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Intermittent Hypoxia-Induced Spinal Inflammation Impairs
Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-
Dependent Mechanism
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Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates
neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory
plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation
(pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced sys-
temic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF
by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2
min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 � 0.2-fold;
p � 0.02) and inducible nitric oxide synthase (iNOS) (2.4 � 0.4-fold; p � 0.01) mRNA in cervical spinal homogenates, (2) elicited a
sustained increase in IL-1� mRNA (2.4 � 0.2-fold; p � 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (�1 � 5% vs
56 � 10% in controls; p � 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 � 9%; p � 0.001) or
spinal p38 MAP kinase inhibition (58 � 2%; p � 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence
in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal
p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plastic-
ity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury,
or motor neuron disease).
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Introduction
Inflammation is prevalent in most clinical disorders challenging
ventilatory control, including obstructive sleep apnea (OSA), ap-
nea of prematurity, neurodegenerative disorders, and spinal cord
injury. Nevertheless, we know very little concerning interactions
between inflammation and any aspect of the neural control of
breathing (Huxtable et al., 2011).

Systemic inflammation affects CNS function, including neu-
roplasticity (Di Filippo et al., 2008; Teeling et al., 2010; Huxtable
et al., 2011). However, the impact of inflammation on neuroplas-
ticity is complex, both initiating and undermining distinct forms
of neuroplasticity. For example, inflammation initiates plasticity
in the spinal dorsal horn, contributing to chronic pain (Woolf

and Salter, 2000) via mechanisms involving interactions between
spinal microglia and second-order sensory neurons (Coull et al.,
2005). Similarly, chronic sustained hypoxia elicits inflammation
and sensory plasticity in the carotid body chemoreceptors (Liu et
al., 2009), which may contribute to increased carotid body sensi-
tivity during ventilatory acclimatization (Bisgard, 2000). In
marked contrast, inflammation undermines other forms of CNS
plasticity, including activity-dependent hippocampal synaptic
plasticity (Vereker et al., 2000) and spinal instrumental learning
(Shaw et al., 2001). Thus, it is of interest to study the impact of
inflammation on different forms of respiratory plasticity (Hux-
table et al., 2011, 2013; Vinit et al., 2011).

Mild systemic inflammation induced by low-dose lipopoly-
saccharides elicits spinal inflammation and abolishes phrenic
long-term facilitation (pLTF), a form of spinal, respiratory, mo-
tor plasticity elicited by acute intermittent hypoxia (AIH; Hux-
table et al., 2013). The nonsteroidal anti-inflammatory drug
ketoprofen restores pLTF (Huxtable et al., 2013), confirming the
role of inflammation. Here, we investigate the impact of a unique
form of inflammation induced by one night of intermittent hyp-
oxia in rats (IH-1; 8 h intermittent hypoxia, 16 h recovery). IH-1
mimics aspects of intermittent hypoxia experienced in a single
night of OSA, but without preexisting comorbidities (e.g., obe-
sity, hypertension; Gozal and Kheirandish-Gozal, 2008). Al-
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though 12 h of intermittent hypoxia elicits cortical and
hippocampal inflammation, its impact on spinal inflammation
has not been reported (Li et al., 2003, 2004). Here, we test the
hypothesis that IH-1 elicits spinal inflammation, thereby under-
mining AIH-induced pLTF. Furthermore, we test the hypothesis
that spinal p38 MAP kinase (MAPK), a key molecule initiating
and responding to inflammation (Widmann et al., 1999), plays a
key role in the mechanism of pLTF impairment.

This study is the first step toward an understanding of inter-
mittent hypoxia-induced inflammation and its impact on respi-
ratory motor plasticity. Our results are relevant to many clinical
disorders associated with chronic intermittent hypoxia (CIH),
such as obstructive sleep apnea and apnea of prematurity. On the
other hand, ongoing inflammation may undermine the ability to
harness “low-dose” intermittent hypoxia therapeutically as a
means of restoring motor function in clinical disorders that cause
paralysis, such as spinal injury and ALS (Dale et al., 2014).

Materials and Methods
All experiments were approved by the Animal Care and Use Committee
at the School of Veterinary Medicine, University of Wisconsin–Madison,
and conform to policies outlined in the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Experiments were
performed on 3– 4 month old male Sprague Dawley rats (Harlan colony
211, 300 – 450 g). Rats were housed under standard conditions, with food
and water ad libitum and a 12 h light/dark cycle.

