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Abstract

Background—Children with cancer experience multiple symptoms due to their disease and as a 

result of treatment. The purpose of this study was to demonstrate the feasibility and potential 

utility of using latent profile analysis (LPA), a type of cluster analysis, in children with cancer to 

identify groups of patients who experience similar levels of symptom severity and impairment of 

physical function.

Procedure—We analyzed patient-reported symptom and functional data previously collected 

using the Pediatric Patient Reported Outcomes Measurement Information System (PROMIS). 

LPA was used to identify and characterize groups of patients who reported similar levels of 

symptom severity and functional impairment. We then used the multinomial logit model to 

examine demographic and disease characteristics associated with symptom/ function profile 

membership.

Results—The analysis included 200 patients in treatment or in survivorship. We identified four 

symptom/ function profiles; children currently receiving cancer treatment and those with at least 

one other medical problem were more likely to be members of the profile with the highest levels 

of symptom severity and functional impairment. Gender, age, race/ethnicity, and tumor type were 

not associated with profile membership.

Conclusions—LPA is a cluster research methodology that provides clinically useful results in 

pediatric oncology patients. Future studies of children with cancer using LPA could potentially 

lead to development of clinical scoring systems that predict patients’ risk of developing more 

severe symptoms and functional impairments, allowing clinicians, patients, and parents to better 

anticipate and prevent the multiple symptoms that occur during and after treatment for childhood 

cancer.
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INTRODUCTION

More than 12,000 children in the United States will be diagnosed with cancer in 2014, and 

nearly all of them will experience multiple symptoms and functional impairments as a result 

of their disease and its treatment [1,2]. As we increase awareness of how these negative 

experiences impact children's well-being, efforts to better understand, prevent, and manage 

the adverse effects of cancer therapies emerge. Use of patient-reported measures of 

symptoms and function enhances more traditional outcome data collected in clinical studies 

of cancer therapy by describing each patient's personal experience with his or her illness 

[3,4]. Interpreting this valuable information can be challenging, because children with 

cancer experience varying degrees of symptom and functional impairments, both of which 

can occur alone or concurrently [5]. In this study, we applied latent profile analysis (LPA) to 

identify groups of children who experienced similar and dissimilar levels or patterns of co-

occurring symptoms and functional impairments [6]. Using LPA to recognize which 

children are likely to experience these patterns of symptoms and functional impairments 

may help clinicians anticipate and mediate their effects on the children's quality of life.

The study of multiple symptoms, collectively termed symptom cluster research, has been 

used by several scientific disciplines to identify co-occurring events, behaviors, or 

psychological phenomena [7]. These techniques were first applied in the field of cancer 

outcomes research a little over a decade ago, in an effort to identify associations among 

symptoms experienced during cancer treatment and expand our understanding of the 

mechanisms underlying symptom development [8]. Researchers in this relatively nascent 

area of investigation have yet to reach consensus on the ideal methodology(ies) to use for 

the purposes of informing clinical oncology practice [9]. Most studies have utilized 

statistical approaches such as simple correlation, principal component analysis, common 

factor analysis, or cluster analysis to identify symptom groupings or clusters, such as 

nausea-vomiting, pain-insomnia-fatigue, and fatigue-depression [10–12]. Only a few of 

these investigations have involved reports from children with cancer [13–17].

LPA has not previously been used to study children with cancer, and it differs from other 

statistical approaches used in symptom cluster research in several important ways. LPA, one 

of the mixture models, is a model-based approach used to group patients into distinctive 

profiles. Unlike the traditional cluster analysis that uses ad hoc dissimilarity measures, such 

as Euclidean distance, to identify clusters, LPA identifies groups based on probability. In 

addition, LPA provides statistical tests and indices for model goodness-of-fit assessment 

[18,19]. Unlike factor analysis that identifies groups of variables measuring symptoms, LPA 

categorizes patients into groups based on their responses to the items measuring symptom 

severity. The goal of grouping patients into these latent profiles is to identify shared 

underlying characteristics that might contribute to the likelihood of membership within a 
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particular latent profile [10,20,21]. For example, patients who receive a particular treatment 

regimen may be more likely to be members of a latent profile that experiences higher levels 

of symptom severity than those who receive a different treatment regimen. One potential 

application of these findings is the development of risk prediction tools that could be used to 

identify patients at the outset of cancer treatment who are more likely to become members of 

a particular symptom profile; foreknowledge of this risk could then be used to modify 

strategies designed to mitigate or prevent future symptoms. For instance, patients predicted 

to be at particular risk for developing higher levels of pain, depression, and anxiety might 

benefit from establishing a relationship with a mental health professional before these 

symptoms develop.

The clinical utility of symptom cluster research in pediatric oncology remains unclear [22]. 

