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Introduction

The presence of coexisting liquid-ordered and liquid-disor-
dered lipid phases has been implicated in diverse biological 
processes with high sensitivity to perturbations in mem-
brane composition, tension, curvature, and temperature 
(Lingwood et al. 2008). Lipid phase dynamics may inher-
ently provide nanoscale clustering and facilitate lipid-raft-
mediated processes (Veatch et  al. 2008). However, trace 
membrane additives can disturb the lipid phase dynamics 
and the associated biological processes. Some additives 
possess rotational asymmetry, preferentially localize to 
the phase boundary, reduce the phase miscibility, decrease 
the miscibility transition temperature (Tmis), and act as lin-
actants, 1D analogs of surfactants (Trabelsi et  al. 2008). 
Other membrane additives are rotationally symmetric, pref-
erentially localize into one particular lipid phase, and may 
increase or decrease Tmis. Broadly, the effects of membrane 
additives are quantified by the change to the lipid phase 
Tmis. The difference between a sample temperature and Tmis 
determines fundamental equilibrium qualities such as the 
correlation length of the coexisting phases (Honerkamp-
Smith et  al. 2008; Palmieri and Safran 2013a) and the 
dynamics of the phase mobility (Honerkamp-Smith et  al. 
2012; Palmieri and Safran 2013b).

Numerous molecules have demonstrated potent abili-
ties to alter membrane phase miscibility without necessar-
ily containing a dependence on the rotation of the molecule 
within the bilayer, including cholesterol (Dietrich et  al. 
2001; Zhao et  al. 2007a; Levental et  al. 2009; Heberle 
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et  al. 2010), fluorophores (Veatch et  al. 2007a), anesthet-
ics (Jorgensen et  al. 1991; Gray et  al. 2013), insecticides 
(Jorgensen et  al. 1991), n-propyl gallate (Zhao et  al. 
2007b), C-reactive protein (Sáenz et  al. 2010), and flavo-
noids (Ostroumova et al. 2014). Other molecules have been 
hypothesized to prefer the boundary between two lipid 
phases because of their molecular structure; for example, 
hybrid lipids contain one liquid-order-preferring tail and 
one liquid-disorder-preferring tail (Brewster et  al. 2009; 
Hassan-Zadeh et al. 2014; Li and Gorfe 2014), and asym-
metrically lipidated proteins, such as N-Ras and H-Ras, 
have shown preference for partitioning at the lipid phase 
boundary (Nicolini et al. 2005; Janosi et al. 2012; Li et al. 
2012). Further, molecules such as the nonsteroidal anti-
inflammatory drug indomethacin may contain both a net 
phase preference and significant molecular structure asym-
metry, although the nanoscale partitioning has yet to be 
studied (Zhou et al. 2010).

Previous studies have focused on theoretical predictions 
and experimental examination of systems with a significant 
fraction of the membrane consisting of phase-polarized 
particles (>10  mol%) (Brewster et  al. 2009; Yamamoto 
et  al. 2010; Yamamoto and Safran 2011; Palmieri and 
Safran 2013a, b; Hassan-Zadeh et al. 2014; Palmieri et al. 
2014), whereas this manuscript focuses on small com-
position changes that can greatly affect membrane phase 
dynamics and provide a means for live cells to efficiently 
regulate lipid phase-dependent processes.

The morphology of lipid mixture phase transitions is 
of the Ising universality class. Monte Carlo simulations 
of 2D Ising models with conserved order parameters have 
been used to demonstrate key membrane properties (Fra-
zier et al. 2007; Yethiraj and Weisshaar 2007; Honerkamp-
Smith et  al. 2008; Machta et  al. 2011, 2012). Within the 
Ising model, a particle’s phase preference (σ) is quantified 
for liquid-disordered (black, σ  =  −1) or liquid-ordered 
(white, σ = 1) phases, although the particular phase associ-
ated with the color and sign of σ is arbitrary in this sym-
metric system. The internal energy between two particles 
(Ji,j) is equal to J for nearest neighbors and zero otherwise, 
and it can be calculated from the sum of all particle interac-
tions in the Hamiltonian (H) according to:

When this model contains 50 % white and 50 % black 
particles on a square lattice, it exhibits critical behavior 
with Tmis = 2J/(kB ln(1 +

√
2)), where kB is Boltzmann’s 

constant. Isolated plasma membrane vesicles from mast 
cells happen to be of a composition that demonstrates near-
critical behavior with Tmis  =  22  °C (Veatch et  al. 2008), 
corresponding to a value of J = 0.26 kcal/mol. To relate the 
complex molecular composition of near-critical membranes 

(1)
H = −

∑

�i,j�
Ji,jσiσj.

to the two-state Ising model, each pixel from the model 
represents the mean composition of each state. For exam-
ple, the white particles in the Ising model represent the cell 
membrane’s average liquid-ordered phase composed of 
lipids with longer, more saturated acyl tails, greater sphin-
gomyelin content, and slightly higher cholesterol content 
than the black particles. This model permits the observation 
of complex phase behaviors without explicit incorporation 
of the molecular details or concentrations of the membrane, 
as long as the average phase segregation preferences are 
represented by the value of J.

In this manuscript, we demonstrate the influence of trace 
additives in a two-component nearest neighbor model on a 
square lattice with conserved order parameters as a means 
of simulating how additives of differing molecular structure 
could influence lipid phase mixing. Instead of modifying the 
value of J to represent changes in membrane composition, 
a third particle type was incorporated in these simulations 
to provide greater structural detail of the additive’s effect on 
phase separation and additive partitioning. In a ternary lipid 
membrane, for example, the additive could be a fourth type 
of molecule or more of one molecule type that was already 
present in the membrane. Simulated additives were either 
rotationally symmetric gray particles or rotational asymmet-
ric phase-polarized particles with gray values of g or polari-
zations of p, respectively (Fig.  1). Generally, the addition 
of a third type of particle to the system results in a change 
to the phase diagram, new phase transitions, and variations 
from critical behavior. Simulations performed with addi-
tives of g = 0 were analogous to the Blume-Emery-Griffiths 
model (Blume et  al. 1971), for which the phase transitions 
were modeled against an additive concentration with mean-
field approximations. However, the additive concentrations 
explored here are consistent with the composition fluctua-
tions in living and model membranes, including variations 
in content of cholesterol (Dietrich et  al. 2001; Pokorny 
et al. 2006; Frazier et al. 2007; Zhao et al. 2007a; Levental 
et al. 2009; Heberle et al. 2010), fluorophores (Veatch et al. 
2007a; Frazier et al. 2007), and a variety of other biologically 
active molecules (Jorgensen et al. 1991; Nicolini et al. 2005; 
Pokorny et  al. 2006; Zhao et  al. 2007a, b; Brewster et  al. 
2009; Sáenz et al. 2010; Zhou et al. 2010; Gray et al. 2013; 
Ostroumova et  al. 2014). While real  membranes have been 

Fig. 1   White, liquid-ordered (σ  =  1); black, liquid-disordered 
(σ = −1); gray particles (σ = g) were rotationally symmetric. Phase-
polarized additives, or Janus additives, were rotationally asymmetric 
with a polarized phase preference (|σ| = p)
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demonstrated to be near critical in composition (Veatch et al. 
2007b, 2008), they have not been shown to be any closer to 
critical than the additive-included simulations shown here. 
Further, the experimental method for observing plasma mem-
brane extracts involved the incorporation of fluorescent lipid 
additives (<0.25  mol%) (Veatch et  al. 2008), which altered 
the membrane composition and presumably its phase behav-
ior but did not diminish the significance or confidence in the 
result that the membranes were near critical in composition.

This work focuses on small perturbations to the well-
understood two-state Ising model and demonstrates how trace 
additives would affect the characteristic size of the co-exist-
ing single-phase domains (ξ) and Tmis. For ≤3  mol% addi-
tives, Tmis and ξ both changed monotonically with increasing 
additive concentration, while Tmis changed linearly. Rotation-
ally symmetric particles of g < 1 and rotationally asymmet-
ric particles of all values of p caused a decrease in both Tmis 
and ξ. However, rotationally symmetric additives of g  >  1 
resulted in an increase in both Tmis and ξ. The morphologi-
cal detail provided by this model yields the distributions of 
additives within the system, which is unavailable from mean-
field models. The resulting distributions of the additives at the 
boundary between phases were quantified, and the applica-
bility of this analysis for assessing experimental membrane 
additives or cellular perturbations is discussed.

Methods

Non-local particle exchanges were allowed via a Monte 
Carlo algorithm conserving the system composition (e.g., 
49.5 % white, 49.5 % black, and 1 % additive) and equili-
brated for 105 global equilibration sweeps on a 512 × 512 
square grid with biperiodic boundary conditions. An addi-
tional 105 global sweeps were performed over which an 
average of the system parameters was reported, e.g., the 
correlation length. The symmetry of this configuration with 
equal fractions of white and black particles resulted in the 
additives having the same effect, regardless of the sign of 
g or p. Further details are provided in the Supplemental 
Material including a movie of 50 different time points of 
the equilibrated system.