Experimental groups
Rats were placed individually in cylindrical Plexiglas chambers for 8 h (9
A.M. to 5 P.M., the rats’ inactive period) with ClearH2O hydrogel to
provide nutrition and hydration. Gas flow (4 L/min) and concentrations
were regulated by mass flow controllers (Teledyne; Hastings Instru-
ments) and a customized computer program (LabVIEW 2009, Service
Pack 1, version 9.0.1; National Instruments). Gas concentrations were
continuously monitored (Gemini; CWE Inc.). Rats were exposed to IH-1
(2 min, 10.5% O2; 2 min normoxic intervals; 8 h during the rats’ inactive
period) or continuous normoxia (Nx; 8 h). Exposures occurred the day
before electrophysiology experiments and tissue collection for mRNA or
immunohistochemistry (see “Inflammatory gene expression” and “Im-
munofluorescence”, below). In some cases, rats were sacrificed immedi-
ately after exposures for mRNA analysis.

To study the impact of IH-1 on pLTF, rats were assigned to three
groups: (1) Nx (n � 6), (2) IH-1 (n � 6), and (3) time controls (four
Nx, two IH-1; total, n � 6). In subsequent neurophysiological studies,
rats received intraperitoneal injections of the nonsteroidal anti-
inflammatory drug ketoprofen [keto; (S)-(�)-ketoprofen; 12.5 mg/kg;
Sigma] or vehicle (veh; 50% ethanol and saline, 100 �l/kg) and were
divided into three groups: (1) Nx � keto (n � 7), (2) IH-1 � keto (n �
6), and (3) time control � keto (three Nx, three IH-1; total, n � 6). In the
final experimental series, rats were instrumented with intrathecal cathe-
ters at C4 to deliver a p38 MAP kinase inhibitor (4-[4-(4-fluorophenyl)-
5-(4-pyridinyl)-1 H-imidazol-2-yl]phenol (SB 202190); 1 mM; p38 inhib;
Tocris Bioscience) as described previously (Baker-Herman and Mitchell,
2002; MacFarlane and Mitchell, 2009). Fifteen minutes before AIH, 12 �l
(2 �l/30 s) of SB 202190 or vehicle (artificial CSF) were given, and the rats
were divided into six groups: (1) Nx � veh (n � 9), (2) IH-1� veh (n �
6), (3) time control � veh (six Nx, two IH-1; total, n � 8), (4) Nx � p38
inhib (n � 7), (5) IH-1 � p38 inhib (n � 7), and (6) time control � p38
inhib (three Nx, two IH-1; total n � 5).

Inflammatory gene expression
Sample preparation. Rats were anesthetized with isoflurane and perfused
transcardially with ice-cold PBS. Cervical spinal (C3–C6) tissues were
removed, homogenized, and used for quantitative PCR (hereafter re-
ferred to as “homogenates”). Microglial isolations were performed as
described previously (Crain et al., 2009; Nikodemova and Watters, 2012;
Huxtable et al., 2013). CD11b � cells isolated with this method are re-

ferred to as “microglia.” The Neural Tissue Dissociation Kit, anti-PE
magnetic beads, and MS columns were purchased from Miltenyi Biotec.

Reverse transcription. RNA was isolated using the TRI-reagent
(Sigma), and first-strand cDNA was synthesized from 1 �g of total RNA
using M-MLV reverse transcriptase (Invitrogen) and an oligo(dT)/
random hexamer cocktail (Promega). The cDNA was then used for
quantitative RT-PCR using SYBR Green PCR Master Mix (Applied
Biosystems).

Quantitative PCR. Amplified cDNA was measured by fluorescence in
real time using the ABI 7500 Fast Real-Time PCR System (Applied Bio-
systems) with the following primer sequences: IL-1�, 5� CTG CAG ATG
CAA TGG AAA GA, 5� TTG CTT CCA AGG CAG ACT TT; IL-6, 5� GTG
GCT AAG GAC CAA GAC CA, 5� GGT TTG CCG AGT AGA CCT CA;
TNF-�, 5� TCC ATG GCC CAG ACC CTC ACA C, 5� TCC GCT TGG
TGG TTT GCT ACG; iNOS, 5� AGG GAG TGT TGT TCC AGG TG, 5�
TCT GCA GGA TGT CTT GAA CG; COX-2, 5� TGT TCC AAC CCA
TGT CAA AA, 5� CGT AGA ATC CAG TCC GGG TA; 18s, 5� CGG GTG
CTC TTA GCT GAG TGT CCC G; 3� CTC GGG CCT GCT TTG AAC AC.