The primary goal of this study is to demonstrate the feasibility and potential utility of LPA 

in pediatric cancer research. We also aim to demonstrate a new method for integrating 

measures of function into the study of patient-reported outcomes in pediatric cancer. The 

rationale for this approach is that our understanding of the impact of cancer and its treatment 

would be enriched by including both symptoms and function in analyses, because both types 

of outcomes help to define a patient's illness experience. Patient clustering based on 

symptoms and functional impairment has not previously been examined in the pediatric 

oncology population [23]. Providing a better understanding of the patient's responses to 

disease and treatments may produce a more clinically useful model, one that could 

potentially be applied directly to patients in the pediatric oncology clinic. The findings of 

this study will inform future efforts to apply symptom cluster research methodology in 

clinical pediatric oncology research, with the ultimate goal of improving our ability to care 

for children with cancer.

METHODS

Participants and Data Collection

The data used in this analysis were collected as part of the Patient-Reported Outcomes 

Measurement Information System® (PROMIS®) pediatric initiative, which has been 

previously described [24]. Children with cancer between the ages of 8 and 17 years from 5 

participating institutions provided information either while receiving treatment for cancer or 

after completing therapy (i.e., on-therapy or in survivorship). A total of 203 pediatric 

oncology patients enrolled in the study; 3 patients did not complete any PROMIS pediatric 

items and are therefore not included in the analysis. Patients were considered to be currently 

receiving cancer treatment if they had received disease-directed therapy within the previous 

45 days. Participants’ guardians completed questions related to patient demographics and 

other health problems, and each guardian was asked to provide his or her highest achieved 

educational level.

Measures

We included four PROMIS symptom domains (anxiety, depression, fatigue, and pain 

interference) and three functional domains (peer relationships, physical functioning-upper 

extremity, and physical functioning-mobility) in this analysis. Scores on the PROMIS 
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measures are on a T-score metric, normed to have a mean of 50 and a standard deviation of 

10 in the original Pediatric PROMIS patient sample [24–28]. Higher scores in the symptom 

domains represent greater symptom burden; in contrast, higher scores in the functional 

domains represent better functioning.

Statistical Analyses

We used LPA [29–34], a posterior membership probability model, to identify subgroups 

(profiles) of patients comprised of individuals with similar levels of symptom severity and 

functional impairment. The optimal number of profiles was determined by generating a 

series of LPA models with an increasing number of latent profiles and iteratively comparing 

each successive model k with the previous (k − 1) model using Akaike, Bayesian, and 

sample-size adjusted Bayesian information criterion indices (AIC, BIC, and SABIC), the 

Lo-Mendell-Rubin likelihood ratio (LMR LR) test [35], the adjusted LMR LR (ALMR LR) 

test, and the bootstrap likelihood ratio test (BLRT) [31,36].

We classified patients into their most likely latent profiles using the estimated posterior 

membership probabilities for each observation. The quality of membership classification 

was assessed by examining average posterior probabilities and the entropy statistic. Next, 

the prevalence rates (i.e., unconditional probabilities) of the latent profiles and the mean 

scores of the PROMIS measures in each latent profile were assessed. Finally, the 

relationships of the latent profile membership with treatment status, as well as individual 

patient characteristics (sex, age, race/ ethnicity, other health problems, guardian's highest 

education, and cancer type) were tested using a multinomial logit model, in which profile 4 

was treated as the reference group. The statistical package Mplus [37] was used for 

modeling.

RESULTS

Demographics and clinical characteristics of the patient sample were described previously 

and are summarized in Table I [24]. Most patients had acute leukemia or lymphoma (n = 

120, 60.0%); the remainder were diagnosed with solid tumors (n = 58, 29.0%) or brain 

tumors (n = 22, 11.0%). The patient sample was racially diverse, with 101 patients (50.5%) 

reporting non-white race. The means and standard deviations of the seven PROMIS 

pediatric outcome measures are shown in Table II. Mean domain scores range from 47.2 to 

48.9, indicating that, on average, our cancer patients are relatively similar to the reference 

group used during development of the pediatric PROMIS measures.

Comparison of LPA models with information criterion indices and likelihood ratio tests 

indicate that the data best fit either a four-or five-profile model, as the BIC, LMR LR, and 

ALMR LR favored four profiles and the AIC, ABIC, and BLRT favored five profiles (Table 

III). We selected the four-profile model for further analysis because it provided better profile 

membership classification and the most useful and interpretable information from a clinical 

perspective. Posterior assignment probabilities for Profiles 1, 2, 3, and 4 were 0.92, 0.91, 

0.91, and 0.97, respectively (i.e., the diagonal figures in Table IV), which are much higher 

than the standard cutoff point of 0.70 [38]. In addition, the entropy statistic of 0.88 was also 
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large, indicating good membership classification [39]. Profile 1 contained 16% of the total 

number of patients; profile 2, 24%; profile 3, 16%; and profile 4, 45%.

