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Abstract

In multi-cellular organisms, biological function emerges when heterogeneous cell types form 

complex organs. Nevertheless dissection of tissues into mixtures of cellular subpopulations is 

currently challenging. We introduce an automated massively parallel single-cell RNA sequencing 

approach for analyzing in vivo transcriptional states in thousands of single cells. Combined with 

unsupervised classification algorithms, this facilitates ab initio cell type characterization of splenic 

tissues. Modeling single-cell transcriptional states in dendritic cells and additional hematopoietic 

cell types uncovers rich cell-type heterogeneity and gene-modules activity in steady-state and after 

pathogen activation. Cellular diversity is thereby approached through inference of variable and 

dynamic pathway activity rather than a fixed pre-programmed cell-type hierarchy. These data 

demonstrate single-cell RNA-Seq as an effective tool for comprehensive cellular decomposition of 

complex tissues.

Understanding the heterogeneous and stochastic nature of multi-cellular tissues is currently 

approached through a priori defined cell-types that are used to dissect cell populations along 

developmental and functional hierarchies (1–3). This methodology heavily relies on 

enumeration of cell types and their precise definition, which can be controversial (4–7) and 

is based in many cases on indirect association of function with cell surface markers (5–8). 

Perhaps the best understood model for cellular differentiation and diversification is the 

hematopoietic system. The developmental tree branching from hematopoietic stem cells 

toward distinct immunological functions was carefully worked out through many years of 

study, and effective cell surface markers are available to quantify and sort the major 

hematopoietic cell-types. Even in this well explored system, however, it is becoming 

increasingly difficult to explain modern genome-wide and in vivo data with refined cell 

types hierarchy and functions that extend beyond the classical myeloid and lymphoid cell 

types. For example, dendritic cells (DC) are antigen-presenting cells that were originally 
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characterized through their unique morphology (9), but are now understood to represent a 

highly heterogeneous group (10) with multiple functions, regulatory circuits and phenotypes 

(6, 7, 9). Despite considerable efforts and progress using the marker-based approach, much 

of the known functional heterogeneity within the DC group is not truly compatible with any 

of the DC sub-classification schemes (6, 7, 11). Such lack of definitive models for cell types 

and states is common in many fields of biology.

An attractive alternative to marker-based cellular dissection of complex tissues is to 

characterize in vivo cell type compositions through unsupervised sampling and modeling of 

transcriptional states in single cells. This natural approach was so far difficult to implement 

due to many technical limitations that are being progressively alleviated with the advent of 

single-cell RNA-Seq (12–20). Sampling and sequencing RNA from dozens of single cells 

was recently used to estimate stochastic transcriptional variation in stationary cultured cells 

(14) or during a dynamic process (12–14, 16, 19). An unsupervised framework for 

dissecting transcriptional heterogeneity within complex tissues may therefore be envisioned, 

provided that many thousands of cells can be assayed routinely using single-cell RNA-Seq 

and that data from such experiments can be normalized and modeled effectively even when 

cells represent highly diverse cell types and states.

We developed an automated massively parallel RNA single-cell sequencing framework 

(MARS-Seq, figures S1 to S6 and Supplementary methods (21)) that is designed for in vivo 

sampling of thousands of cells by multiplexing RNA sequencing while maintaining tight 

control over amplification biases and labeling errors. The method is based on FACS sorting 

of single cells into 384-well plates and subsequent automated processing that is done mostly 

on pooled and labeled material, leading to a dramatic increase in throughput and 

reproducibility. To explore the new technique we sequenced RNA from over 4000 mouse 

spleen single cells (Table S1), focusing initially on a heterogeneous cell population enriched 

for expression of the CD11c surface marker. We hypothesized that this strategy for cell 

acquisition will sample a diverse collection of splenic cell types while focusing on the 

challenging DC populations (6, 7).

Our methodology employs three levels of barcoding (molecular, cellular, and plate level 

tags) to facilitate molecule counting with high degree of multiplexing. The strategy is to 

characterize cell subpopulations by first classifying single cells based on low-depth RNA 

sampling, and then study transcriptional profiles at high resolution by integrating data from 

dozens to hundreds of cells within each unsupervised class. As shown in Fig. 1A, 

multiplexing 1536 cells in one sequencing lane provided an average of 22 thousands aligned 

reads per cell, and following extensive normalization, these can be used to unambiguously 

define 200–1500 distinct RNA molecules from each cell. Importantly, our labeling and 

filtering scheme ensures that spiked-in technical controls show cell-to-cell variance that is 

compatible with the theoretical (binomial) sampling noise, comparing favorably to 

previously reported techniques (18) (Fig. 1B). This technical stability significantly increases 

the information content of the sampled transcriptional states, which can be directly modeled 

as unbiased samples of the cells’ mRNA pool. Importantly, in contrast to technical spike-in 

controls or the bulk of detected genes, we observe high cellular variance for a significant 

number of genes, many of which are well known cell-type specific markers, suggesting this 
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attests for the high degree of heterogeneity within the splenic cell population (Fig. 1B) and 

promoting the idea of classifying cells into sub-populations based on co-variation of such 

heterogeneous markers.