All primers were designed (using Primer3 software) to span introns
where possible; specificity was assessed through the NCBI BLAST. Dis-
sociation curves had a single peak with a Tm consistent with intended
amplicon sequences. Primer efficiency was calculated through serial di-
lutions and a standard curve.

Measurement of pLTF
The pLTF experimental protocol has been described in detail previously
(Bach and Mitchell, 1996; Baker-Herman and Mitchell, 2002; Huxtable
et al., 2013). In anesthetized, paralyzed, vagotomized, and pump-
ventilated rats, integrated phrenic nerve activity was recorded. After sta-
ble baseline activity was obtained (�30 min), an arterial blood sample
was drawn to assess PO2, PCO2, pH, and base excess (ABL 800; Radiom-
eter). After baseline conditions were established, AIH was administered
(three 5 min hypoxic episodes, 9 –10.5% O2; 5 min intervals). Blood
samples were taken during the first hypoxic episode and 15, 30, 60, and 90
min after AIH. Data were included in analyses only if they complied with
the following criteria: (1) baseline and post-AIH PaO2 of �180 mmHg;
(2) PaO2 during hypoxic episodes between 35 and 45 mmHg; (3) PaCO2

regulated within 1.5 mmHg of baseline after AIH. Upon completion of
the protocols, rats were euthanized with a urethane overdose.

Phrenic motoneuron back-labeling and tissue collection
Separate rats were injected intrapleurally with cholera toxin b subunit
bilaterally (25 �g/side; Calbiochem) to retrogradely label phrenic mo-
toneurons (Mantilla et al., 2009; Guenther et al., 2010; Dale-Nagle et al.,
2011; Golder et al., 2011; Dale et al., 2012; Lovett-Barr et al., 2012). Three
days later, rats were exposed to IH-1 (n � 6) or normoxia (n � 6) and
then transcardially perfused (16 h after IH-1) with cold PBS (0.01 M, pH
7.4; Thermo Fisher Scientific) followed by 4% paraformaldehyde (PFA;
Thermo Fisher Scientific). After perfusions, spinal cords were immersion
fixed in 4% PFA in 0.01 M PBS overnight at 4°C and then saturated in 20%
and 30% sucrose at 4°C.

Immunofluorescence
Cervical spinal cords (C3–C6) were sectioned (40 �m, transverse) using a
freezing microtome (Leica SM 2000 R). Free-floating sections were
washed and nonspecific binding sites blocked (1 h) with 1% bovine
serum albumin (BSA; Research Products International). Tissue sections
were incubated in the following antibodies (16 h, room temperature,
0.1% BSA): phospho-p38 MAPK (rabbit, 1:250; Cell Signaling Technol-
ogy), cholera toxin B (goat, 1:5000; Calbiochem), and CD11b (mouse,
1:200; AbD Serotec). Subsequently, tissues were washed and incubated
with secondary antibodies (2 h, room temperature): Alexa Fluor 488
donkey anti-rabbit (1:500; Invitrogen), Alexa Fluor 647 donkey anti-goat
(1:1000; Invitrogen), and Alexa Fluor 594 donkey anti-mouse (1:1000;
Invitrogen). Sections were washed and mounted with antifade solution
(ProLong Gold anti-fade reagent; Invitrogen). Controls were run con-
currently to ensure specific labeling.

Immunofluorescent images (1024 	 1024 pixels) were viewed with a
Nikon C1 laser scanning confocal microscope with lambda strobing in
the Nikon EZ-C1 Gold (version 3.80) confocal imaging software (2 �m
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step increments for z stacks). All image pairs (IH-1 vs Nx) were adjusted
identically for contrast and brightness (the same adjustment was made
for each image pair) using EZ-C1 FreeViewer Gold software (Nikon).