Each profile's estimated mean symptom and functioning scores are shown in Figure 1. The 

values of the PROMIS pediatric outcome measures for each profile were distinctive and 

showed clear patterns across the latent profiles. Patients in profile 1 had on average higher 

symptom severity and lower functioning than patients in any other profile. Conversely, 

patients in profile 4 had on average lower symptom severity and better functioning than 

patients in other profiles. Domain scores for profiles 2 and 3 fell between profiles 1 and 4 

and presented a mixed picture: more severe symptoms but better functioning in profile 2, 

and less severe symptoms but worse functioning in profile 3.

Treatment status was the strongest predictor of profile membership (and therefore symptom 

burden and functioning) identified by our analysis (Table V). Children currently receiving 

treatment for cancer had higher symptom severity and poorer functioning compared to those 

who had already completed therapy, as indicated by their having larger odds of being in 

profiles 1, 2, or 3 compared to profile 4 (OR = 6.5 (95% CI: 2.4–17.3), 2.5 (1.1–5.6), and 7.1 

(2.6–19.4), respectively). Likewise, children identified as having at least one other health 

problem in addition to cancer had higher symptom severity and worse functioning than 

children with no additional health problems. The corresponding odds ratios and 95% 

confidence intervals for membership in profiles 1, 2, and 3 were OR = 6.1 (2.3–16.0), 2.4 

(1.1–5.6), and 3.6 (1.3–9.7), respectively. Gender, age, race/ethnicity, guardian education, 

and tumor type were not statistically significant predictors of profile membership.

DISCUSSION

Patient-reported outcomes (PROs) play an important role in helping us understand the 

impact of cancer and its treatments on patients’ lives. Our findings suggest that among 

children with a variety of cancers, there are subgroups of patients who have distinct 

symptom- and function-related phenotypes. Patients actively receiving cancer treatment and 

those who have co-morbid health conditions were more likely to be classified in profiles 

with more severe symptoms and worse functioning than those who have completed therapy 

and have no additional health problems. These results are consistent with our clinical 

expectations and speak to the validity of LPA to summarize patterns of symptom burden and 

functional impairment in this population. The lack of correlation between profile 

membership and demographic characteristics of patients underscores the difficulty of 

predicting symptoms and functional impairments based solely on age, sex, and race/

ethnicity. In addition, the excellent latent profile membership classification by the model 

provides confirmation that the continuous variables produced by the pediatric PROMIS 

measures are suitable for use in LPA modeling.

Direct head-to-head comparison of the different statistical approaches used in symptom 

cluster research has not yet been performed. Such studies would inform future efforts to 

analyze symptom data by allowing researchers to select analytic strategies that yield the 

most clinically useful and interpretable information. Prospective evaluation of multiple 

symptom models to determine which approach is most predictive of change over time would 
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also be informative. These investigations would potentially improve our ability to match 

data analysis methods with the goals of future studies.

The majority of studies of multiple symptoms in cancer patients focus on identifying groups 

of symptoms rather than groups of patients with similar symptom experience phenotypes. 

LPA, a technique for grouping patients in this way, has not previously been applied to PRO 

data in the pediatric cancer population [10]. As shown by our study, LPA can identify 

different patient phenotypes based on symptom severity and functional impairment. This 

approach yields results that are more specific to the experiences of individual patients, as 

compared to an analysis that produces findings at the level of symptoms for the total group. 

Identification and characterization of PRO profiles provide important insight into the 

realities faced by individual patients, a critical first step toward developing tools to predict 

and manage symptoms and functional impairments more effectively.

The concept of grouping patients into different symptom experience phenotypes was 

previously demonstrated by two studies in adults with cancer [40,41]. Both studies 

investigated the “sickness behavior” symptom cluster of pain, fatigue, sleep disturbance, and 

depression in adult outpatients with cancer diagnoses. The investigators used statistical 

techniques similar to those employed by our study to identify distinct groups of patients, 

each with a different profile of symptom severity. Notably, the proportions of patients who 

fell into the “all high severity” and “all low severity” groups in these studies were similar to 

the proportions of patients in our study in Profiles 1 (all high severity) and 4 (all low 

severity).

In contrast to our study, most cluster research studies in pediatric and adult oncology do not 

include measures of function in their analyses [5,9]. Including both symptoms and 

functional outcomes when assessing patients’ responses to illness is essential to our 

understanding how cancer affects patient quality of life. Previous studies have demonstrated 

that functional status not only affects quality of life directly, but also partially mediates the 

effects of symptoms on quality of life [42]. These complex interactions cannot be fully 

appreciated and studied using cluster research methods that do not include measures of 

function as outcomes.

The discordance between symptom severity and functional status seen in profiles 2 and 3 in 

our study highlights the potential utility of including measures of function in LPA profiles. 

This unexpected result raises several interesting questions about what unmeasured factors 

might contribute to the likelihood of membership in these profiles, and it suggests that the 

interactions among symptoms and functional status are more complex than we would 

otherwise appreciate had function not been included in our analysis. In contrast to our study, 

the adult cancer studies described above evaluated the impact of symptom profile 

membership on physical function, rather than including measures of function in the profiles. 