The correlation length of the phases was calculated from 
the azimuthal average of the 2D spatial correlation of the 
system configuration (I) where all white particles were val-
ued at 1, black particles at 0, and additives at (g/2 + 0.5). 
Unless otherwise stated, if p  ≠  0, then g  =  0, and vice 
versa. The 2D correlation function (C) as a function of the 
position (r̄) can be calculated by

(2)C(r̄) =
〈

I
(

R
)

I
(

R + r
)〉

〈

I
(

R
)〉2

,

where 〈 〉 represents the average over all 2D space (R̄). Com-
putationally, this was expedited by the use of fast Fourier 
transforms (FFTs) with

and normalization (N) (Veatch et al. 2012). The 1D correla-
tion function (c) was computed from

and the correlation length (ξ) was calculated by nonlinear 
least square fitting of cfit to c(r) where

and the critical exponent η equals 0.25, which is exact 
for the Ising model. The critical exponents for the three-
component systems and finite systems are not equal to that 
of the Ising model; however, additionally allowing η to 
change did not significantly change fitting results.

Changes to Tmis were measured for various additive frac-
tions and additive types in this minimalistic model. ΔTmis 
was determined by measuring the shift in ξ as a function of 
temperature and by ascertaining the maximum of the spe-
cific heat versus temperature (Veatch et al. 2012) (Figs. S1–
S3). The finite size effects that alter the perceived transition 
temperature were consistent for all of these simulations on 
the same size system, which permitted this simplistic cal-
culation of ΔTmis and its broad applicability to systems of 
other sizes. A demonstration of the independence of these 
results on system size is presented in the Supplemental 
Material (Fig. S4).

Results

Changes in phase miscibility with an increasing additive 
fraction are visibly obvious in images of the system con-
figuration (Figs.  2, S5, S6). Tmis decreased linearly with 
increasing fractions of phase-polarized particles, or Janus 
particles, as predicted from mean-field models (Yethiraj 
and Weisshaar 2007; Brewster et al. 2009). The miscibility 
temperature is reduced for any phase polarization (p), while 
rotationally symmetric gray particles either increased or 
decreased Tmis depending on their gray value (g) (Figs. 3, 
S6). Increasing p for the phase-polarized additives resulted 
in a greater decrease in Tmis until p  >  3, upon which the 
additives segregated into a third phase, separate from the 
white and black particles, and reduced the white and black 
particle mixing. Gray particles with g  <  1 encouraged 

(3)C(r̄) =
FFT−1

(

|FFT(I)|2
)

N
,

(4)c(r) =
1

2π

2π
∫

0

C(r, θ)dθ ,

(5)cfit = c0

e−r/ξ

rη
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phase miscibility by decreasing the differences between the 
ordered and disordered phases, analogous to the incorpora-
tion of n-alcohols into membranes (Gray et al. 2013). How-
ever, when g  >  1, the opposite effect dominates; the dif-
ference between the phases was increased when g > 1 and 
Tmis was increased, analogous to the addition of δ-lysin to 
membranes (Pokorny et al. 2006). Gray particles with g > 1 
were no longer of in-between phase and were more liquid-
order preferring than white particles, i.e., “super-white.”

When p or g > 3, the additives condensed and formed a 
distinct phase excluding white or black particles (Fig. S6), 
and the white-black miscibility temperature became less 

affected by the additives (Fig. 3). For p or g > 3, simula-
tions were unable to capture a diverse set of configurations 
for the additive aggregation because of the improbable 
rearrangement of the condensed phases, analogous to the 
kinetically trapped configurations that are commonly expe-
rienced experimentally. Aggregates of phase-polarized par-
ticles at p = 4 demonstrated rotational ordering of the addi-
tives (Fig. S7), which resulted in slower additive diffusion.