Data analysis
Gene expression. Gene expression data were analyzed based on a relative
standard curve method, as described previously (Rutledge and Côté,
2003; Huxtable et al., 2013). Statistical significance was determined for
each gene by one-way ANOVA with Fisher LSD post hoc tests for indi-
vidual comparisons (SigmaStat version 11; Systat Software). Differences
were considered significant at p � 0.05. Values are expressed as means �
1 SEM.

Electrophysiology. Physiological variables and peak amplitude of inte-
grated phrenic nerve activity were averaged for 30 bursts during baseline,
hypoxic episodes (short-term hypoxic phrenic response), and 60 and/or
90 min after AIH. Phrenic nerve burst amplitude is expressed as a per-
centage change from baseline.

Statistical comparisons between short-term hypoxic responses were
made at minute 2 of the first hypoxic episode via t tests or one-way
ANOVA on Ranks (p38 MAPK data). ANOVA on Ranks was used for the
p38 MAPK data since they failed normality/equal variance. Statistical
comparisons for post-AIH changes in phrenic burst amplitude were
made using two-way repeated measures (RM) ANOVAs with Fisher LSD
post hoc tests (SigmaStat version 11; Systat Software). Differences were
considered significant at p � 0.05. All values are expressed as means � 1
SEM.

Results
IH-1 elicits cervical spinal inflammation
In spinal homogenates, IH-1 increased iNOS mRNA 2.4 � 0.4-
fold above normoxic controls (p � 0.010; Fig. 1A). In isolated
spinal microglia, IL-1� mRNA was increased (2.4 � 0.2-fold, p �
0.001) versus normoxic controls (Fig. 1B). No other genes exam-
ined (IL-6, TNF�, and COX-2) were significantly changed by
IH-1 pretreatment in either homogenates or microglia (p � 0.05;
Fig. 1).

Since the inflammatory response is dynamic, and to better
understand the temporal dynamics of the inflammatory response
following IH-1, inflammatory gene expression was also examined
immediately following 8 h of IH. There was a transient, early
increase in IL-6 homogenate mRNA immediately after IH (1.5 �
0.2-fold) that was greater than IL-6 gene expression the next day
(i.e., IH-1; 0.8 � 0.1-fold; p � 0.017). After IH-1, homogenate
IL-6 mRNA was not significantly different from normoxic con-
trols (p � 0.07), demonstrating a return to control levels (Fig.

1A). In microglia, IL-1� gene expression was significantly in-
creased after 8 h of IH (2.4 � 0.2-fold; p � 0.001) versus nor-
moxic controls and was not significantly different from the
increase seen after IH-1 (2.4 � 0.2-fold; p � 0.753). Homogenate
iNOS gene expression (0.8 � 0.1-fold) was not significantly dif-
ferent from normoxic controls (p � 0.624) immediately after 8 h
of IH, but there was a small, significant reduction in iNOS gene
expression versus IH-1 (2.4 � 0.4-fold; p � 0.008), suggesting
small, dynamic changes in iNOS gene expression triggered by IH
for 8 h.

IH-1 abolishes AIH-induced pLTF
Normoxia-pretreated rats exhibited normal pLTF 60 min after
AIH (56 � 10%, p � 0.001; Fig. 2A). In contrast, pLTF was no
longer evident after IH-1 pretreatment (�1 � 5%, p � 0.866; Fig.
2B), despite no significant (p � 0.967) change in the short-term
hypoxic phrenic responses between groups (normoxia, 76 � 8%;
IH-1, 76 � 11%; Fig. 2D). pLTF was not apparent in time control
rats (no AIH) pretreated with IH-1 or normoxia (8 � 10%, p �
0.320; Fig. 2C). At 60 min, phrenic burst amplitude in Nx �
AIH-treated rats was significantly greater than in IH-1 � AIH-
treated (p � 0.001) and time control rats (p � 0.001), but there
was no significant difference between IH-1 � AIH and time con-
trols (p � 0.336).

Ketoprofen restores pLTF after IH-1
We hypothesized that systemic administration of the NSAID ke-
toprofen would restore pLTF by reducing systemic inflamma-
tion. Ketoprofen (12.5 mg/kg, i.p.) was administered to all groups
3 h before the pLTF protocol. Two groups received AIH: Nx �
keto and IH-1 � keto. A third time control group did not receive
AIH (time control � keto; three Nx, three IH-1).