The studies found that the groups of patients who experienced higher levels of symptoms 

had significantly lower functional status, as measured by the Karnofsky Performance Score 

[40,41]. This finding was expected, and it aligns with the levels of symptom severity and 

function observed in profiles 1 and 4 in our study (Fig. 1). Profiles 2 and 3, however, 

revealed the unexpected finding that symptom severity and functional outcomes may not be 
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inextricably linked—a finding that needs to be confirmed and explored by additional 

investigations in this population. In this way, our study demonstrates that including both 

symptoms and functional outcomes in cluster analysis provides a better picture of the impact 

of cancer and its treatment on children's well-being.

The results of our study suggest that it may be possible to use LPA to create a useful tool for 

clinical pediatric oncology practice. Identification of symptom/function profiles and the 

factors associated with profile membership could be used to develop a clinical prediction 

score that prospectively evaluates a patient's risk for developing varying degrees of 

symptom severity and functional impairment during the course of cancer treatment and 

follow up. Making the patterns identified through LPA available to clinicians would 

potentially improve their ability to provide more tailored information for families to help 

them to better anticipate how their child could respond to the cancer treatment experience. 

Foreknowledge of this risk might allow clinicians to modify strategies aimed at preventing 

or mitigating negative outcomes. This is an important goal, as the link between a child's 

symptom experience during cancer treatment and his or her quality of life is clear [43,44]. 

Factors that influence health-related quality of life during cancer treatment may also have an 

impact on childhood development; studying how symptom and functional profiles change 

over time and how they differ by age of the patient might also shed light on how cancer 

treatment affects long-term outcomes and late effects of therapy.

In addition to developing predictive models of profile membership, LPA can also be used to 

investigate biologic mechanisms that underlie specific groups of symptoms. Given the 

observed lack of correlation between symptom profiles and most demographic, disease, and 

treatment-related factors seen in previous studies, investigators hypothesized that there may 

be genetic variations contributing to patients’ experiences with cancer [40,41]. This 

observation led to a study of adult oncology patients that used LPA to identify subgroups of 

patients with different severities of the “sickness behavior” symptom cluster (as described 

above) [45]. The identified subgroups were then correlated with polymorphisms in candidate 

genes believed to contribute to the symptoms of the sickness behavior cluster. The 

investigators identified a single nucleotide polymorphism in the interleukin-4 gene that was 

associated with high levels of all four symptoms, suggesting a possible link between this 

variant of IL-4 and an individual's susceptibility to experiencing more severe symptoms 

during cancer treatment [45]. Others have previously proposed such a connection, but this 

finding awaits further confirmation [46].

Our study raises important questions that are not answered by our analysis due to several 

limitations. The low number of patients with specific cancer types (most notably brain 

tumor) prevented us from determining whether the patient profiles were invariable across 

individual disease types. The odds ratios provided by our model would likely have been 

more precise (i.e., more narrow confidence intervals) with a larger number of patients. 

Limited clinical data were available in our study, making it impossible to examine in more 

detail patient and disease characteristics that might affect profile membership. In addition, 

the setting and timing of the patient assessments were not standardized, so the effects of 

these differences in questionnaire administration on profile membership are not known. 

Finally, the measures used in this analysis were collected at a single point in time for each 
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participant, so we were unable to evaluate how profile characteristics might change over 

time. For example, we cannot determine whether levels of symptom severity and functional 

impairment change during periods of more intensive versus less intensive treatment, and we 

do not know whether patients shift from one profile to another during the course of 

treatment and survivorship. Longitudinal studies of symptoms and functional impairments 

using latent transition analysis, a technique similar to LPA, would provide insight into 

whether the observed profiles persist over time [47,48].

The ultimate aim of this field of research is to improve the well-being of patients with 

cancer through better prevention, recognition, and management of patients’ symptoms and 

functional impairments. The results of our study suggest that future investigations using 

LPA could be used to generate useful clinical tools, such as a clinical prediction score, 

complementing the work already underway using LPA to identify genetic variations that 

affect patients’ experiences with cancer. In these ways, LPA research offers many new 

opportunities to better understand the experience of being treated for cancer as a child. The 

conclusions drawn from this exploratory study of secondary data should not necessarily be 

accepted at face value, but they should be viewed as strong evidence of the potential utility 

of this type of analysis. Future studies of PROs in pediatric cancer patients should include 

detailed plans to evaluate a broader set of symptoms, functional status, and overall quality of 

life domains, so that we can glean as much knowledge as possible from these efforts to 

improve the care of children with cancer.

ACKNOWLEDGEMENTS

Darren DeWalt and Bryce Reeve are unpaid members of the board for the PROMIS Health Organization which 
holds the copyright for the PROMIS instruments used in this study. We are grateful to these individuals who made 
meaningful contributions to this work: Suzanne L. Nuss, PhD, RN (Director, Care Transitions and Nursing 
Outcomes, Nebraska Medical Center), Janice S. Withycombe, PhD, RN, MN, CCRP (Research Nurse, Palmetto 
Health), and Kathleen Ruccione, PhD, MPH, RN, CPON, FAAN (Co-Director, HOPE Program, Children's Center 
for Cancer and Blood Diseases, Children's Hospital Los Angeles). This analysis was supported in part by a National 
Research Service Award Post-Doctoral Traineeship from the Agency for Healthcare Research and Quality 
sponsored by the Cecil G. Sheps Center for Health Services Research, UNC-Chapel Hill, Grant No. 5T32-
HS000032. PROMIS® was funded with cooperative agreements from the National Institutes of Health (NIH) 
Common Fund Initiative (Northwestern University, PI: David Cella, PhD, U54AR057951, U01AR052177; 
Northwestern University, PI: Richard C. Gershon, PhD, U54AR057943; American Institutes for Research, PI: 
Susan (San) D. Keller, PhD, U54AR057926; State University of New York, Stony Brook, PIs: Joan E. Broderick, 
PhD and Arthur A. Stone, PhD, U01AR057948, U01AR052170; University of Washington, Seattle, PIs: Heidi M. 
Crane, MD, MPH, Paul K. Crane, MD, MPH, and Donald L. Patrick, PhD, U01AR057954; University of 
Washington, Seattle, PI: Dagmar Amtmann, PhD, U01AR052171; University of North Carolina, Chapel Hill, PI: 
Harry A. Guess, MD, PhD (deceased), Darren A. DeWalt, MD, MPH, U01AR052181; Children's Hospital of 
Philadelphia, PI: Christopher B. Forrest, MD, PhD, U01AR057956; Stanford University, PI: James F. Fries, MD, 
U01AR052158; Boston University, PIs: Alan Jette, PT, PhD, Stephen M. Haley, PhD (deceased), and David Scott 
Tulsky, PhD (University of Michigan, Ann Arbor), U01AR057929; University of California, Los Angeles, PIs: 
Dinesh Khanna, MD (University of Michigan, Ann Arbor) and Brennan Spiegel, MD, MSHS, U01AR057936; 
University of Pittsburgh, PI: Paul A. Pilkonis, PhD, U01AR052155; Georgetown University, PIs: Carol. M. Moin-
pour, PhD (Fred Hutchinson Cancer Research Center, Seattle) and Arnold L. Potosky, PhD, U01AR057971; 
Children's Hospital Medical Center, Cincinnati, PI: Esi M. Morgan DeWitt, MD, MSCE, U01AR057940; 
University of Maryland, Baltimore, PI: Lisa M. Shulman, MD, U01AR057967; and Duke University, PI: Kevin P. 
Weinfurt, PhD, U01AR052186). NIH Science Officers on this project have included Deborah Ader, PhD, Vanessa 
Ameen, MD (deceased), Susan Czajkowski, PhD, Basil Eldadah, MD, PhD, Lawrence Fine, MD, DrPH, Lawrence 
Fox, MD, PhD, Lynne Haverkos, MD, MPH, Thomas Hilton, PhD, Laura Lee Johnson, PhD, Michael Kozak, PhD, 
Peter Lyster, PhD, Donald Mattison, MD, Claudia Moy, PhD, Louis Quatrano, PhD, Bryce Reeve, PhD, William 
Riley, PhD, Peter Scheidt, MD, Ashley Wilder Smith, PhD, MPH, Susana Serrate-Sztein, MD, William Phillip 
Tonkins, DrPH, Ellen Werner, PhD, Tisha Wiley, PhD, and James Witter, MD, PhD. The contents of this article 
uses data developed under PROMIS. These contents do not necessarily represent an endorsement by the US Federal 
Government or PROMIS. See www.nihpromis.org for additional information on the PROMIS® initiative.

Buckner et al. Page 8

Pediatr Blood Cancer. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nihpromis.org


REFERENCES

1. Robison LL, Armstrong GT, Boice JD, et al. The Childhood Cancer Survivor Study: A National 
Cancer Institute-supported resource for outcome and intervention research. J Clin Oncol. 2009; 
27:2308–2318. [PubMed: 19364948] 

2. National Cancer Institute UDoHaHS. National Cancer Institute. [March 6] A Snapshot of Pediatric 
Cancers. 2013. http://www.cancer.gov/researchandfunding/snapshots/pdf/Pediatric-Snapshot.pdf. 
Published October, 2012

3. Barsevick AM. The elusive concept of the symptom cluster. Oncol Nurs Forum. 2007; 34:971–980. 
[PubMed: 17878126] 

4. Dodd MJ, Miaskowski C, Lee KA. Occurrence of symptom clusters. J Natl Cancer Inst Monogr. 
2004; (32):76–78. [PubMed: 15263044] 

5. Baggott C, Dodd M, Kennedy C, et al. Multiple symptoms in pediatric oncology patients: A 
systematic review. J Pediatr Oncol Nurs. 2009; 26:325–339. [PubMed: 19687466] 

