Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 21;91(13):6007–6011. doi: 10.1073/pnas.91.13.6007

Likelihood ratios for DNA identification.

A Collins 1, N E Morton 1
PMCID: PMC44126  PMID: 8016106

Abstract

Likelihood ratio (LR) tests are provided for the three alternatives to DNA identity: exclusion, coincidence, and kinship. The coincidence test uses the radius of coalescence to conserve the observed frequency of single band phenotypes. Genotype probabilities under kinship are derived for mating groups, specified relatives, and structured populations; and unbiased estimates of the genetic parameters are provided. The LR is made robust to gene frequency errors by specifying the mean matching probability, and the tolerable loss of information this entails is determined by LR theory. This straightforward application of the seminal work of Jerzy Neyman and Sewall Wright strongly supports the use of LRs and kinship for presentation of DNA evidence by expert witnesses and committees.

Full text

PDF
6007

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balazs I., Baird M., Clyne M., Meade E. Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet. 1989 Feb;44(2):182–190. [PMC free article] [PubMed] [Google Scholar]
  2. Balding D. J., Nichols R. A. DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Sci Int. 1994 Feb;64(2-3):125–140. doi: 10.1016/0379-0738(94)90222-4. [DOI] [PubMed] [Google Scholar]
  3. Bishop D. T., Williamson J. A. The power of identity-by-state methods for linkage analysis. Am J Hum Genet. 1990 Feb;46(2):254–265. [PMC free article] [PubMed] [Google Scholar]
  4. Buckleton J., Walsh K., Triggs C. M. A continuous model for interpreting the positions of bands in DNA locus-specific work. J Forensic Sci Soc. 1991 Jul-Sep;31(3):353–363. doi: 10.1016/s0015-7368(91)73168-x. [DOI] [PubMed] [Google Scholar]
  5. Budowle B., Giusti A. M., Waye J. S., Baechtel F. S., Fourney R. M., Adams D. E., Presley L. A., Deadman H. A., Monson K. L. Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons. Am J Hum Genet. 1991 May;48(5):841–855. [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., De Andrade M., Daiger S. P., Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet. 1992 Jan;56(Pt 1):45–57. doi: 10.1111/j.1469-1809.1992.tb01128.x. [DOI] [PubMed] [Google Scholar]
  7. Chakraborty R., Zhong Y. Statistical power of an exact test of Hardy-Weinberg proportions of genotypic data at a multiallelic locus. Hum Hered. 1994 Jan-Feb;44(1):1–9. doi: 10.1159/000154181. [DOI] [PubMed] [Google Scholar]
  8. Cohen J. E. The ceiling principle is not always conservative in assigning genotype frequencies for forensic DNA testing. Am J Hum Genet. 1992 Nov;51(5):1165–1168. [PMC free article] [PubMed] [Google Scholar]
  9. Devlin B., Risch N., Roeder K. Estimation of allele frequencies for VNTR loci. Am J Hum Genet. 1991 Apr;48(4):662–676. [PMC free article] [PubMed] [Google Scholar]
  10. Devlin B., Risch N., Roeder K. Statistical evaluation of DNA fingerprinting: a critique of the NRC's report. Science. 1993 Feb 5;259(5096):748-9, 837. doi: 10.1126/science.8430323. [DOI] [PubMed] [Google Scholar]
  11. Evett I. W. Evaluating DNA profiles in a case where the defence is "it was my brother". J Forensic Sci Soc. 1992 Jan-Mar;32(1):5–14. doi: 10.1016/s0015-7368(92)73041-2. [DOI] [PubMed] [Google Scholar]
  12. Evett I. W. Evaluating DNA profiles in a case where the defence is "it was my brother". J Forensic Sci Soc. 1992 Jan-Mar;32(1):5–14. doi: 10.1016/s0015-7368(92)73041-2. [DOI] [PubMed] [Google Scholar]
  13. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Turner M., Debenham P. The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am J Hum Genet. 1991 May;48(5):824–840. [PMC free article] [PubMed] [Google Scholar]
  15. Krane D. E., Allen R. W., Sawyer S. A., Petrov D. A., Hartl D. L. Genetic differences at four DNA typing loci in Finnish, Italian, and mixed Caucasian populations. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10583–10587. doi: 10.1073/pnas.89.22.10583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lander E. S. Research on DNA typing catching up with courtroom application. Am J Hum Genet. 1991 May;48(5):819–823. [PMC free article] [PubMed] [Google Scholar]
  17. Lange K. The affected sib-pair method using identity by state relations. Am J Hum Genet. 1986 Jul;39(1):148–150. [PMC free article] [PubMed] [Google Scholar]
  18. Li C. C., Chakravarti A. DNA profile similarity in a subdivided population. Hum Hered. 1994 Mar-Apr;44(2):100–109. doi: 10.1159/000154199. [DOI] [PubMed] [Google Scholar]
  19. Morton N. E., Collins A., Balazs I. Kinship bioassay on hypervariable loci in blacks and Caucasians. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1892–1896. doi: 10.1073/pnas.90.5.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morton N. E. DNA in court. Eur J Hum Genet. 1993;1(2):172–178. doi: 10.1159/000472404. [DOI] [PubMed] [Google Scholar]
  21. Morton N. E. Genetic structure of forensic populations. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2556–2560. doi: 10.1073/pnas.89.7.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morton N. E., Yee S., Harris D. E., Lew R. Bioassay of kinship. Theor Popul Biol. 1971 Dec;2(4):507–524. doi: 10.1016/0040-5809(71)90038-4. [DOI] [PubMed] [Google Scholar]
  23. Weir B. S. Population genetics in the forensic DNA debate. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11654–11659. doi: 10.1073/pnas.89.24.11654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wright S. Systems of Mating. V. General Considerations. Genetics. 1921 Mar;6(2):167–178. doi: 10.1093/genetics/6.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yasuda N. An extension of Wahlund's principle to evaluate mating ty frequency. Am J Hum Genet. 1968 Jan;20(1):1–23. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES