteins
form a relatively large family of transcription regulators in plants and play important roles in
plant development and response to environmental stress. It is possible that Cu ions are bound
by the His or Cys of the zinc-finger domain under excess Cu conditions. Further studies are re-
quired to fully characterize the changes in the function of zinc finger proteins due to

Cu binding.

The intensity of protein spot 8, identified as a CHP-rich zinc finger protein-like (CHP), was
significantly increased by Cu stress in both rice varieties. This protein is rich in Cys, His, and
Pro, with three divergent C1 (DC1) domains and the capacity to bind two zinc ions. DC1 do-
main-containing proteins have been implicated in plant responses to abiotic stress [49]. The
up-regulation of CHP proteins has also been observed in cold-stressed Arabidopsis [50] and
Xanthomonas oryzae-inoculated rice [51]. However, it was reported that CHP gene expression
levels are reduced by salt or drought stress, as well as by exogenous ABA supply [52] and Pseu-
domonas fluorescens infection [53]. The expression of TaCHP in a salt-hypersensitive wheat
cultivar and in Arabidopsis enhanced their tolerance to salt stress.

The abundances of several proteins involved in amino acid and protein synthesis, protein
modification, and intracellular transport and degradation were altered in this study. Three pro-
tein spots were identified as glutamine synthetase [54] shoot isozyme (spots 6 and 11) and root
isozyme (spot 12). Protein spot 6 was upregulated in both rice varieties. Spots 11 and 12 were
down-regulated in B1139 and not detected in B1195. GS is a key enzyme in NH," assimilation
and catalyzes the ATP-dependent fixation of the 8-carboxyl group of glutamate to form gluta-
mine. Plant GS binds two magnesium ions at specific metal-binding sites in each subunit for
activity [55]. The activity of GS can be affected by heavy metals. Decreased GS activity and ex-
pression were shown in plants exposed to excess Cu, Cr, Ni and Cd [56-59]. It was also re-
ported that GS in plants is particularly prone to proteolysis under oxidative stress conditions
[60]. Excess Cu was demonstrated to induce ROS production and to increase the expression of
proteinases, such as CBCP (spot 10) and oryzain (spots land 2) [54]. In contrast, the up-regu-
lation of GS proteins has also been observed in plants or germinating seeds subjected to cold,
salt, Cu and Cd stress [61-63]. Further studies are necessary to elucidate the effects of Cu bind-
ing on GS protein regulation and function.

The eukaryotic translation initiation factor 5A (eIF5A) is a small protein ubiquitously pres-
ent in eukaryotic cells and contains the unusual amino acid hypusine. eIF5A was also suggested
to play a role in translation elongation [64] and other aspects of RNA metabolism, such as
RNA export [65], as a translation initiation factor. The expression of eIF5A in plants usually in-
creases in response to abiotic stress [66, 67]. Transgenic Arabidopsis plants overexpressing
RcelF5A exhibited increased resistance to heat, oxidative and osmotic stresses, while plants
with reduced expression are more susceptible to these stresses [67]. Chou et al. [68] found two
cDNA clones (OseIF5A-1 and OselF5A-2) encoding eIF5A in rice, whose expression can be in-
duced by salt and Cu stresses. In this study, three protein spots, identified as eIF5A (spot 32)
and eIF5A-2 (spots 30 and 31), were down-regulated by excess Cu. It is unclear how reduced
expression of e[F5A proteins under Cu toxicity affects Cu toxicity or tolerance in plants. Parker
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et al. [69] reported a significant down-regulation of eIF5A in rice after long-term salt stress
treatment, which may be associated with premature senescence.

Cysteine proteinases (CysPs) are widely distributed in animals, microbes, and plants and
play an important role in intracellular protein degradation. CysPs can be grouped into 15 fami-
lies in five clans [70]. The papain-like proteases C1A (family C1, clan CA) are subdivided into
cathepsin L-, B-, H- and F-like. In this study, three protein spots were identified as CysPs, in-
cluding cathepsin B-like cysteine proteases (CBCP) (spot 10) and oryzain alpha chain flags pre-
cursor (spots 1 and 2), and both belong to the papain-proteases. These proteins were up-
regulated in Cu-treated roots in both rice varieties. The up-regulation of CBCP (spot 10) was
more pronounced in the Cu-tolerant variety B1139 than in the Cu-sensitive variety B1195. It
was reported that CysPs participates in diverse processes: germination, senescence, abscission,
programmed cell death and fruit ripening [6, 71, 72]. The expression of some CysPs may be in-
duced in response to environmental stressors, such as cold, salt, drought, and wounding. To
our knowledge, CysPs have not previously been identified as Cu-IMAC-binding proteins. Fur-
ther studies are required to clarify the roles of CysPs in Cu-stressed plants.

Protein disulfide isomerase (PDI) is a thioredoxin superfamily oxidoreductase from the en-
doplasmic reticulum (ER). PDI catalyzes a wide range of thiol-disulfide exchange reactions and
displays chaperone activity. Additionally, PDI is both a Ca- and a Cu-binding protein in animal
cells [8, 9, 73]. Recently, PDI was also identified as a Cu-IMAC-binding protein in rice [14].
Chen et al. [74] reported that the heterologous expression of a PDI-like protein from Metha-
nothermobacter thermoautotrophicum protected protein synthesis, increased protein stability,
and enhanced Hg tolerance in rice. Exposure to a lower concentration of CuSO, (< 20 uM) did
not affect the expression of PDI in the marine alga Ulva lactuca, but exposure to a higher level
significantly decreased the PDI transcription level [75]. In Cucumis sativus roots, one PDI was
up-regulated under Fe deficiency, while another was down-regulated.

