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Abstract

Information spreads across social and technological networks, but often the network structures are 

hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can 

we recover the hidden network structures from these observed cascades? What kind of cascades 

and how many cascades do we need? Are there some network structures which are more difficult 

than others to recover? Can we design efficient inference algorithms with provable guarantees?

Despite the increasing availability of cascade-data and methods for inferring networks from these 

data, a thorough theoretical understanding of the above questions remains largely unexplored in 

the literature. In this paper, we investigate the network structure inference problem for a general 

family of continuous-time diffusion models using an ℓ1-regularized likelihood maximization 

framework. We show that, as long as the cascade sampling process satisfies a natural incoherence 

condition, our framework can recover the correct network structure with high probability if we 

observe O(d3 log N) cascades, where d is the maximum number of parents of a node and N is the 

total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference 

algorithm, which we use to illustrate the consequences of our theoretical results, and show that our 

framework outperforms other alternatives in practice.

1. Introduction

Diffusion of information, behaviors, diseases, or more generally, contagions can be naturally 

modeled as a stochastic process that occur over the edges of an underlying network (Rogers, 

1995). In this scenario, we often observe the temporal traces that the diffusion generates, 

called cascades, but the edges of the network that gave rise to the diffusion remain 

unobservable (Adar & Adamic, 2005). For example, blogs or media sites often publish a 

new piece of information without explicitly citing their sources. Marketers may note when a 

social media user decides to adopt a new behavior but cannot tell which neighbor in the 

social network influenced them to do so. Epidemiologist observe when a person gets sick 

but usually cannot tell who infected her. In all these cases, given a set of cascades and a 
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diffusion model, the network inference problem consists of inferring the edges (and model 

parameters) of the unobserved underlying network (Gomez-Rodriguez, 2013).

The network inference problem has attracted significant attention in recent years (Saito et 

al., 2009; Gomez-Rodriguez et al., 2010; 2011; Snowsill et al., 2011; Du et al., 2012a), since 

it is essential to reconstruct and predict the paths over which information can spread, and to 

maximize sales of a product or stop infections. Most previous work has focused on 

developing network inference algorithms and evaluating their performance experimentally 

on different synthetic and real networks, and a rigorous theoretical analysis of the problem 

has been missing. However, such analysis is of outstanding interest since it would enable us 

to answer many fundamental open questions. For example, which conditions are sufficient to 

guarantee that we can recover a network given a large number of cascades? If these 

conditions are satisfied, how many cascades are sufficient to infer the network with high 

probability? Until recently, there has been a paucity of work along this direction (Netrapalli 

& Sanghavi, 2012; Abrahao et al., 2013) which provide only partial views of the problem. 

None of them is able to identify the recovery condition relating to the interaction between 

the network structure and the cascade sampling process, which we will make precise in our 

paper.

Overview of results

We consider the network inference problem under the continuous-time diffusion model 

recently introduced by Gomez-Rodriguez et al. (2011). We identify a natural incoherence 

condition for such a model which depends on both the network structure, the diffusion 

parameters and the sampling process of the cascades. This condition captures the intuition 

that we can recover the network structure if the co-occurrence of a node and its non-parent 

nodes is small in the cascades. Furthermore, we show that, if this condition holds for the 

population case, we can recover the network structure using an ℓ1-regularized maximum 

likelihood estimator and O(d3 log N) cascades, and the probability of success is approaching 

1 in a rate exponential in the number of cascades. Importantly, if this condition also holds for 

the finite sample case, then the guarantee can be improved to O(d2 log N) cascades. Beyond 

theoretical results, we also propose a new, efficient and simple proximal gradient algorithm 

to solve the ℓ1-regularized maximum likelihood estimation. The algorithm is especially 

well-suited for our problem since it is highly scalable and naturally finds sparse estimators, 

as desired, by using soft-thresholding. Using this algorithm, we perform various experiments 

illustrating the consequences of our theoretical results and demonstrating that it typically 

outperforms other state-of-the-art algorithms.

Related work

Netrapalli & Sanghavi (2012) propose a maximum likelihood network inference method for 

a variation of the discrete-time independent cascade model (Kempe et al., 2003) and show 

that, for general networks satisfying a correlation decay, the estimator recovers the network 

structure given O(d2 log N) cascades, and the probability of success is approaching 1 in a 

rate exponential in the number of cascades. The rate they obtained is on a par with our 

results. However, their discrete diffusion model is less realistic in practice, and the 

correlation decay condition is rather restricted: essentially, on average each node can only 

Daneshmand et al. Page 2

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infect one single node per cascade. Instead, we use a general continuous-time diffusion 

model (Gomez-Rodriguez et al., 2011), which has been extensively validated in real 

diffusion data and extended in various ways by different authors (Wang et al., 2012; Du et 

al., 2012a;b).

Abrahao et al. (2013) propose a simple network inference method, First-Edge, for a slightly 

different continuous-time independent cascade model (Gomez-Rodriguez et al., 2010), and 

show that, for general networks, if the cascade sources are chosen uniformly at random, the 

algorithm needs O(Nd log N) cascades to recover the network structure and the probability 

of success is approaching 1 only in a rate polynomial in the number of cascades. 

Additionally, they study trees and bounded-degree networks and show that, if the cascade 

sources are chosen uniformly at random, the error decreases polynomially as long as O(log 

N) and (d9 log2 d log N) cascades are recorded respectively. In our work, we show that, for 

general networks satisfying a natural incoherence condition, our method outperforms the 

First-Edge algorithm and the algorithm for bounded-degree networks in terms of rate and 

sample complexity.

Gripon & Rabbat (2013) propose a network inference method for unordered cascades, in 

which nodes that are infected together in the same cascade are connected by a path 

containing exactly the nodes in the trace, and give necessary and sufficient conditions for 

network inference. However, they consider a restrictive, unrealistic scenario in which 

cascades are all three nodes long.

2. Continuous-Time Diffusion Model

In this section, we revisit the continuous-time generative model for cascade data introduced 

by Gomez-Rodriguez et al. (2011). The model associates each edge j → i with a 

transmission function, f(ti|tj; αij) = f(ti − tj; αji), a density over time parameterized by αji. 

This is in contrast to previous discrete-time models which associate each edge with a fixed 

infection probability (Kempe et al., 2003). Moreover, it also differs from discrete-time 

models in the sense that events in a cascade are not generated iteratively in rounds, but event 

timings are sampled directly from the transmission functions in the continuous-time model.

2.1. Cascade generative process

Given a directed contact network, G = V, ℰ  with N nodes, the process begins with an 

infected source node, s, initially adopting certain contagion at time zero, which we draw 

from a source distribution ℙ s . The contagion is transmitted from the source along her out-

going edges to her direct neighbors. Each transmission through an edge entails a random 
transmission time, τ = tj − tj, drawn from an associated transmission function f(τ−; αji). We 

assume transmission times are independent, possibly discovers tributed differently across 

edges, and, in some cases, can be arbitrarily large, τ → ∞. Then, the infected neighbors 

transmit the contagion to their respective neighbors, and the process continues. We assume 

that an infected node remains infected for the entire diffusion process. Thus, if a node i is 

infected by multiple neighbors, only the neighbor that first infects node i will be the true 
parent. Figure 1 illustrates the process.
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Observations from the model are recorded as a set Cn of cascades {t1, . . . , tn}. Each cascade 

tc is an N-dimensional vector tc ≔ t1c, …, tNc  recording when nodes are infected, 

tkc ∈ 0, T c ∪ ∞ . Symbol ∞ labels nodes that are not infected during observation window 

[0, T c] – it does not imply they are never infected. The ‘clock’ is reset to 0 at the start of 

each cascade. We assume T c = T for all cascades; the results generalize trivially.