Ketoprofen restored pLTF after IH-1 (Fig. 3) but had no sig-
nificant effect on the short-term hypoxic phrenic response in Nx
� keto-treated (93 � 9%) or IH-1 � keto-treated (116 � 16%)
rats (p � 0.215, t test; Fig. 3D). Nx � keto-treated rats exhibited
normal pLTF (34 � 10%, p � 0.001; Fig. 3A,E) that was signifi-
cantly greater than time control � keto rats (8 � 15%, p � 0.003;
Fig. 3C). Time controls did not exhibit significant changes in
phrenic burst amplitude as expected (Fig. 3E). IH-1 � keto rats
exhibited significant AIH-induced pLTF (55 � 9%, p � 0.001;
Fig. 3B), and this effect was not different from Nx � keto (p �

Figure 1. IH-1 increased inflammatory gene expression in the cervical spinal cord. A, Homogenate samples isolated from the cervical spinal cord containing neurons, astrocytes, and microglia
showed an initial increase in IL-6 (1.5 � 0.2-fold change) immediately after 8 h of intermittent hypoxia and an increase in iNOS (2.4 � 0.4-fold change) mRNA after IH-1 that were significantly
greater than those in normoxia control samples. B, In isolated microglia, IL-1� mRNA increased immediately after 8 h IH (2.4 � 0.2-fold change) and IH-1 (2.4 � 0.2-fold change) compared to
normoxic controls. No other inflammatory genes in the homogenate or microglia samples changed significantly at either time point after IH. **p � 0.01; ***p � 0.001 (significant difference from
normoxic controls); #p � 0.05; ##p � 0.01 (significant difference from IH-1, one-way ANOVA, Fisher LSD post-test).
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0.221; Fig. 3E). IH-1 � keto rats had significantly greater pLTF
than time control � keto rats (p � 0.001; Fig. 3E).

Spinal p38 MAPK inhibition restores pLTF after IH-1
We tested the role of spinal p38 MAPK in IH-1 impairment of
pLTF since it is activated by multiple proinflammatory molecules
and, in turn, triggers additional inflammation. Intrathecal pre-
treatment with a p38 MAPK inhibitor (SB 202190, 1 mM) (1) did
not alter baseline phrenic burst amplitude or other physiological
variables (see Table 3) and (2) had no effect on the short-term
hypoxic phrenic response (Nx � veh, 123 � 17%; IH-1 � veh,
100 � 19%; Nx � p38 inhib, 100 � 17%; IH-1 � p38 inhib,
108 � 7%; p � 0.948; Fig. 4D), but (3) restored pLTF in IH-1-
pretreated rats (Fig. 4).

Spinal p38 MAPK inhibition did not affect pLTF in normoxia-
pretreated rats (Fig. 4A,E). Nx � veh- and Nx � p38 inhib-
treated rats both exhibited significant pLTF (p � 0.001) 60 min
(51 � 17% and 64 � 14%, respectively; data not shown) and 90
min after AIH (57 � 19% and 73 � 15%, respectively; Fig. 4A,E)
and were not different from each other at either time point (60
min, p � 0.382; 90 min, p � 0.266). Spinal p38 MAPK inhibition
enhanced pLTF in IH-1-pretreated rats (p � 0.001; Fig. 4B,E);
this pLTF was significantly greater than time control � veh (60

min, 20 � 11%, p � 0.029; 90 min, 13 � 11%, p � 0.008) and
time control � p38 inhib rats (60 min, 2 � 11%, p � 0.003; 90
min, �8 � 13%, p � 0.001). With IH-1 � p38 MAPK inhibition,
AIH-induced pLTF was greater than in IH-1 � veh at 60 min
(21 � 6%, p � 0.046; data not shown) and 90 min (11 � 14%, p �
0.018; Fig. 4E) after AIH, but was not greater than in Nx � veh
(60 min, p � 0.890; 90 min, p � 0.289) or Nx � p38-pretreated
rats (60 min, p � 0.487; 90 min, p � 0.289; Fig. 4E). IH-1 � veh
rats did not exhibit pLTF at 60 or 90 min.