To test how sensitive our strategy can be for characterizing the transcriptional state of 

subpopulations in the sample, we estimated coverage and mean mRNA molecule count 

reproducibility for groups of 10–40 single-cell profiles, representing 0.6%–3% of the cells 

on one sequencing lane. Analysis of single-cell mRNA profiles from FACS-sorted 

plasmacytoid DC (pDC) (Fig. 1C, Fig. S6) confirmed that pooling of homogeneous cell 

populations provides rich and highly reproducible transcriptional profiles. For a sub-

population at a frequency of 2.5%, the assay report on 1255 genes with a standard deviation 

of less than 35% of the mean, and on 324 genes with a standard deviation of 20% of the 

mean. Together, the availability of high variance marker genes, and the dynamic range 

provided by pooled single-cell transcriptional profiles enable unsupervised dissection and 

characterization of heterogeneous cell populations, opening the way for ab initio cell type 

decomposition of splenic populations at a high level of details.

We have implemented a probabilistic strategy for unsupervised classification of cells into 

“idealized types”. Hierarchical clustering (Fig. 2A) defined seeds of highly correlated cells, 

leading to the initialization of a probabilistic mixture model and classification of single cells 

into types or families of homogeneous states. Visualization of the multi-class data using a 

new circular a posteriori projection technique (Fig. 2B) represented the splenic cell 

population as a combination of several molecular behaviors, five of which (class I–V) being 

distinctively separated from a group of more loosely defined classes (class VI–VII). The 

frequencies of class I–V range between 3.7–17%, allowing in all cases to infer rich 

transcriptional states by in silico pooling of single-cell mRNA profiles within each class. 

Analysis of gene enrichment (Table S2, figs. S7 and S8), and comparison of these profiles 

with existing transcriptional profiles of classical hematopoietic populations (immgen.org), 

unambiguously linked class I–V to B cells, NK cells, macrophages (MF), monocytes (Mo) 

and pDC (Fig. 2C). The remaining classes were all linked to DC. Direct FACS gating and 

counting using classical surface markers confirmed our in silico estimations of the frequency 

of B cells and pDC within the CD11c-enriched splenic cell population (fig. S9). Further 

analysis and additional single-cell qPCR experiments confirmed that “marker” genes are 

robustly enriched in their relevant subpopulations (figs. S10 and S11). Using classical 

marker-based sorting we further validated our approach with additional single-cell RNA-Seq 

data from FACS-sorted B cells, NK cells, pDC and monocytes. Projection of the new data 

onto the model we generated from the splenic population showed remarkable compatibility 

between the traditional marker-based cell-type definition and the marker-free single-cell 

RNA-Seq technique (Fig. 2D). Analysis of splenic cell populations therefore showcased 

single-cell RNA-Seq as a direct and unsupervised way for identifying and characterizing 

sub-populations within heterogeneous tissues.

We profiled additional 1536 single cells from spleens that were exposed to LPS for 2 hours 

(22), aiming to test how an immediate response to a stimulus mimicking infection can be 

deciphered across the heterogeneous splenic cell population. We found that the LPS-treated 

cells are broadly classified into similar cell types to those observed in untreated cells, with 

Jaitin et al. Page 3

Science. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some changes in the relative representation of different types (Fig. 3A). Using the non-LPS 

mixture model we classified the non-LPS and LPS exposed cells into classes, and inferred a 

rich transcriptional profile within each class before and after treatment. Clustering 1575 

variable genes, identified groups of cell type-specific response genes (e.g. Tnf and Marco in 

macrophages, Xcl1 and Gzmb in NK cells), and a large group of type I interferon response 

genes (Irf7, Stat2, Ifit1, Cxcl10 and hundreds more) activated pervasively in all or almost all 

cell types (Fig. 3B, fig. S12, Table S3–4).

With thousands of samples readily available, single-cell RNA-Seq is poised to go beyond 

the classical cell types hierarchies that are outlined by current marker-based approaches, 

examining complex relations between cell subpopulations or continuous spectra of types. 