2.2. Likelihood of a cascade

Gomez-Rodriguez et al. (2011) showed that the likelihood of a cascade t under the 

continuous-time independent cascade model is

f t; A = ∏
ti ≤ T

∏
tm > T

S T ∣ ti; αim × ∏
k: tk < ti

S ti ∣ tk; αki ∑
j: tj < ti

H ti ∣ tj; αji ,
(1)

where A = {αji} denotes the collection of parameters, S ti ∣ tj; αji = 1 − ∫tj
tif t ∣ tj; αji  is the 

survival function and H(ti|tj; αji) = f(ti|tj; αji)/S(ti|tj; αji) is the hazard function. The survival 

terms in the first line account for the probability that uninfected nodes survive to all infected 

nodes in the cascade up to T and the survival and hazard terms in the second line account for 

the likelihood of the infected nodes. Then, assuming cascades are sampled independently, 

the likelihood of a set of cascades is the product of the likelihoods of individual cascades 

given by Eq. 1. For notational simplicity, we define y(ti | tk; αki) := log S(ti|tk; αki), and 

ℎ t; αi ≔ ∑k: tk ≤ tiH ti ∣ tk; αki  if ti ≤ T and 0 otherwise.

3. Network Inference Problem

Consider an instance of the continuous-time diffusion model defined above with a contact 

network G∗ = V∗, ℰ∗  and associated parameters αij∗ . We denote the set of parents of node 

i as N− i = j ∈ V∗:αji∗ > 0  with cardinality di = ∣ N− i ∣ and the minimum positive 

transmission rate as αmin, i
∗ = minj:αji∗ > 0αji∗ . Let Cn be a set of n cascades sampled from the 

model, where the source s ∈ V∗ of each cascade is drawn from a source distribution ℙ s . 

Then, the network inference problem consists of fin-ding the directed edges and the 

associated parameters using only the temporal information from the set of cascades Cn.

This problem has been cast as a maximum likelihood estimation problem (Gomez-

Rodriguez et al., 2011)

minimizeA − 1
n ∑c ∈ Cn log f tc; A

subject to αji ≥ 0, i, j = 1, …, N, i ≠ j,
(2)

where the inferred edges in the network correspond to those pairs of nodes with non-zero 

parameters, i.e. αji > 0.
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In fact, the problem in Eq. 2 decouples into a set of independent smaller subproblems, one 

per node, where we infer the parents of each node and the parameters associated with these 

incoming edges. Without loss of generality, for a particular node i, we solve the problem

minimizeαi ℓn αi

subject to αji ≥ 0, j = 1, …, N, i ≠ j,
(3)

where αi := {αji | j = 1, . . . , N, i ≠ j are the relevant variables, and 

ℓn αi = − 1
n ∑c ∈ Cngi tc; αi  corresponds to the terms in Eq. 2 involving αi (also see Table 1 

for the definition of g(· ; αi)). In this subproblem, we only need to consider a super-

neighborhood Vi = ℛi ∪ Ui of i with cardinality pi = ∣ Vi ∣ ≤ N, where ℛi is the set of 

upstream nodes from which i is reachable,Ui is the set of nodes which are reachable from at 

least one node j ∈ ℛi. Here, we consider a node i to be reachable from a node j if and only if 

there is a directed path from j to i. We can skip all nodes in V Vi from our analysis 

because they will never be infected in a cascade before i, and thus, the maximum likelihood 

estimation of the associated transmission rates will always be zero (and correct).

Below, we show that, as n → ∞, the solution, αi, of the problem in Eq. 3 is a consistent 

estimator of the true parameter αi∗. However, it is not clear whether it is possible to recover 

the true network structure with this approach given a finite amount of cascades and, if so, 

how many cascades are needed. We will show that by adding an ℓ1-regularizer to the 

objective function and solving instead the following optimization problem

minimizeαi ℓn αi + λn αi 1
subject to αji ≥ 0, j = 1, …, N, i ≠ j,

(4)

we can provide finite sample guarantees for recovering the network structure (and 

parameters). Our analysis also shows that by selecting an appropriate value for the 

regularization parameter λn, the solution of Eq. 4 successfully recovers the network 

structure with probability approaching 1 exponentially fast in n.

In the remainder of the paper, we will focus on estimating the parent nodes of a particular 

node i. For simplicity, we will use α = αi, αj = αji, N− = N− i , ℛ = ℛi, U = Ui, d = di, pi = 

p and αmin
∗ = αmin, i

∗ .

4. Consistency

Can we recover the hidden network structures from the observed cascades?

The answer is yes. We will show this by proving that the estimator provided by Eq. 3 is 

consistent, meaning that as the number of cascades goes to infinity, we can always recover 

the true network structure.
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More specifically, Gomez-Rodriguez et al. (2011) showed that the network inference 

problem defined in Eq. 3 is convex in α if the survival functions are log-concave and the 

hazard functions are concave in α. Under these conditions, the Hessian matrix, 

Qn = ∇2ℓn α , can be expressed as the sum of a nonnegative diagonal matrix Dn and the 

outer product of a matrix Xn(α) with itself, i.e.,

Qn = Dn α + 1
nXn α Xn α T . (5)

Here the diagonal matrix Dn α = 1
n ∑cD tc; α  is a sum over a set of diagonal matrices D(tc; 

α), one for each cascade c (see Table 1 for the definition of its entries); and Xn(α) is the 

Hazard matrix

Xn α = X t1; α ∣ X t2; α ∣ … ∣ X tn; α , (6)

with each column X(tc; α) := h(tc; α)−1∇ αh(tc; α). Intuitively, the Hessian matrix captures 

the co-occurrence information of nodes in cascades. Then, we can prove

Theorem 1—If the source probability ℙ s  is strictly positive for all s ∈ ℛ, then, the 
maximum estimator α given likelihood by the solution of Eq. 3 is consistent.

Proof—We check the three criteria for consistency: continuity, compactness and 

identification of the objective function (Newey & McFadden, 1994). Continuity is obvious. 

For compactness, since L → −∞ for both αij → 0 and αij → ∞ for all i, j so we lose 

nothing imposing upper and lower bounds thus restricting to a compact subset. For the 

identification condition, α ≠ α∗ ℓn α ≠ ℓn α∗ , we use Lemma 9 and 10 (refer to 

Appendices A and B), which establish that Xn(α) has full row rank as n → ∞, and hence Qn

is positive definite.

5. Recovery Conditions

In this section, we will find a set of sufficient conditions on the diffusion model and the 

cascade sampling process under which we can recover the network structure from finite 

samples. These results allow us to address two questions:

• Are there some network structures which are more difficult than others to 

recover?

• What kind of cascades are needed for the network structure recovery?

The answers to these questions are intertwined. The difficulty of finite-sample recovery 

depends crucially on an incoherence condition which is a function of both network structure, 

parameters of the diffusion model and the cascade sampling process. Intuitively, the sources 

of the cascades in a diffusion network have to be chosen in such a way that nodes without 

parent-child relation should co-occur less often compared to nodes with such relation. Many 

commonly used diffusion models and network structures can be naturally made to satisfy 

this condition.
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More specifically, we first place two conditions on the Hessian of the population log-

likelihood, Ec ℓn α = Ec log g tc; α , where the expectation here is taken over the 

distribution ℙ s  of the source nodes, and the density f(tc|s) of the cascades tc given a source 

node s. In this case, we will further denote the Hessian of Ec log g tc; α  evaluated at the true 

model parameter α* as Q∗. Then, we place two conditions on the Lipschitz continuity of 

X(tc; α), and the boundedness of X(tc; α*) and ∇g(tc; α*) at the true model parameter α*. 