Increased phosphorylated p38 MAPK protein in motor
neurons and microglia
Since spinal p38 MAPK inhibition restored pLTF after IH-1, we
evaluated IH-1 effects on dually phosphorylated (enzymatically
activated) p38 MAPK expression in phrenic motor neurons
by immunofluorescence. At low magnification (20	), some
phospho-p38 MAPK-positive cells were visible in normoxia-
treated rats, and some of these were colocalized with cholera
toxin B-labeled phrenic motoneurons and CD11b� cells (used to
identify microglia) in the C3–C6 ventral horn (Fig. 5A, top). After
IH-1, more phrenic motoneurons and nearby microglia were
positive for phospho-p38 MAPK, and staining intensity within
cells appeared to increase (Fig. 5A, bottom). This difference be-

Figure 2. IH-1 significantly reduced AIH-induced pLTF. A–C, Representative integrated phrenic neurograms during AIH protocols for rats receiving normoxia (A), IH-1 (B), and time control (no
AIH, C). Development of pLTF is evident as a progressive increase in phrenic nerve amplitude from baseline (black dashed line) over 60 min in normoxic rats, but not in IH-1-treated or time control
rats. D, Previous exposure to IH-1 did not alter the short-term hypoxic ventilatory responses (76 � 11%) versus normoxia-treated (76 � 8%) rats (t test). E, pLTF was abolished after IH-1 (�1 �
5%, n � 6) compared to normoxia-treated (56 � 10%, n � 6) rats. No increase in phrenic nerve amplitude was evident in time control rats (8 � 10%, n � 6). ***p � 0.001 (significant difference
from normoxia, two-way RM ANOVA, Fisher LSD post-test).
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tween normoxia and IH-1 is emphasized at higher magnification
of the phrenic motor nucleus (100	; Fig. 5B, from boxed region
in A). These qualitative results suggest that IH-1 increased acti-
vated p38 MAPK in both microglia and identified phrenic
motoneurons.

Physiological variables
In all groups, AIH significantly reduced PaO2 and mean arterial
pressure (MAP) during hypoxia (Hx) (Tables 1–3). In time con-
trols pretreated with IH-1 or normoxia, rats had slightly lower pH
values at 60 min versus the IH-1 and normoxia groups (Table 1).
In rats treated with IH-1,keto � AIH, arterial pH was reduced
versus Nx,keto � AIH and time controls (Table 2). Additionally,
PaO2 in Nx,keto � AIH rats did not fully recover to baseline
levels 60 min after AIH (p � 0.002); it was significantly reduced
from IH-1 � keto (p � 0.004) and time control � keto (p �
0.001) 60 min after AIH (Table 2). Since PaO2 was �180 mmHg
at all times, we do not believe such minor PaO2 fluctuation af-
fected our results. PaCO2 was also significantly higher at 60 min
in IH-1,keto � AIH rats versus baseline (p � 0.038) and during

hypoxia (p � 0.002), but was not different from other groups at
this same time (Table 2), reflecting higher group variability; nev-
ertheless, it remained within acceptable levels of baseline (see
Materials and Methods). Small differences in pH and mean arte-
rial pressure after AIH were evident in some groups (Table 3), but
remained within acceptable limits (see Materials and Methods).
Similar changes in all treatment groups likely reflect time-
dependent changes in this anesthetized experimental
preparation.

Discussion
Although inflammation is prominent in most clinical disorders
challenging the control of breathing, little is known concerning
how inflammation alters any aspect of ventilatory control. Here,
we studied a novel inflammatory stimulus induced by 8 h of
intermittent hypoxia during the rat’s subjective night (inactive
period). Even one “night” of intermittent hypoxia elicits spinal
inflammation (demonstrated in microglial gene expression),
which subsequently undermines AIH-induced pLTF (demon-
strated by reversal after ketoprofen administration). A key mol-