The partitioning of additives in each phase and at the 
domain boundary was measured. A particle was declared to 
be at the phase boundary if it was adjacent to two white 
and two black particles. The ratio of additives at the phase 
boundary to all additives with no adjacent additives was 
calculated (Fig. 4a). As p increased, the fraction of phase-
polarized particles at the phase boundary increased; as g 
increased, the fraction of gray particles at the phase bound-
ary decreased. Lowering the temperature would have made 
phase-polarized particles more likely to be found at the 
phase boundary if the phase morphology had stayed con-
sistent. However, increasing temperature from 8.5 to 36 °C 
resulted in 2.3 ± 0.4 times more phase boundary (Fig. S8), 
which was dependent on both simulation size and additive 
properties, and generally resulted in a higher probability 
for the additives being located at the phase boundary for 
higher temperatures. Additive partitioning was normalized 
to the amount of phase boundary in order to calculate the 

Fig. 3   a ξ and b Tmis and either increased or decreased upon addi-
tive addition depending on the additive properties. ΔTmis = Tmis−T

′
mis

 
where T ′

mis
 = 22 °C. Additives comprised 1 mol% of the total parti-

cles in these simulations. Measurement of ξ is limited by the system 
size, resulting in large uncertainties for situations with ξ > 100 pixels 
(Fig. S4). Images of these systems are included in the Supplemental 
Material (Figs. S5, S6). ΔTmis and ξ changes are symmetrical for neg-
ative values of g or p

Fig. 2   Increasing the mole fraction of phase-polarized particles 
caused an increase in the phase miscibility and a decrease of Tmis. a 
With p =  1, phase-polarized additives are displayed as red squares 
in these images, and zoomed-in regions show the individual additives 
in Fig. S5. Blue outlined images indicate where T = Tmis with J set 
such that Tmis of the additive-free system (T ′

mis
) is 22 °C. Increasing 

the concentration of phase-polarized particles with p = 1 resulted in 
a decrease of b ξ and c Tmis. ΔTmis = Tmis−T

′
mis

. Uncertainty of T ′
mis

 
was approximately 0.6 °C, and uncertainty of ξ was smaller than the 
symbol unless otherwise indicated
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fold enhancement of the additive to the phase boundary 
relative to the white or black particles (Fig. 4b). Additives 
more concentrated at the phase boundary than the g =  1 

particles preferentially partitioned at the phase boundary, 
whereas additives less concentrated at the phase bound-
ary than the g = 1 particles preferentially partitioned away 
from the phase boundary, which is consistent with the sign 
of ΔTmis (Fig. 3). Although there is not a local energy dif-
ference for the g = 0 additive if it is immersed in a single 
phase or at the phase boundary, there is an energy differ-
ence for the system that encourages g < 1 additives to be 
concentrated at the phase boundary. At colder temperatures, 
the phase-polarized additives especially concentrated at the 
phase boundary because of the decreased entropic drive for 
mixing.

These results apply to additives in systems that are near 
critical compositions. It is important to note that these 
results would vary greatly for compositions that are far 
from critical compositions because of the increased phase 
boundary line tension and the increased likelihood for 
boundary-preferring particles to localize at the boundary in 
such systems.

In all the prior described simulations, only additives 
with either g  ≠  0 or p  ≠  0 were considered. However, 
real membrane additives would likely possess both a net 
phase preference (g ≠ 0) and a rotational phase asymme-
try (p  ≠  0). To predict how changing both g and p for a 
membrane additive would affect the miscibility transition 
temperature of the membrane, simulations were performed 
for additives with rotational asymmetry and a net phase 
preference at 1 mol% (Fig.  5). The changes to the misci-
bility transition temperature were dependent on both the g 
and p value of the additive in a cumulative effect. For small 
values of g and p (i.e., either g or p ≤ 1), ΔTmis as a func-
tion of g and p was approximately equal to the sum of the 

Fig. 4   a The probability that an additive was found at the phase 
boundary varied with the additive properties and temperature. The 
fraction of additives at the boundary was calculated as the ratio of 
the number of additives surrounded by two white and two black par-
ticles versus the total number of additives, excluding additives adja-
cent to other additives. b The additive locations were normalized by 
the amount of phase boundary in each condition to yield the fold 
enhancement of the additive at the phase boundary versus generic 
white particles. Additives were present at 1  mol%. Uncertainty was 
calculated as the standard deviation of different time points and 
smaller than the symbol unless otherwise indicated

Fig. 5   a Changes to the miscibility transition temperature were 
induced by the incorporation of 1 mol% additives with both net and 
rotationally asymmetric phase preferences, i.e., dependent on both g 

and p values, as shown in the inset. b For small values of g and p, 
ΔTmis as a function of g and p, ΔTmis (g, p), is approximately equal to 
ΔTmis (g, 0) + ΔTmis (0, p)
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change in miscibility temperature from 1 mol% gray parti-
cles of gray value g plus the change from 1 mol% polarized 
particles of polarization p (Fig. 5b).