For simplicity, we will denote the subset of indexes associated to node i's true parents as S, 

and its complement as Sc. Then, we use QSS
∗  to denote the sub-matrix of Q∗ indexed by S 

and αS
∗  the set of parameters indexed by S.

Condition 1 (Dependency condition)

There exists constants Cmin > 0 and Cmax > 0 such that Λmin QSS
∗ ≥ Cmin and 

Λmax QSS
∗ ≤ Cmax where min (·) and Λmax(·) return the leading and the bottom eigenvalue of 

its argument respectively. This assumption ensures that two connected nodes co-occur 

reasonably frequently in the cascades but are not deterministically related.

Condition 2 (Incoherence condition)

There exists ε (0, 1] such that ∣ ∣ ∣ QScS
∗ QSS

∗ −1 ∣ ∣ ∣ ∞ ≤ 1 − ε where 

∣ ∣ ∣ A ∣ ∣ ∣ ∞ = maxj∑k ∣ Aij ∣. This assumption captures the intuition that, node i and any 

of its neighbors should get infected together in a cascade more often than node i and any of 

its non-neighbors.

Condition 3 (Lipschitz Continuity)

For any feasible cascade tc, the Hazard vector X(tc; α) is Lipschitz continuous in the domain 

α:αS ≥ αmin
∗ 2 ,

X tc; β − X tc; α 2 ≤ k1 β − α 2,

where k1 is some positive constant. As a consequence, the spectral norm of the difference, n
−1/2(Xn(β) − Xn(α)), is also bounded (refer to appendix C), i.e.,

∣ ∣ ∣ n−1 2 Xn β − Xn α ∣ ∣ ∣ 2 ≤ k1 β − α 2 . (7)

Furthermore, for any feasible cascade tc, D(α)jj is Lipschitz continuous for all j ∈ V,

∣ D tc; β jj − D tc; α jj ∣ ≤ k2 β − α 2,

where k2 is some positive constant.
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Condition 4 (Boundedness)

For any feasible cascade tc, the absolute value of each entry in the gradient of its log-

likelihood and in the Hazard vector, as evaluated at the true model parameter α*, is 

bounded,

∇g tc; α∗ ∞ ≤ k3, X tc; α∗ ∞ ≤ k4,

where k3 and k4 are positive constants. Then the absolute value of each entry in the Hessian 

matrix Q∗, is also bounded ∣ ∣ ∣ Q∗ ∣ ∣ ∣ ∞ ≤ k5.

Remarks for condition 1—As stated in Theorem 1, as long as the source probability ℙ s
is strictly positive for all s ∈ ℛ, the maximum likelihood formulation is strictly convex and 

thus there exists Cmin > 0 such that Λmin Q∗ ≥ Cmin. Moreover, condition 4 implies that 

there exists Cmax > 0 such that Λmax Q∗ ≤ Cmax.

Remarks for condition 2—The incoherence condition depends, in a non-trivial way, on 

the network structure, diffusion parameters, observation window and source node 

distribution. Here, we give some intuition by studying three small canonical examples.

First, consider the chain graph in Fig. 2(a) and assume that we would like to find the 

incoming edges to node 3 when T → ∞. Then, it is easy to show that the incoherence 

condition is satisfied if (P0 + P1)/(P0 + P1 + P2) < 1 − ε and P0/(P0 +P1 +P2) < 1 − ε 
denotes , where Pi the probability of a node i to be the source of a cascade. Thus, for 

example, if the source of each cascade is chosen uniformly at random, the inequality is 

satisfied. Here, the incoherence condition depends on the source node distribution.

Second, consider the directed tree in Fig. 2(b) and assume that we would like to find the 

incoming edges to node 0 when T → ∞. Then, it can be shown that the incoherence 

condition is satisfied as long as (1) P1 > 0, (2) (P2 > 0) or (P5 > 0 and P6 > 0), and (3) P3 > 0. 

As in the chain, the condition depends on the source node distribution.

Finally, consider the star graph in Fig. 2(c), with exponential edge transmission functions, 

and assume that we would like to find the incoming edges to a leave node i when T < ∞. 

Then, as long as the root node has a nonzero probability P0 > 0 of being the source of a 

cascade, it can be shown that the incoherence condition reduces to the inequalities 

1 − α0j
α0i + α0j

e− α0i + α0j
T

+ α0j
α0i + α0j

< 1 − ε 1 + e−α0iT , j = 1, …, p: j ≠ i, which always 

holds for some ε > 0. If T → ∞, then the condition holds whenever ε < α0i/(α0i + maxj:j≠i 

α0j). Here, the larger the ratio maxj:j≠i α0j//α0i is, the smaller the maximum value of ε for 

which the incoherence condition holds. To summarize, as long as P0 > 0, there is always 

some ε > 0 for which the condition holds, and such ε value depends on the time window and 

the parameters α0j.
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Remarks for conditions 3 and 4—Well-known pairwise transmission likelihoods such 

as exponential, Rayleigh or Power-law, used in previous work (Gomez-Rodriguez et al., 

2011), satisfy conditions 3 and 4.

6. Sample Complexity

How many cascades do we need to recover the network structure?

We will answer this question by providing a sample complexity analysis of the optimization 

in Eq. 4. Given the conditions spelled out in Section 5, we can show that the number of 

cascades needs to grow polynomially in the number of true parents of a node, and depends 

only logarithmically on the size of the network. This is a positive result, since the network 

size can be very large (millions or billions), but the number of parents of a node is usually 

small compared the network size. More specifically, for each individual node, we have the 

following result:

Theorem 2—Consider an instance of the continuous-time diffusion model with parameters 

αji∗  and associated edges ε* such that the model satisfies condition 1-4, and let Cn be a set of 

n cascades drawn from the model. Suppose that the regularization parameter λn is selected 

to satisfy

λn ≥ 8k3
2 − ε

ε
log p

n . (8)

Then, there exist positive constants L and K, independent of (n, p, d), such that if

n > Ld3 log p, (9)

then the following properties hold with probability at least 1 − 2 exp − Kλn
2n :

1. For each node i ∈ V, the ℓ1-regularized network infe rence problem defined in 

Eq. 4 has a unique solution, and so uniquely specifies a set of incoming edges of 

node i.

2. For each node i ∈ V, the estimated set of incoming edges does not include any 

false edges and include all true edges.

Furthermore, suppose that the finite sample Hessian matrix Qn satisfies conditions 1 and 2. 

Then there exist positive constants L and K, independent of (n, p, d), such that the sample 

complexity can be improved to n > Ld2 log p with other statements remain the same.

Remarks—The above sample complexity is proved for each node separately for recovering 

its parents. Using a union bound, we can provide the sample complexity for recovering the 

entire network structure by joining these parent-child relations together. The resulting 

sample complexity and the choice of regularization parameters will remain largely the same, 

except that the dependency on d will change from d to dmax (the largest number of parents of 

a node), and the dependency on p will change from log p to 2 log N (N the number of nodes 

in the network).
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6.1. Outline of Analysis

The proof of Theorem 2 uses a technique called primal-dual witness method, previously 

used in the proof of sparsistency of Lasso (Wainwright, 2009) and high-dimensional Ising 

model selection (Ravikumar et al., 2010). To the best of our knowledge, the present work is 

the first that uses this technique in the context of diffusion network inference. First, we show 

that the optimal solutions to Eq. 4 have shared sparsity pattern, and under a further 

condition, the solution is unique (proven in Appendix D):

Lemma 3—Suppose that there exists an optimal primal-dual solution α, μ  to Eq. 4 with an 

associated subgradient vector ẑ such that zSc ∞ < 1. Then, any optimal primal solution α

must have αSc = 0. Moreover, if the Hessian sub-matrix QSS
n  is strictly positive definite, then 

α is the unique optimal solution.