6. Aktas A. Cancer symptom clusters: Current concepts and controversies. Curr Opin Support Palliat 
Care. 2013; 7:38–44. [PubMed: 23287418] 

7. Barsevick AM, Whitmer K, Nail LM, et al. Symptom cluster research: Conceptual, design, 
measurement, and analysis issues. J Pain Symptom Manage. 2006; 31:85–95. [PubMed: 16442485] 

8. Dodd MJ, Miaskowski C, Paul SM. Symptom clusters and their effect on the functional status of 
patients with cancer. Oncol Nurs Forum. 2001; 28:465–470. [PubMed: 11338755] 

9. Xiao C. The state of science in the study of cancer symptom clusters. Eur J Oncol Nurs. 2010; 
14:417–434. [PubMed: 20599421] 

10. Kim HJ, Abraham I, Malone PS. Analytical methods and issues for symptom cluster research in 
oncology. Curr Opin Support Palliat Care. 2013; 7:45–53. [PubMed: 23196378] 

11. Kirkova J, Aktas A, Walsh D, et al. Cancer symptom clusters: Clinical and research methodology. 
J Palliat Med. 2011; 14:1149–1166. [PubMed: 21861613] 

12. Kim HJ, Abraham IL. Statistical approaches to modeling symptom clusters in cancer patients. 
Cancer Nurs. 2008; 31:E1–E10. [PubMed: 18772651] 

13. Yeh CH, Chiang YC, Chien LC, et al. Symptom clustering in older Taiwanese children with 
cancer. Oncol Nurs Forum. 2008; 35:273–281. [PubMed: 18321840] 

14. Hockenberry MJ, Hooke MC, Gregurich M, et al. Symptom clusters in children and adolescents 
receiving cisplatin, doxorubicin, or ifosfamide. Oncol Nurs Forum. 2010; 37:E16–E27. [PubMed: 
20044328] 

15. Hockenberry MJ, Hooke MC, McCarthy K, et al. Sickness behavior clustering in children with 
cancer. J Pediatr Oncol Nurs. 2011; 28:263–272. [PubMed: 21946193] 

16. Baggott C, Cooper BA, Marina N, et al. Symptom cluster analyses based on symptom occurrence 
and severity ratings among pediatric oncology patients during myelosuppressive chemotherapy. 
Cancer Nurs. 2012; 35:19–28. [PubMed: 21921793] 

17. Atay S, Conk Z, Bahar Z. Identifying symptom clusters in paediatric cancer patients using the 
Memorial Symptom Assessment Scale. Eur J Cancer Care (Engl). 2012; 21:460–468. [PubMed: 
22335457] 

18. Wang J, Lanza ST. Preface of methods and applications of mixture models, special journal issue of 
advances and applications of statistical sciences. Adv Appl Stat Sci. 2010; 3:1–6.

19. Wang, J.; Wang, X. Structural equation modeling with Mplus: Methods and applications. Wiley; 
Hoboken, NJ: 2012. p. 478

20. Barsevick AM, Aktas A. Cancer symptom cluster research: New perspectives and tools. Curr Opin 
Support Palliat Care. 2013; 7:36–37. [PubMed: 23314017] 

21. Miaskowski C, Aouizerat BE, Dodd M, et al. Conceptual issues in symptom clusters research and 
their implications for quality-of-life assessment in patients with cancer. J Natl Cancer Inst 
Monogr. 2007; (37):39–46. [PubMed: 17951230] 

22. Barsevick AM. The concept of symptom cluster. Semin Oncol Nurs. 2007; 23:89–98. [PubMed: 
17512435] 

Buckner et al. Page 9

Pediatr Blood Cancer. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cancer.gov/researchandfunding/snapshots/pdf/Pediatric-Snapshot.pdf


23. Rodgers CC, Hooke MC, Hockenberry MJ. Symptom clusters in children. Curr Opin Support 
Palliat Care. 2013; 7:67–72. [PubMed: 23108342] 

24. Hinds PS, Nuss SL, Ruccione KS, et al. PROMIS pediatric measures in pediatric oncology: Valid 
and clinically feasible indicators of patient-reported outcomes. Pediatr Blood Cancer. 2013; 
60:402–408. [PubMed: 22829446] 

25. Irwin DE, Stucky BD, Langer MM, et al. PROMIS Pediatric Anger Scale: An item response theory 
analysis. Qual Life Res. 2012; 21:697–706. [PubMed: 21785833] 

26. Irwin DE, Stucky B, Langer MM, et al. An item response analysis of the pediatric PROMIS 
anxiety and depressive symptoms scales. Qual Life Res. 2010; 19:595–607. [PubMed: 20213516] 

27. Varni JW, Stucky BD, Thissen D, et al. PROMIS Pediatric Pain Interference Scale: An item 
response theory analysis of the pediatric pain item bank. J Pain. 2010; 11:1109–1119. [PubMed: 
20627819] 

28. DeWitt EM, Stucky BD, Thissen D, et al. Construction of the eight-item patient-reported outcomes 
measurement information system pediatric physical function scales: Built using item response 
theory. J Clin Epidemiol. 2011; 64:794–804. [PubMed: 21292444] 

29. Arminger, G.; Clogg, CC.; Sobel, ME. Handbook of statistical modeling for the social and 
behavioral sciences. Plenum Press; New York: 1995. p. 592

30. Collins, LM.; Lanza, ST. Latent class and latent transition analysis: With applications in the social 
behavioral, and health sciences. Wiley; Hoboken, NJ: 2010. p. 285

31. McCutcheon, AL. Latent class analysis. Sage Publications; Newbury Park: 1987. p. 96

32. Marcoulides, GA.; Schumacker, RE. New developments and techniques in structural equation 
modeling. Lawrence Erlbaum Associates; Mahwah, NJ: 2001. p. 333

33. Muthen BO, Beyond SEM. General latent variable modeling. Behaviormetrika. 2002; 29:81–117.

34. Kaplan, D.; Sage Publications, Inc.. The Sage handbook of quantitative methodology for the social 
sciences. Sage; Thousand Oaks, CA: 2004. p. 511

35. Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. 
Biometrika. 2001; 88:767–778.

36. McLachlan, GJ.; Peel, D. Finite mixture models. Wiley; New York: 2000. p. xxiip. 419

37. Muthen, L.; Muthen, B. Mplus user's guide. 6th edition.. Muthen & Muthen; Los Angeles, CA: 
1998–2010. p. 752

38. Nagin, DS. Group-based modeling of development. Harvard University Press; London, UK: 2005. 
p. 214

39. Clark, SL. Mixture modeling with behavioral data. Doctoral dissertation. University of California; 
Los Angeles: 2010. 

40. Miaskowski C, Cooper BA, Paul SM, et al. Subgroups of patients with cancer with different 
symptom experiences and quality-of-life outcomes: A cluster analysis. Oncol Nurs Forum. 2006; 
33:E79–E89. [PubMed: 16955115] 

41. Pud D, Ben Ami S, Cooper BA, et al. The symptom experience of oncology outpatients has a 
different impact on quality-of-life outcomes. J Pain Symptom Manage. 2008; 35:162–170. 
[PubMed: 18082357] 

42. Hsu MC, Tu CH. Improving quality-of-life outcomes for patients with cancer through mediating 
effects of depressive symptoms and functional status: A three-path mediation model. J Clin Nurs. 
2013 Epub ahead of print. 

43. Tseng TH, Cleeland CS, Wang XS, et al. Assessing cancer symptoms in adolescents with cancer 
using the Taiwanese version of the M.D. Anderson Symptom Inventory. Cancer Nurs. 2008; 
31:E9–E16. [PubMed: 18453871] 

44. Ewing JE, King MT, Smith NF. Validation of modified forms of the PedsQL generic core scales 
and cancer module scales for adolescents and young adults (AYA) with cancer or a blood disorder. 
Qual Life Res. 2009; 18:231–244. [PubMed: 19165624] 

45. Illi J, Miaskowski C, Cooper B, et al. Association between pro- and anti-inflammatory cytokine 
genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine. 2012; 
58:437–447. [PubMed: 22450224] 

Buckner et al. Page 10

Pediatr Blood Cancer. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Kim HJ, Barsevick AM, Fang CY, et al. Common biological pathways underlying the 
psychoneurological symptom cluster in cancer patients. Cancer Nurs. 2012; 35:E1–E20. [PubMed: 
22228391] 

47. Stephens RL, Petras H, Fabian A, et al. Patterns of functional impairment and their change among 
youth served in systems of care: An application of latent transition analysis. J Behav Health Serv 
Res. 2010; 37:491–507. [PubMed: 19688597] 

48. Bray BC, Lanza ST, Collins LM. Modeling relations among discrete developmental processes: A 
general approach to associative latent transition analysis. Struct Equ Modeling. 2010; 17:541–569. 
[PubMed: 21572599] 

Buckner et al. Page 11

Pediatr Blood Cancer. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Mean PROMIS domain scores of four latent profiles generated by LPA for 200 children 

with cancer. Domain scores are on a T-score metric, normed in the general pediatric 

population to have a mean of 50 and a standard deviation of 10. PROMIS, Patient Reported 

Outcomes Measurement Information System; LPA, latent profile analysis.
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TABLE I

Clinical and Demographic Characteristics of the Pediatric PROMIS Patient Sample

Characteristics No. participants (%; n = 200)

Sex

    Male 111 (55.5)

    Female 89 (44.5)

Age

    8-12 years 91 (45.5)

    13-17 years 109 (54.5)

    Age (mean, SD) 12.9 (2.9)

Race/ethnicity

    Non-Hispanic white 99 (49.5)

    Black or African American 41 (20.5)