Discussion

Taken together, these idealized membrane additives repre-
sent different means by which molecules may alter the lipid 
phases in a membrane. A membrane-associated molecule 
may be experimentally quantified with both a p value and g 
value to describe the effects of the additive molecular struc-
ture on lipid phase dynamics in a particular membrane. g is 
analogous to the partition constant and quantifies the mol-
ecule’s preference for one phase over the other. p quantifies 
the molecule’s phase asymmetry and preference to partition 
at the phase boundary. The effects of a particular membrane 
additive are determined entirely by the membrane’s addi-
tive-free miscibility temperature ( T ′

mis) or internal energy 
between two particles (J) of the near-critical membrane 
without a dependence on the particular molecular details 
of the individual membrane components. The temperatures 
reported throughout this article could be alternately repre-
sented as reduced temperatures (TR), where TR = (T −  T ′

mis

)/ T ′
mis. Upon rescaling, these results would be directly 

applicable to other membranes with different values of J to 
predict ΔTmis for different T ′

mis. Further, experimental use 
of membranes of varying T ′

mis would permit the exploration 
of different TR values within experimentally limited tem-
perature ranges. For example, increasing the fatty acid tail 
length in the saturated, liquid-order preferring lipid of a ter-
nary mixture typically increases T ′

mis and J, while decreas-
ing the additive’s g value and enhancing the additive’s 
phase boundary preference. Similarly, the p and g values 
for a membrane additive in a complex cellular membrane 
could be predicted by measuring the additive’s effects on 
synthetic model membranes of greatly different molecular 
composition, but similar T ′

mis and J.
Values of g and p that are greater than one represent the 

phase preferences for the additives that are stronger that 
then constituents of the phases themselves. For example, 
if dipalmitoylphosphatidylcholine (DPPC) was added to 
a dioleoylphosphatidylcholine (DOPC)/dimyristoylphos-
phatidylcholine (DMPC)/cholesterol bilayer, it would 
likely have a g > 1 since DPPC has a stronger preference 
for the liquid-ordered phase than DOPC, DMPC, or choles-
terol. Similarly, it is feasible that a particular phase-prefer-
ring component of a hybrid molecule could have a stronger 
phase preference than average constituents of that phase, 
i.e., p > 1. For example, the palmitoyl group of H-Ras or 
palmitoyloleoylphosphatidylcholine (POPC) could prefer 
the liquid-ordered phase in a DOPC/DMPC/cholesterol 
bilayer even more than DOPC, DMPC, or cholesterol.

The quantification of p and g values of cholesterol, for 
example, requires knowledge of the effects cholesterol 
addition has on lipid phase separation and the likelihood of 
cholesterol to be found on the phase boundary. Cholesterol 
preferentially partitions into liquid-ordered phases, thereby 
indicating a value of g > 0. The addition of cholesterol to a 
membrane typically encourages phase miscibility, indicat-
ing that cholesterol has a value of g  <  1. The value of g 
for cholesterol will vary with the surrounding membrane 
lipids; however, quantification of cholesterol’s effects on 
the Tmis for near-critical membranes composed of DOPC, 
DPPC, and cholesterol displayed approximately 15  °C 
reduction in Tmis with the addition of 5 mol% cholesterol 
(Veatch et  al. 2007b), which implies a g value of 0.3 for 
cholesterol in this system (i.e., Fig. 3b). The focused quan-
tification of changes in Tmis with variations in  cholesterol 
concentration in near-critical ternary systems would pro-
vide greater certainty in the determination of g and p.

Similar analysis on the addition of the fluorescent lipid 
DiI-C12 into membranes composed of DOPC, DPPC, and 
cholesterol at molar ratios of 35:35:30 demonstrates how 
a more complex mechanism may also be present (Veatch 
et  al. 2007a). In this system, Tmis increased linearly with 
increasing DiI-C12 concentrations up to 0.1  mol% with 
reduced effects on Tmis at higher DiI-C12 concentrations. 
This difference may be due to a particularly drastic effect 
of DiI-C12 pushing the membrane toward or away from a 
critical composition (Veatch et al. 2007a) or specific inter-
actions between DiI-C12 and the other lipids in the system.

The theoretical framework presented here provides a 
basis for the interpretation of experimental data for the lipid 
phase and boundary preference of membrane-associated 
molecules. Similarly, this framework provides a means of 
predicting the lipid-raft association and lipid phase-depend-
ent clustering in complex systems through the extension of 
results from model membrane studies. This ability to quan-
tify the phase preference of membrane additives may prove 
to be a valuable parameter for the therapeutic development 
and evaluation of the therapeutic mechanisms.
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