Next, we will construct a primal-dual vector α, μ  along with an associated subgradient 

vector ẑ. Furthermore, we will show that, under the assumptions on (n, p, d) stated in 

Theorem 2, our constructed solution satisfies the KKT optimality conditions to Eq. 4, and 

the primal vector has the same sparsity pattern as the true parameter α* , i.e.,

αj > 0, ∀j:αj∗ > 0, (10)

αj = 0, ∀j:αj∗ = 0 . (11)

Then, based on Lemma 3, we can deduce that the optimal solution to Eq. 4 correctly 

recovers the sparsisty pattern of α* , and thus the incoming edges to node i.

More specifically, we start by realizing that a primal-dual optimal solution α, μ  to Eq. 4 

must satisfy the generalized Karush-Kuhn-Tucker (KKT) conditions (Boyd & 

Vandenberghe, 2004):

0 ∈ ∇ℓn α + λnz − μ, (12)

μjα j = 0, (13)

μj ≥ 0, (14)

z j = 1, ∀α j > 0, (15)

∣ z j ∣ ≤ 1, ∀α j = 0, (16)

where ℓn α = − 1
n ∑c ∈ Cn log g tc; α  and z̃ denotes the subgradient of the ℓ1-norm.
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Suppose the true set of parent of node i is S. We construct the primal-dual vector α, μ  and 

the associated subgradient vector ẑ in the following way

1. We set αS as the solution to the partial regularized maximum likelihood problem

αS = argmin
αS, 0 , αS ≥ 0

ℓn α + λn αS 1 . (17)

Then, we set μS ≥ 0 as the dual solution associated to the primal solution αS.

2. We set αSc = 0, so that condition (11) holds, and μSc = μSc∗ ≥ 0, where μ* is the 

optimal dual solution to the following problem:

minimizeα Ec ℓn α
subject to αj ≥ 0, j = 1, …, N, i ≠ j .

(18)

Thus, our construction satisfies condition (14).

3. We obtain zSc from (12) by substituting in the constructed α, μ and ẑS.

Then, we only need to prove that, under the stated scalings of (n, p, d), with high-probability, 

the remaining KKT conditions (10), (13), (15) and (16) hold.

For simplicity of exposition, we first assume that the dependency and incoherence 

conditions hold for the finite sample Hessian matrix Qn. Later we will lift this restriction and 

only place these conditions on the population Hessian matrix Q∗. The following lemma show 

that our constructed solution satisfies condition (10):

Lemma 4—Under condition 3, if the regularization parameter is selected to satisfy

dλn ≤
Cmin

2

6 k2 + 2k1 Cmax
,

and ∇sℓn α∗ ∞ ≤ λn
4 , then,

αS − αS
∗

2 ≤ 3 dλn Cmin ≤ αmin
∗ 2,

as long as αmin
∗ ≥ 6 dλn Cmin. Based on this lemma, we can then further show that the KKT 

conditions (13) and (15) also hold for the constructed solution. This can be trivially deduced 

from condition (10) and (11), and our construction steps (a) and (b). Note that it also implies 

that μS = μS
∗ = 0, and hence μ = μ∗.

Proving condition (16) is more challenging. We first provide more details on how to 

construct zSc mentioned in step (c). We start by using a Taylor expansion of Eq. 12,
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Qn α − α∗ = − ∇ℓn α∗ − λnz + μ − Rn, (19)

where Rn is a remainder term with its j-th entry

Rjn = ∇2ℓn αj − ∇2ℓn α∗
j
T α − α∗ ,

and α‒j = θjα + 1 − θj α∗ with θj ∈ [0, 1] according to the mean value theorem. Rewriting 

Eq. 19 using block matrices

QSS
n QSScn

QScS
n QScScn

αS −αS
∗

αSc −αSc∗ = −
∇Sℓn α∗

∇Scℓn α∗
− λn

zS
zSc +

μS
μSc −

RS
n

RScn

and, after some algebraic manipulation, we have

λzSc = − ∇Scℓn α∗ + μSc − RScn

−QScS
n QSS

n −1
− ∇sℓn α∗ − λzS + μS − RS

n .

Next, we upper bound zSc ∞ using the triangle inequality

zSc ∞ ≤ λn−1 μSc∗ − ∇Scℓn α∗
∞ + λn−1 RScn

∞

+ QScS
n QSS

n −1
∞ × 1 + λn−1 RS

n
∞

+λn−1 μS
∗ − ∇Sℓn α∗ ∞ ,

and we want to prove that this upper bound is smaller than 1. This can be done with the help 

of the following two lemmas (proven in Appendices F and G):

Lemma 5—Given ε ∈ (0, 1] from the incoherence condition, we have,

P 2 − ε
λn

∇ℓn α∗ − μ∗ ∞ ≥ 4−1ε ≥ 2p exp −
nλn2ε2

32k3
2 2 − ε 2 ,

which converges to zero at rate exp − cλn
2n  as long as λn ≥ 8k3

2 − ε
ε

log p
n .

Lemma 6—Given ε ∈ (0, 1] from the incoherence condition, if conditions 3 and 4 holds, 

λn is selected to satisfy

λnd ≤ Cmin
2 ε

36K 2 − ε ,

Daneshmand et al. Page 12

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where K = k1 + k4k1 + k1
2 + k1 Cmax, and ∇sℓn α∗ ∞ ≤ λn

4 , then, 
Rn ∞

λn
≤ ε

4 2 − ε , as long 

as αmin
∗ ≥ 6 dλn Cmin.

Now, applying both lemmas and the incoherence condition on the finite smaple Hessian 

matrix Qn, we have

zSc ∞ ≤ 1 − ε + λn−1 2 − ε Rn ∞

+λn−1 2 − ε μ∗ − ∇ℓn α∗ ∞
≤ 1 − ε + 0.25ε + 0.25ε = 1 − 0.5ε,

and thus condition (16) holds.

A possible choice of the regularization parameter λn and cascade set size n such that the 

conditions of the Lemmas 4-6 are satisfied is λn = 8k3 2 − ε ε−1 n−1 log p and 

n > 2882k3
2 2 − ε 4Cmin

−4 ε−4d2 log p + 48k3 2 − ε Cmin
−1 αmin∗ −1ε−1 2

d log p.

Last, we lift the dependency and incoherence conditions imposed on the finite sample 

Hessian matrix Qn. We show that if we only impose these conditions in the corresponding 

population matrix Q∗, then they will also hold for Qn with high probability (proven in 

Appendices H and I).

Lemma 7—If condition 1 holds for Q∗, then, for any δ > 0,

P Λmin QSS
n ≤ Cmin − δ ≤ 2dB1 exp − A1

δ2n
d2 ,

P Λmax QSS
n ≥ Cmax + δ ≤ 2dB2 exp − A2

δ2n
d2 ,

where A1, A2, B1 and B2 are constants independent of (n, p, d).

Lemma 8—If ∣ ∣ ∣ QScS
∗ QSS

∗ −1 ∣ ∣ ∣ ∞ ≤ 1 − ε, then,

P QScS
n QSS

n −1
∞ ≥ 1 − ε 2 ≤ p exp − K n

d3 ,

where K is a constant independent of (n, p, d).

Note in this case the cascade set size need to increase to n > Ld3 log p, where L is a 

sufficiently large positive constant independent of (n, p, d), for the error probabilities on 

these last two lemmas to converge to zero.
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7. Efficient soft-thresholding algorithm

Can we design efficient algorithms to solve Eq. (4) for network recovery?