Ubiquitination is a well-characterized post-translational modification found in all eukaryot-
ic cells. The conjugation of ubiquitin (Ub) to target proteins is sequentially carried out by E1
(Ub-activiting enzyme), E2 (Ub-conjugating enzyme, Ubc) and E3 (Ub-ligase). In this study,
spot 35 was identified as ubiquitin-conjugating enzyme Spm2. The expression of this Cu-bind-
ing protein, like CSD protein (spot 34) and PR (spots 26), was seen in the Cu-tolerant variety
B1139, but not in B1195. Spm2 was isolated from Schizosaccharomyces pombe and is homolo-
gous to methyl methanesulfonate sensitive 2 (MMS2), which encodes a Ub E2 enzyme variant
(Uev). Uev is similar to E2 in both sequence and structure, but lacks the conserved active site
cysteine residue and, thus, lacks conjugating activity on its own. It was shown that Uev pro-
motes elysine-63-linked polyubiquitination and is involved in the DNA damage response [76].
The up-regulation of spm2 may promote error-free DNA replication and increase cell toler-
ance to Cu stress. Further studies are needed to elucidate the function of spm2 as a Cu-binding
protein in Cu-stressed plants.

Spot 15 was identified as Epsilon-COP1, the €-subunit of coatomer protein I (COPI), which
is up-regulated in B1139 and unchanged in B1195. COP I is a multimeric complex comprising
seven submits: o-, B-, B-, y-, 8-, €-, and {-COP. The COPI coat is thought to be involved in
transport between the Golgi cisternae, Golgi apparatus and endoplasmic reticulum (ER), and
early and late endosomes and the endosomal compartment and the Golgi apparatus [77]. The
up-regulation of Epsilon-COP1 may promote membrane traffic in plant cells under Cu stress.

CBP (spot 3) and CCoAOMT 1 (spot 14) levels were markedly increased by Cu stress in the
Cu-tolerant variety B1139, but were unchanged in the Cu-sensitive variety B1195. CBPs are a
large, heterogeneous group of proteins that participate in numerous cellular functions, such as
control of cytosolic Ca®* concentration, Ca** transport across the plasma membrane, or Ca®
*-modulated sensors [78]. Cu** and Ca®" ions share common sites and Cu®* ions can replace
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Ca" ions bound to the C2A domain [79]. CCoAOMT catalyzes the methylation of caffeoyl-
CoA to feruloyl-CoA and 5-hydroxyferuloyl-CoA to sinapoyl-CoA; thus it is thought to be in-
volved in lignin biosynthesis. The expression level of CCoAOMT was shown to increase in sev-
eral plants exposed to various abiotic and biotic stresses [14].

Two proteins were identified as adenosine kinase-like protein (ADK-L) (spot 13) and puta-
tive elongation factor 2 (EF-2) (spot 19), levels of which were markedly decreased by Cu stress
in the Cu-sensitive variety B1195, but unchanged in the Cu-tolerant variety B1139. ADK cata-
lyzes adenosine into AMP using one molecule of ATP and is a key player in the S-adenosyl-
L-Met cycle, which provides methyl groups for a variety of transmethylation reactions. Further
studies are needed to elucidate the functions of CBP and ADK in Cu-stressed plants. Elonga-
tion factors (EF1A, EF1B and EF-2) are fundamental regulatory proteins of the translational
elongation step in higher plants, as in other eukaryotic organisms. EF-2 catalyzes the GTP-de-
pendent translocation of peptidyl-tRNA from the A site to the P site of the ribosome during
peptide chain elongation [80]. EF-2 contains the putative Cu-binding domain MX,H, one of
the top six motifs reported by Kung et al. [10] from Arabidopsis roots, and CX,C, one of nine
motifs reported by Smith et al. [9] from human liver cells. However, whether EF-2 proteins act
in Cu homeostasis or toxicity through direct binding remains to be determined. Down-regula-
tion of the EF-2 protein was also observed in Cd-treated Phytolacca americana [81] and B-defi-
cient Brassica napus. A mutation in a gene encoding an EF-2-like protein (los1-1) in
Arabidopsis blocks low-temperature-induced transcription of cold-responsive genes and re-
duces the capacity of plants to develop freezing tolerance [82].

Of the Cu-IMAC-binding proteins up-regulated by Cu-stress, we identified salt gene prod-
ucts (spots 7 and 27), salt stress-induced proteins (spot 9), putative glyoxylate induced proteins,
and proteins containing dimeric o-B barrel domains. The up-regulation of salt stress-induced
proteins was considerably greater than that of other proteins. However, their function in Cu-
stressed plants is at present unknown.

Conclusions

In this study, we investigated the differences in Cu-binding protein expression between Cu-tol-
erant and Cu-sensitive rice varieties using a new IMAC method. In total, 27 differentially ex-
pressed Cu-binding proteins were identified. Sixteen proteins were not previously identified as
Cu-IMAC-binding proteins from plants or animals. These novel Cu-binding proteins were of
four main types: proteins involved in antioxidant defense and detoxification, putative patho-
genesis-related proteins, putative cold-shock domain proteins, and eukaryotic translation initi-
ation factors. Besides, we also confirmed 29 protein spots significantly differentially expressed
in two rice varieties under Cu stress (P < 0.05). Our research increases the understanding of
the mechanisms involved in the heavy metal stress response and tolerance in plants. Further
studies are required to clarify the roles of Cu ions in these putative Cu-binding proteins in
plant cells, to determine if they are passive molecular targets of metal ions or active participants
in metal tolerance.
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