    Hispanic 40 (20.0)

    Others 20 (10.0)

Parent/Caregiver's education level

    ≤8th grade 4 (2.0)

    Some high school 5 (2.5)

    High school degree/GED 42 (21.0)

    Some college/technical degree 74 (37.0)

    College degree 49 (24.5)

    Advanced degree 26 (13.0)

History of other health problems

    No other health problems 132 (66.0)

    Yes = 1 other health problem 39 (19.5)

    Yes ≥ 2 other health problems 29 (14.5)

Type of cancer

    Leukemia/lymphoma 120 (60.0)

    Brain tumor 22 (11.0)

    Solid tumor 58 (29.0)

PROMIS, Patient Reported Outcomes Measurement Information System; SD, standard deviation; GED, General Equivalency Diploma.
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TABLE II

Symptom and Physical Function Domain Scores of the Pediatric Oncology PROMIS Patient Sample (N = 

200)
*

Domain Mean (SD)

Anxiety 47.7 (11.7)

Depression 47.6 (10.2)

Fatigue 48.0 (13.4)

Pain interference 47.2 (11.3)

Peer relationships 48.9 (10.4)

Physical functioning-upper extremity 48.8 (8.7)

Physical functioning-mobility 47.0 (10.2)

PROMIS, Patient Reported Outcomes Measurement Information System.

*
Sample size slightly varies by measures due to missing values.
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TABLE III

Comparisons of Different LPA Models Using Information Criterion Indices and Likelihood Ratio Tests

P-Value

Model AIC BIC ABIC LMR LR ALMR LR BLRT

1-Profile LCA 10,294.38 10,340.56 10,296.20 — — —

2-Profile LCA 9,859.745 9,932.308 9,862.610 <0.0001 <0.0001 <0.0001

3-Profile LCA 9,793.360 9,892.309 9,797.266 0.0296 0.0318 <0.0001

4-Profile LCA 9,723.661 9,848.997 9,728.609 0.0148 0.0164 <0.0001

5-Profile LCA 9,709.378 9,861.101 9,715.368 0.2057 0.2153 <0.0001

Not applicable. LPA, latent profile analysis; AIC, Akaike information criterion; BIC, Bayesian information criterion; ABIC, sample-size adjusted 
Bayesian information criterion; LMR LR, Lo-Mendell-Rubin likelihood ratio test; ALMR LR, adjusted Lo-Mendell-Rubin likelihood ratio test; 
BLRT, bootstrap likelihood ratio test.
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TABLE IV

Latent Profile Assignment Probabilities for Each Profile in the Four-Profile LPA Model

Profile 1 Profile 2 Profile 3 Profile 4

Profile 1 (N = 31, 15.5%) 0.92 0.03 0.04 0

Profile 2 (N = 47, 23.5%) 0.02 0.91 0.03 0.04

Profile 3 (N = 32, 16.0%) 0.05 0.03 0.91 0.02

Profile 4 (N = 90, 45.0%) 0 0.02 0.01 0.97

Entropy = 0.88

Latent profile classification is based on the most likely latent class membership. LPA, latent profile analysis.
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TABLE V

Predictors of Latent Profile Membership in the Latent Multinomial Logit Model

Covariate Latent profile

Profile 1 (n = 31) Profile 2 (n = 47) Profile 3 (n = 32) Profile 4
a
 (n = 90)

Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

Sex

    Female — — — — — — — —

    Male 0.9 0.3, 2.2 0.6 0.3, 1.3 0.5 0.2, 1.2 — —

Age 1.1 0.9, 1.3 1.1 0.9, 1.2 0.9 0.8, 1.1 — —

Race/ethnicity

    Non-Hispanic White — — — — — — — —

    Black/African American 0.8 0.2, 2.6 2.0 0.8, 5.1 1.0 0.2, 4.3

    Hispanic 0.8 0.2, 2.7 1.1 0.4, 3.3 2.9 0.9, 9.8

    Other 0.6 0.1, 3.6 1.6 0.4, 6.1 2.9 0.7, 12.2 — —

Other health problems

    No other health problems — — — — — — — —

    Other health problems ≥ 1
6.1

* 2.3, 16.0
2.4

* 1.1, 5.6
3.6

* 1.3, 9.7 — —

Guardian's highest education 0.7 0.5, 1.03 0.8 0.5, 1.1 1.6 0.99, 2.6 — —

Type of tumor

    Leukemia/lymphoma — — — — — — — —

    Brain tumor 1.0 0.2, 5.8 1.1 0.3, 4.1 2.4 0.6, 9.2

    Solid tumor 2.3 0.8, 6.1 1.5 0.7, 3.6 0.6 0.2, 1.9

Child is in active treatment

    No — — — — — — — —

    Yes
6.5

* 2.4, 17.3
2.5

* 1.1, 5.6
7.1

* 2.6, 19.4 — —

CI, confidence interval.

a
Reference group.

*
P < 0.05.
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