Here, we will design a proximal gradient algorithm which is well suited for solving non-

smooth, constrained, large-scale or high-dimensional convex optimization problems (Parikh 

& Boyd, 2013). Moreover, they are easy to understand, derive, and implement. We first 

rewrite Eq. 4 as an unconstrained optimization problem:

minimizeα ℓn α + g α ,

where the non-smooth convex function g(α) = λn ∥α∥1 if α ≥ 0 and +∞ otherwise. Here, 

the general recipe from Parikh & Boyd (2013) for designing proximal gradient algorithm 

can be applied directly.

Algorithm 1 summarizes the resulting algorithm. In each iteration of the algorithm, we need 

to compute ∇ℓn (Table 1) and the proximal operator proxL
k
g(v), where Lk is a step size that 

we can set to a constant value L or find using a simple line search (Beck & Teboulle, 2009). 

Using Moreau's decomposition and the conjugate function g* , it is easy to show that the 

proximal operator for our particular function g(·) is a soft-thresholding operator, (v − λnLk)

+, which leads to a sparse optimal solution α, as desired.

8. Experiments

In this section, we first illustrate some consequences of Th. 2 by applying our algorithm to 

several types of networks, parameters (n, p, d), and regularization parameter λn. Then, we 

compare our algorithm to two different state-of-the-art algorithms: NetRate (Gomez-

Rodriguez et al., 2011) and First-Edge (Abrahao et al., 2013).

Experimental Setup

We focus on synthetic networks that mimic the structure of real-world diffusion networks – 

in particular, social networks. We consider two models of directed real-world social 

networks: the Forest Fire model (Barabási & Albert, 1999) and the Kronecker Graph model 

(Leskovec et al., 2010), and use simple pairwise transmission models such as exponential, 

power-law or Rayleigh. We use networks with 128 nodes and, for each edge, we draw its 

associated transmission rate from a uniform distribution U(0.5, 1.5). We proceed as follows: 

we generate a network G∗ and transmission rates A*, simulate a set of cascades and, for 

each cascade, record the node infection times. Then, given the infection times, we infer a 

network G. Finally, when we illustrate the consequences of Th. 2, we evaluate the accuracy 

of the inferred neighborhood of a node N− i  using probability of success P ℰ = ℰ∗ , 

estimated by running our method of 100 independent cascade sets. When we compare our 

algorithm to NetRate and First-Edge, we use the F1 score, which is defined as 2P R/(P + R), 

where precision (P) is the fraction of edges in the inferred network G present in the true 

network G∗ , and recall (R) is the fraction of edges of the true network G∗ present in the 

inferred network G.
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Parameters

(n, p, d) According to Th. 2, the number of cascades that are necessary to successfully infer 

the incoming edges of a node will increase polynomially to the node's neighborhood size di 

and logarithmically to the super-neighborhood size pi. Here, we infer the incoming links of 

nodes of a hierarchical Kronecker network with the same in-degree (di = 3) but different 

super-neighboorhod set sizes pi under different scalings β of the number of cascades n = 

10βd log p and choose the regularization parameter λn as a constant factor of log p n as 

suggested by Th. 2. We used an exponential transmission model and T = 5. Fig. 3(a) 

summarizes the results, where, for each node, we used cascades which contained at least one 

node in the super-neighborhood of the node under study. As predicted by Th. 2, very 

different p values lead to curves that line up with each other quite well.

Regularization parameter

λn Our main result indicates that the regularization parameter λn should be a constant factor 

of log p n. Fig. 3(b) shows the success probability of our algorithm against different 

scalings K of the regularization parameter λn = K log p n for different types of networks 

using 150 cascades and T = 5. We find that for sufficiently large λn, the success probability 

flat-tens, as expected from Th. 2. It flattens at values smaller than one because we used a 

fixed number of cascades n, which may not satisfy the conditions of Th. 2.

Comparison with NetRate and First-Edge

Fig. 4 compares the accuracy of our algorithm, NETRATE and First-Edge against number of 

cascades for a hierarchical Kronecker network with power-law transmission model and a 

Forest Fire network with exponential transmission model, with an observation window T = 

10. Our method outperforms both competitive methods, finding especially striking the 

competitive advantage with respect to First-Edge.

9. Conclusions

Our work contributes towards establishing a theoretical foundation of the network inference 

problem. Specifically, we proposed a ℓ1-regularized maximum likelihood inference method 

for a well-known continuous-time diffusion model and an efficient proximal gradient 

implementation, and then show that, for general networks satisfying a natural incoherence 

condition, our method achieves an exponentially decreasing error with respect to the number 

of cascades as long as O(d3 log N) cascades are recorded.

Our work also opens many interesting venues for future work. For example, given a fixed 

number of cascades, it would be useful to provide confidence intervals on the inferred edges. 

Further, given a network with arbitrary pairwise likelihoods, it is an open question whether 

there always exists at least one source distribution and time window value such that the 

incoherence condition is satisfied, and, and if so, whether there is an efficient way of finding 

this distribution. Finally, our work assumes all activations occur due to network diffusion 

and are recorded. It would be interesting to allow for missing observations, as well as 

activations due to exogenous factors.
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A. Proof of Lemma 9

Lemma 9

Given log-concave survival functions and concave hazard functions in the parameter(s) of 

the pairwise transmission likelihoods, then, a sufficient condition for the Hessian matrix Qn

to be positive definite is that the hazard matrix Xn(α) is non-singular.

Proof

Using Eq. 5, the Hessian matrix can be expressed as a sum of two matrices, Dn(α) and 

Xn(α)Xn(α)Τ. The matrix Dn(α) is trivially positive semidefinite by log-concavity of the 

survival functions and concavity of the hazard functions. The matrix Xn(α)Xn(α)Τ is 

positive definite matrix since Xn(α) is full rank by assumption. Then, the Hessian matrix is 

positive definite since it is a sum a positive semidefinite matrix and a positive definite 

matrix.

B. Proof of Lemma 10

Lemma 10

If the source probability ℙ s  is strictly positive for all s ∈ ℛ, then, for an arbitrarily large 

number of cascades n → ∞, there exists an ordering of the nodes and cascades within the 

cascade set such that the hazard matrix Xn(α) is non-singular.

Proof

In this proof, we find a labeling of the nodes (row indices in Xn(α)) and ordering of the 

cascades (column indices in Xn(α)), such that, for an arbitrary large number of cascades, we 

can express the matrix Xn(α) as [T B], where T ∈ ℝp × p is an upper triangular with nonzero 

diagonal elements and B ∈ ℝp × n − p. And, therefore, Xn(α) has full rank (rank p). We 

proceed first by sorting nodes in ℛ and then continue by sorting nodes in U:

• Nodes in ℛ—For each node u ∈ ℛ, consider the set of cascades Cu in which u was2a 

source R and i got infected. Then, rank each node u according to the earliest position in 

which node i got infected across all cascades in Cu in decreasing order, breaking ties at 

random. For example, if a node u was, at least once, the source of a cascade in which node i 
got infected just after the source, but in contrast, node v was never the source of a cascade in 

which node i got infected the second, then node u will have a lower index than node v. Then, 

assign row k in the matrix Xn(α) to node in position k and assign the first d columns to the 

corresponding cascades in which node i got infected earlier. In such ordering, Xn(α)mk = 0 

for all m < k and Xn(α)kk≠ 0.

• Nodes in U—Similarly as in the first step, and assign them the rows d + 1 to p. Moreover, 

we assign the columns d + 1 to p to the corresponding cascades in which node i got infected 

earlier. Again, this ordering satisfies that Xn(α)mk = 0 for all m < k and Xn(α)kk≠ 0. Finally, 

the remaining columns n − p can be assigned to the remaining cascades at random.

This ordering leads to the desired structure [T B], and thus it is non-singular.
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C. Proof of Eq 7

If the Hazard vector X(tc; α) is Lipschitz continuous in the domain α:αS ≥
αmin

∗

2 ,

X tc; β − X tc; α 2 ≤ k1 β − α 2,

where k1 is some positive constant. Then, we can bound the spectral norm of the difference, 

1
n Xn β − Xn α , in the domain α:αS ≥

αmin
∗

2  as follows:

∣ ∣ ∣ 1
n Xn β − Xn α ∣ ∣ ∣

2

= max
u 2 = 1

1
n u Xn β − Xn α 2

= max
u 2 = 1

1
n ∑

c = 1

n
u, X tc; β − X tc; α 2

≤ 1
n k1

2n u 2
2 β − α 2

2

≤ k1 β − α 2 .

D. Proof of Lemma 3

By Lagrangian duality, the regularized network inference problem defined in Eq. 4 is 

equivalent to the following constrained optimization problem:

minimizeαi ℓn αi

subkect to αji ≥ 0, j = 1, …, N, i ≠ j,
αi 1 ≤ C λn

(20)

where C(λn) < ∞ is a positive constant. In this alternative formulation, λn is the Lagrange 

multiplier for the second constraint. Since λn is strictly positive, the constraint is active at 

any optimal solution, and thus ∥α∥1 is constant across all optimal solutions.

Using that ℓn αi  is a differentiable convex function by assumption and {α : αji ≥ 0, ∥αi∥1 ≤ 

C(λn)} is a convex set, we have that ∇ℓn αi  is constant across optimal primal solutions 

(Mangasarian , 1988). Moreover, any optimal primal-dual solution in the original problem 

must satisfy the KKT conditions in the alternative formulation defined by Eq. 20, in 

particular,

∇ℓn αi = − λnz + μ,
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where μ ≥ 0 are the Lagrange multipliers associated to the non negativity constraints and z 

denotes the subgradient of the ℓ1-norm.

Consider the solution α such that zSc ∞ < 1 and thus ∇αScℓn αi = − λnzSc + μSc. Now, 

assume there is an optimal primal solution α such that αji > 0 for some j ∈ Sc, then, using 

that the gradient must be constant across optimal solutions, it should hold that 

−λnzj + μj = − λn where μji = 0 by complementary slackness, which implies 

μj = − λn 1 − zj < 0. Since μj ≥ 0 by assumption, this leads to a contradiction. Then, any 

primal solution α must satisfy αS
c = 0 for the gradient to be constant across optimal 

solutions.

Finally, since αSc = 0 for all optimal solutions, we can consider the restricted optimization 

problem defined in Eq. 17. If the Hessian sub-matrix ∇2L α SS is strictly positive definite, 

then this restricted optimization problem is strictly convex and the optimal solution must be 

unique.

E. Proof of Lemma 4

To prove this lemma, we will first construct a function

G uS ≔ ℓn αS
∗ + uS − ℓn αS

∗ + λn αS
∗ + uS 1 − αS

∗ .

whose domain is restricted to the convex set U = uS ∣ αS
∗ + uS ≥ 0 . By construction, G(uS) 

has the following properties

1. It is convex with respect to uS.

2. Its minimum is obtained at uS ≔ αS − αS
∗ . That is G(ûS) ≤ G(uS), ∀uS =ûS.

3. G(ûS) ≤ G(0) = 0.

Based on property 1 and 3, we deduce that any point in the segment, 

L ≔ uS :uS = tuS + 1 − t 0, t ∈ 0, 1 , connecting ûS and 0 has G(ũS) ≤ 0. That is

G uS = G tuS + 1 − t 0
≤ tG uS + 1 − t G 0 ≤ 0 .

Next, we will find a sphere centered at 0 with strictly positive radius 

B, S B ≔ uS : uS 2 = B , such that function G(uS) > 0 (strictly positive) on S B . We note 

that this sphere S B  can not intersect with the segment L since the two sets have strictly 

different function values. Furthermore, the only possible configuration is that the segment is 

contained inside the sphere entirely, leading us to conclude that the end point uS ≔ αS − αS
∗

is also within the sphere. That is αS − αS
∗

2 ≤ B.
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In the following, we will provide details on finding such a suitable B which will be a 

function of the regularization parameter λn and the neighborhood size d. More specifically, 

we will start by applying a Taylor series expansion and the mean value theorem,

G uS = ∇Sℓn αS
∗ TuS + uS

T ∇SS
2 ℓn αS

∗ + buS uS + λn αS
∗ + uS 1 − αS

∗
1 , (21)

where b ∈ [0, 1]. We will show that G(uS) > 0 by bounding below each term of above 

equation separately.

We bound the absolute value of the first term using the assumption on the gradient, ∇Sℓ ⋅ ,

∣ ∇Sℓn αS
∗ TuS ∣ ≤ ∇Sℓ ∞ uS 1 ≤ ∇Sℓ ∞ d uS 2 ≤ 4−1λnB d . (22)

We bound the absolute value of the last term using the reverse triangle inequality.

λn ∣ αS
∗ + uS 1 − αS

∗
1 ∣ ≤ λn uS 1 ≤ λn d uS 2 . (23)

Bounding the remaining middle term is more challenging. We start by rewriting the Hessian 

as a sum of two matrices, using Eq. 5,

q = min
uS

uS
TDSS

n αS
∗ + buS uS

+n−1uS
TXS

n αS
∗ + buS XS

n αS
∗ + buS

TuS

= min
uS

uS
TDSS

n αS
∗ + buS uS + usTXS

n αS
∗ + buS 2

2
.

Now, we introduce two additional quantities,

ΔDSS
n = DSS

n αS
∗ + buS − DSS

n αS
∗

ΔXS
n = XS

n αS
∗ + buS − XS

n αS
∗ ,

and rewrite q as

q = min
uS

uS
TDSS

n αS
∗ uS + n−1 uS

TXS
n αS

∗
2
2

+n−1 uS
TΔXS

n
2
2

+ uS
TΔDSS

n uS

+2n−1 uS
TXS

n αS
∗ , uS

TΔXS
n .

Next, we use dependency condition,
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q ≥ CminB2 −max
uS

∣ uS
TΔDSS

n uS
T1

∣

−max
uS

2 ∣ n−1 uS
TXS

n αS
∗ , u2

T
ΔXS

n

T2

∣ ,

and proceed to bound T1 and T2 separately. First, we bound T1 using the Lipschitz 

condition,

∣ T1 ∣ = ∣ ∑
k ∈ S

uk
2pDk

n αS
∗ + buS − Dk

n αS
∗ ∣

≤ ∑
l ∈ S

uk
2k2 buS 2

≤ k2B3 .

Then, we use the dependency condition, the Lipschitz condition and the Cauchy-Schwartz 

inequality to bound T2,

T2 ≤ 1
n uS

TXS
n αS

∗
2

1
n uS

TΔXS
n

2

≤ CmaxB 1
n uS

TΔXS
n

2

≤ CmaxB uS 2
1
n ∣ ΔXS

n ∣ 2

≤ CmaxB2k1 buS 2

≤ k1 CmaxB3,

where we note that applying the Lipschitz condition implies assuming B < αmin
2 . Next, we 

incorporate the bounds of T1 and T2 to lower bound q,

q ≥ CminB2 − k2 + 2k1 Cmax B3 . (24)

Now, we set B = Kλn d, where K is a constant that we will set later in the proof, and select 

the regularization parameter λn to statisfy λn d ≤ 0.5Cmin K k2 + 2k1 Cmax . Then,

G uS ≥ − 4−1λn dB + 0.5CminB2 − λn dB
≥ B 0.5CminB − 1.25λn d
≥ B 0.5CminKλn d − 1.25λn d .

In the last step, we set the constant K = 3Cmin
−1 , and we have

G uS ≥ 0.25λn d > 0,
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as long as

dλn ≤
Cmin

2

6 k2 + 2k1 Cmax

αmin
∗ ≥

6λn d
Cmin

.

Finally, convexity of G(uS) yields

αS − αS
∗

2 ≤ 3λn d Cmin ≤
αmin

∗

2 .

F. Proof of Lemma 5

Define zjc = ∇g tc; α∗ j and zj = 1
n ∑czjc. Now, using the KKT conditions and condition 4 

(Boundedness), we have that μj∗ = Ec zjc  and ∣ zjc ∣ ≤ k3, respectively.

Thus, Hoeffding's inequality yields

P ∣ zj − μj∗ ∣ >
λnε

4 2 − ε ≤ 2 exp −
nλn2ε2

32k3
2 2 − ε 2 ,

and then,

P z − μ∗ ∞ >
λnε

4 2 − ε ≤ 2 exp
nλn2ε2

32k3
2 2 − ε 2 + log p .

G. Proof of Lemma 6

We start by factorizing the Hessian matrix, using Eq. 5,

Rjn = ∇2ℓn α‒j − ∇2ℓn α∗
j
T α − α∗ = ωjn + δjn,

where,

ωjn = Dn α‒j − Dn α∗ j
T α − α∗

δjn = 1
nV jn α − α∗

V jn = Xn α‒j jXn α‒j
T − Xn α∗ jXn α∗ T .
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Next, we proceed to bound each term separately. Since α‒j S = θjαS + 1 − θj αS
∗  where θj ∈ 

[0, 1], and αS − αS
∗

∞ ≤
αmin

∗

2  (Lemma 4), it holds that α‒j S ≥
αmin

∗

2 . Then, we can use 

condition 3 (Lipschitz Continuity) to bound ωjn.

∣ ωjn ∣ ≤ k1 α‒j − α∗
2 α − α∗ 2

≤ k1θj α − α∗ 2
2

≤ k1 α − α∗ 2
2 .

(25)

However, bounding term δj
n is more difficult. Let us start by rewriting δj

n as follows.

δjn = Λ1 + Λ2 + Λ3 α − α∗ ,

where,

Λ1 = Xn α∗ j Xn α‒j
T − Xn α∗ T

Λ2 = Xn α‒j j − Xn α∗ j Xn α‒j
T − Xn α∗ T

Λ3 = Xn α‒j j − Xn α∗ j Xn α∗ T .

Next, we bound each term separately. For the first term, we first apply Cauchy inequality,

∣ Λ1 α − α∗ ∣ ≤ Xn α∗ j 2 × ∣ Xn α‒j
T − Xn α∗ T ∣ 2 α − α∗ 2,

and then use condition 3 (Lipschtiz Continuity) and 4 (Boundedness),

∣ Λ1 α − α∗ ∣ ≤ nk4k1 α‒j − α∗
2 α − α∗ 2

≤ nk4k1 α − α∗ 2
2 .

For the second term, we also start by applying Cauchy inequality,

∣ Λ2 α − α∗ ∣ ≤ Xn α‒j j − Xn α∗
2 × ∣ Xn α‒j

T − Xn α∗ T ∣ 2 α − α∗ 2,

and then use condition 3 (Lipschtiz Continuity),

∣ Λ2 α − α∗ ∣ ≤ nk1
2 α − α∗ 2

2 .

Last, for third term, once more we start by applying Cauchy inequality,
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∣ Λ3 α − α∗ ∣ ≤ Xn α‒j j − Xn α∗ j 2 × ∣ Xn α∗ T ∣ 2 α − α∗ 2,

and then apply condition 1 (Dependency Condition) and condition 3 (Lipschitz Continuity),

∣ Λ3 α − α∗ ∣ ≤ nk1 Cmax α − α∗ 2
2

Now, we combine the bounds,

Rn ∞ ≤ K α − α∗ 2
2,

where

K = k1 + k4k1 + k1
2 + k1 Cmax .

Finally, using Lemma 4 and selecting the regularization parameter λn to satisfy 

λnd ≤ Cmin
2 ε

36K 2 − ε  yields:

Rn ∞ λn ≤ 3Kλnd Cmin
2

≤ ε
4 2 − ε

H. Proof of Lemma 7

We will first bound the difference in terms of nuclear norm between the population Fisher 

information matrix QSS and the sample mean cascade log-likelihood QSS
n . Define 

zjk
c = ∇2g tc; α∗ − ∇2ℓn α∗

jk and zjk = 1
n ∑c = 1

n zjk
c . Then, we can express the difference 

between the population Fisher information matrix QSS and the sam ple mean cascade log-

likelihood QSS
n  as:

∣ QSS
n α∗ − QSS

∗ α∗ ∣ 2 ≤ ∣ QSS
n α∗ − QSS

∗ α∗ ∣ F = ∑
j = 1

d
∑

k = 1

d
zik

2 .

Since ∣ zjk
c ∣ ≤ 2k5 by condition 4, we can apply Hoeffding's inequality to each zjk,

P ∣ zjk ∣ ≥ β ≤ 2 exp − β2n
8k5

2 , (26)

and further,
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P ∣ QSS
n α∗ − QSS

∗ α∗ ∣ 2 ≥ δ ≤ 2 exp − K δ2n
d2 + 2 log d (27)

where β2 = δ2 d2. Now, we bound the maximum eigenvalue of QSS
n  as follows:

Λmax QSs
n = min

x 2 = 1
xTQSS

n x

= max
x 2 = 1

xTQSS
∗ x + xT QSS

n − QSS
∗ x

≤ yTQSS
∗ y + yT QSS

n − QSS
∗ y,

where y is unit-norm maximal eigenvector of QSS
∗ . Therefore,

Λmax QSS
n ≤ Λmax QSS

∗ + ∣ QSS
n − QSS

∗ ∣ 2,

and thus,

P Λmax QSS
n ≥ Cmax + δ ≤ exp −K δ2n

d2 + 2 log d .

Reasoning in a similar way, we bound the minimum eigen- value of QSS
n :

P Λmin QSS
n ≤ Cmin − δ ≤ exp −K δ2n

d2 + 2 log d

I. Proof of Lemma 8

We start by decomposing QScS
n α∗ QScS

n α∗ −1
 as follows:

QScS
n α∗ QScS

n α∗ −1
= A1 + A2 + A3 + A4,

where,

A1 = QScS
∗ QScS

n −1
− QScS

∗ −1
,

A2 = QScS
n − QScS

∗ QScS
n −1

− QScS
∗ −1

A3 = QScS
n − QScS

∗ QSS
∗ −1,

A4 = QScS
∗ QSS

∗ −1,
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Q∗ = Q∗ α∗  and Qn = Qn α∗ . Now, we bound each term separately. The fourth term, A4, is 

the easiest to bound, using simply the incoherence condition:

∣ A4 ∣ ∞ ≤ 1 − ε .

To bound the other terms, we need the following lemma:

Lemma 11

For any ≥ 0 and constants K and K′, the following bounds hold:

P ∣ QScS
n − QScS

∗ ∣ ∞ ≥ δ ≤ 2 exp −K nδ2

d2 + log d + log p − d (28)

P ∣ QSS
n − QSS

∗ ∣ ∞ ≥ δ ≤ 2 exp −K nδ2

d2 + 2 log d (29)

P ∣ QSS
n −1 − QSS

∗ −1 ∣ ∞ ≥ δ ≤ 4 exp −K nδ
d3 − K′ log d (30)

Proof

We start by proving the first confidence interval. By definition of infinity norm of a matrix, 

we have:

P ∣ QScS
n − QScS

∗ ∣ ∞ ≥ δ = P max
j ∈ Sc

∑
k ∈ S

∣ zjk ∣ ≥ δ ≤ p − d P ∑
k ∈ S

∣ zij ∣ ≥ δ ,

where zjk = Qn − Q∗
jk and, for the last inequality, we used the union bound and the fact 

that Sc ≤ p − d. Furthermore,

P ∑k ∈ S ∣ zjk ∣ ≥ δ ≤ P ∃k ∈ S ∣ ∣ zjk ∣ ≥ δ d

≤ dP ∣ zjk ∣ ≥ δ d .

Thus,

P ∣ QScS
n − QScS

∗ ∣ ∞ ≥ δ ≤ p − d dP ∣ zjk ∣ ≥ δ d .

At this point, we can obtain the first confidence bound by using Eq. 26 with β = δ/d in the 

above equation. The proof of the second confidence bound is very similar and we omit it for 

brevity. To prove the last confidence bound, we proceed as follows:

Daneshmand et al. Page 25

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∣ QSS
n −1

− QSS
∗ −1 ∣ ∞

= ∣ QSS
n −1

QSS
n − QSS

∗ QSS
∗ −1 ∣ ∞

≤ d ∣ QSS
n −1

QSS
n − QSS

∗ QSS
∗ −1 ∣ 2

≤ d ∣ QSS
n −1

∣ 2 ∣ QSS
n − QSS

∗ ∣ 2 ∣ QSS
∗ −1 ∣ 2

≤ d
Cmin

∣ QSS
n − QSS

∗ ∣ 2 ∣ QSS
n −1

∣ 2 .

Next, we bound each term of the final expression in the above equation separately. The first 

term can be bounded using Eq. 27:

P ∣ QSS
n − QSS

∗ ∣ 2 ≥ Cmin2 δ 2 d

≤ 2 exp − K nδ2

d3 + 2 log d ,

The second term can be bounded using Lemma 6:

P ∣ QSS
n −1

∣ 2 ≥ 2
Cmin

= P Λmin QSS
n ≤

Cmin
2 ≤ exp −K n

d2 + B log d .

Then, the third confidence bound follows.

Control of A1. We start by rewriting the term A1 as

A1 = QScS
∗ QSS

∗ −1 QSS
∗ − QSS

n QSS
n −1

,

and further,

∣ A1 ∣ ∞ ≤ ∣ QScS
∗ QSS

∗ −1 ∣ ∞ × ∣ QSS
∗ − QSS

n ∣ ∞ ∣ QSS
n −1

∣ ∞ .

Next, using the incoherence condition easily yields:

∣ A1 ∣ ∞ ≤ 1 − ε ∣ QSS
∗ − QSS

n ∣ ∞ × d ∣ QSS
n −1

∣ 2

Now, we apply Lemma 6 with δ = Cmin/2 to have that ∣ ∣ ∣ QSS
n −1 ∣ ∣ ∣ 2 ≤ 2

Cmin
 with 

probability greater than 1 − exp − Kn d2 + K′ log d , and then use Eq. 30 with δ = εCmin
12 d  to 

conclude that
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P ∣ A1 ∣ ∞ ≥ ε
6 ≤ 2 exp −Knd3 + K′ log d .

Control of A2. We rewrite the term A2 as 

∣ ∣ ∣ A2 ∣ ∣ ∣ ∞ ≤ ∣ ∣ ∣ QScS
n − QScS

∗ ∣ ∣ ∣ ∞ ∣ ∣ ∣ QSS
n −1 − QSS

∗ −1 ∣ ∣ ∣ ∞, and then use 

Eqs. 28 and 29 with δ = ε 6 to conclude that

P ∣ A2 ∣ ∞ ≥ ε
6 ≤ 4 exp −K n

d3 + log p − d + K′ log p .

Control of A3. We rewrite the term A3 as

∣ A3 ∣ ∞ = d ∣ QSS
∗ −1 ∣ 2 ∣ QScS

n − QScS
∗ ∣ ∞

≤ d
Cmin

∣ QScS
n − QScS

∗ ∣ ∞ .

We then apply Eq. 28 with δ = εCmin
6 d  to conclude that

P ∣ A3 ∣ ∞ ≤ ε
6 ≤ exp −K n

d3 + log p − d ,

and thus,

P ∣ QScS
n QSS

n −1
∣ ∞ ≥ 1 − ε

2 = O exp − K n
d3 + log p .

J. Additional experiments

Parameters

(n, p, d). Figure 5 shows the success probability at inferring the incoming links of nodes on 

the same type of canonical networks as depicted in Fig. 2. We choose nodes the same in-

degree but different super-neighboorhod set sizes pi and experiment with different scalings β 
of the number of cascades n = 10 βd log p. We set the regularization parameter λn as a 

constant factor of log p n as suggested by Theorem 2 and, for each node, we used 

cascades which contained at least one node in the super-neighborhood of the node under 

study. We used an exponential transmission model and time window T = 10. As predicted by 

Theorem 2, very different p values lead to curves that line up with each other quite well.

Figure 6 shows the success probability at inferring the incoming links of nodes of a 

hierarchical Kronecker network with equal super neighborhood size (pi = 70) but different 

in-degree (di) under different scalings β of the number of cascades n = 10 d log p and choose 

the regularization parameter λn as a constant factor of log p n as suggested by Theorem 
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2. We used an exponential transmission model and time window T = 5. As predicted by 

Theorem 2, in this case, different d values lead to noticeably different curves.

Comparison with NetRate and First-Edge

Figure 7 compares the accuracy of our algorithm, NETRATE and First-Edge against number 

of cascades for different type of networks and transmission models. Our method typically 

outperforms both competitive methods. We find especially striking the competitive 

advantage with respect to First-Edge, however, this may be explained by comparing the 

sample complexity results for both methods: First-Edge needs O(Nd log N) cascades to 

achieve a probability of success approaching 1 in a rate polynomial in the number of 

cascades while our method needs O(d3 log N) to achieve a probability of success 

approaching 1 in a rate exponential in the number of cascades.
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Algorithm 1

ℓ1-regularized network inference

Require: Cn, λn, K, L

    for all i ∈ V do

        k = 0

        while k < K do

            αi
k + 1 = αik − L∇αiℓn αik − λnL +

            k = k + 1

        end while

        αi = αiK − 1

    end for

    return αi i ∈ V
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Figure 1. 
The diffusion network structure (left) is unknown and we only observe cascades, which are 

N-dimensional vectors recording the times when nodes get infected by contagions that 

spread (right). Cascade 1 is (ta, tb, tc, ∞, ∞, ∞), where ta < tc < tb, and cascade 2 is (∞, tb, 
∞, td, te, tf), where tb < td < te < tf. Each cascade contains a source node (dark red), drawn 

from a source distribution ℙ s , as well as infected (light red) and uninfected (white) nodes, 

and it provides information on black and dark gray edges but does not on light gray edges.
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Figure 2. 
Example networks.
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Figure 3. 
Success probability vs. # of cascades.
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Figure 4. 
F1-score vs. # of cascades.
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Figure 5. 
Success probability vs. # of cascades. Different super-neighborhood sizes pi.
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Figure 6. 
Success probability vs. # of cascades. Different in-degrees di.
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Figure 7. 
F1-score vs. # of cascades.
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Table 1

Functions.

Function Infected node (ti < T) Uninfected node (ti > T)

gi(t; α) log h(t; α) + ∑j:tj < ti y(ti|tj; αj) ∑j:tj < T y(T|tj; αj)

[∇y(t; α)]k –y′(ti|tk; αk) –y′(T|tk; αk)

[D(t; α)]kk –y″(ti|tk; αk) – h(t; α)–1 H″(ti|tk; αk) –y″(T|tk; αk)
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