Analysis of 1031 single cells that were associated with DC-related classes (VI–VII) in our 

unsupervised CD11c+ model (Fig. 4A) indicated that while 15% of these cells (class DC1) 

are strongly linked together, the remaining bulk of DC could not be organized along a clear 

clustering hierarchy (11). Nevertheless, we found strong support for significant internal 

organization within the remaining DC population (DC2-4, Table S5), including a group of 

cells co-expressing Relb, Nfkbia and additional associated genes (DC2) (fig. S13). More 

generally, we have identified several gene modules that represent combinatorial pathway 

activity within the DC bulk (fig. S14), indicating that despite the lack of a clear hierarchy, 

the DC cell population is governed by a high degree of transcriptional organization. 

Additional single-cell sequencing of CD8+ CD86+, CD8int CD86− and CD4+ FACS sorted 

populations (Fig. 4B) showed that this organization can be approached to a limited extent 

with existing marker-based classification. Remarkably, exposure to LPS reorganizes the DC 

population significantly, with a large number of gene modules being activated in a highly 

heterogeneous fashion (Fig. 4C and fig. S15). According to our analysis, certain specific 

CD4+ DC subpopulations are activating the Irf4, TNF and TGFb pathways (fig. S16, Table 

S6), while other pathways (e.g. Irf7) are activated pervasively (table S5). This combinatorial 

activity of pathways within the LPS exposed DC pool is not represented in pre-existing DC 

subtypes according to our data. In summary, committed and developmentally stable myeloid 

and lymphoid cell types maintain their identity during immediate response to infection while 

responding through generic and cell type specific pathways. These pathways create 

significant cell-to-cell variance and define new cell sub-populations within each of these cell 

types (fig. S17), forming diversity that may have functional implications. Observation of 

transcriptional subpopulations, however, does not necessarily imply the existence of further 

committed and pre-programmed cell sub-type hierarchy.

We presented a new framework for broad sampling of single-cell transcriptional states from 

tissues and demonstrated how it can be used to dissect complex functions in a bottom-up 

fashion. MARS-Seq can be readily applied to tissues and organs in normal and disease states 

to redefine their cell type and cell state compositions and link it to detailed genome-wide 

transcriptional profiling. Given the inherent stochasticity and heterogeneity of multi-cellular 

tissues, this approach can prove essential for understanding how in vivo biological function 

emerges from complex cell ensembles.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Massively parallel single-cell RNA-seq
(A) Distribution of mapped reads per cell in a multiplexed 1536 cell experiment. (B) Mean 

and variance in mRNA (blue) and spike-in controls (red). (C) Mean mRNA counts in 

replicated pooled population of homogeneous (FACS sorted) pDC.
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Figure 2. Single-cell dissection of immune cell types
(A) Color-coded correlation matrix of single-cell mRNA profiles. Groups of strongly 

correlated cells that are used to initialize a probabilistic mixture model are numbered and 

marked with white frames. (B) Circular a-posteriori projection (CAP) plot summarizing the 

predictions of the probabilistic mixture model for the CD11c+ cells. Each cell is projected 

onto the two dimensional sphere based on the posterior probability of its association with the 

model’s classes. The dimensions of the CAP plot should not be interpreted linearly or as 

principle components. (C) Bar plots depicting correlations of mean RNA counts in inferred 

types and Immgen expression profiles. The most correlated group of Immgen profiles is 
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colored specifically as indicated for each type. (D) Shown are CAP-plots depicting single-

cell RNA-Seq datasets acquired from marker-based FACS sorting for single pDC, B cells, 

NK cells and monocytes. Sorted cells are shown in red; density of the CD11c+ pool is shown 

in gray.
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Figure 3. Response to LPS across multiple cell types
(A) Inferred cell type frequencies before and after LPS treatment. (B) Clustering of over 

1300 genes give mean inferred transcriptional mean in each cell type before and after LPS 

infection (−/+). Full gene list is provided in Table S4.
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Figure 4. Gene modules and the distribution and redistribution of DC cell states
(A) Single-cell correlation matrix for cells classified as DC, showing detected subclasses 

using white frames. (B) Type/class distributions of single-cell RNA-Seq data from three 

different FACS sorted DC (CD11c enriched) populations: CD8a+ CD86+; CD8a 

intermediate (int) CD86 negative; CD8a negative CD4+ ESAM+ (fig. S13A). (C) Gene 

correlation matrix is depicting potential LPS-dependent interactions between 225 genes. Key 

genes are indicated, with the complete list available in fig. S15.
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