Figure 3. Systemic treatment with ketoprofen restores pLTF after inflammation induced by IH-1. A–C, Representative integrated phrenic neurograms during AIH protocols for rats receiving
normoxia � ketoprofen (nonsteroidal anti-inflammatory, 12.5 mg/kg, i.p.; A), IH-1 � ketoprofen (B), and time control � ketoprofen (no AIH; C). Development of pLTF is evident as a progressive
increase in phrenic nerve amplitude from baseline (black dashed line) over 90 min in normoxic � ketoprofen and IH-1 � ketoprofen rats, but not in time control � ketoprofen rats. D, Ketoprofen
did not alter short-term hypoxic responses between normoxic (93 � 9%) and IH-1-treated (116 � 16%) rats (t test). E, pLTF magnitude was not different between normoxic � ketoprofen (34 �
10%, n � 7) and IH-1 � ketoprofen-treated rats (55 � 9%, n � 6), but were significantly greater than time controls � ketoprofen (�6 � 7%, n � 6). ***p � 0.001 (significant difference from
normoxia, two-way RM ANOVA, Fisher LSD post-test), ##p � 0.01 (significant difference from IH-1 � ketoprofen).
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ecule in the mechanism whereby IH-1 induced inflammation
impairs pLTF is p38 MAPK. Thus, collective evidence demon-
strates that a physiologically relevant stimulus (IH-1) impairs
respiratory motor plasticity due to spinal inflammation by a p38
MAPK-dependent mechanism. This is the first demonstration
that spinal p38 MAPK is a key link between inflammation and
pLTF. Thus, p38 MAPK is a molecule of considerable interest in
exploring ways of minimizing pathology due to intermittent hyp-
oxia, or in our efforts to harness “low-dose” intermittent hypoxia
to treat diverse clinical disorders that impair movement, such as
spinal injury and ALS (Dale et al., 2014).

Our results have profound implications concerning the po-
tential impact of even a single night of sleep apnea. In individ-
uals with subclinical OSA, exacerbating factors such as alcohol
consumption or acute respiratory infection may tip the bal-
ance, transiently increasing the frequency of apneas during
sleep. Increased apnea frequency may trigger inflammation,
undermining compensatory mechanisms such as pLTF or up-

per airway LTF, thereby leading to further apneas (i.e., posi-
tive feedback loop).

The IH-1 protocol used here differs quantitatively from fre-
quently studied CIH protocols, which typically last for days (Al-
mendros et al., 2014; Navarrete-Opazo and Mitchel, 2014). CIH
enhances carotid body hypoxic sensitivity (Peng et al., 2003; Rey
et al., 2004; Prabhakar et al., 2007; Pawar et al., 2008), but the
extent of carotid body inflammation was not studied. Increased
carotid body hypoxic sensitivity could arise from differential effects
of inflammation on sensory versus motor plasticity (Huxtable et al.,
2011), or because CIH elicits qualitatively/quantitatively different
inflammation versus IH-1. The lack of change in the short-term
hypoxic response after IH-1 suggests IH-1 does not elicit carotid
body inflammation and/or plasticity similar to CIH.

Differences in the quality or quantity of CIH- versus IH-1-
induced inflammation may account for differences in the impact
of CIH versus IH-1 preconditioning on AIH-induced pLTF. CIH
(5 min hypoxic episodes, 5 min intervals, 12 h/d, 7 d during the

Figure 4. Spinal inhibition of p38 MAPK restored AIH-induced pLTF after IH-1, but did not alter the hypoxic responses or pLTF in normoxic controls. A–C, Representative integrated phrenic
neurograms during AIH protocols for rats receiving normoxia � p38 MAPK inhibitor (SB202190, 1 mM, intrathecal; A), IH-1 � p38 MAPK inhibitor (B), and time control � p38 MAPK inhibitor (no
AIH, C). Development of pLTF is evident as a progressive increase in phrenic nerve amplitude from baseline (black dashed line) over 90 min in normoxic � p38 MAPK inhibitor and IH-1 � p38 MAPK
inhibitor rats, but not in time control � p38 MAPK inhibitor rats. D, Inhibition of p38 MAPK did not alter short-term hypoxic responses between Nx � veh (123 � 17%), IH-1 � veh (100 � 19%),
Nx � p38 inhib (100 � 17%), and IH-1 � p38 inhib (108 � 7%) rats (one-way ANOVA). E, After p38 inhibitor, there was no difference between rats treated with IH-1 or normoxia. Ninety minutes
after AIH, pLTF was evident in Nx� vehicle (57�19%), Nx�p38 inhibitor (73�15%), and IH-1�p38 inhibitor (58�2%), but pLTF in IH-1� vehicle (11�14%) rats was significantly reduced
compared to the aforementioned groups and was not different from time controls � vehicle (13 � 11%) or time controls � p38 inhibitor (�7 � 13%). *p � 0.05, **p � 0.01, ***p � 0.001
(significantly different from time control � vehicle); ###p � 0.001 (significantly different from time control � p38 inhibitor); @p � 0.05, @@p � 0.01, @@@p � 0.001 (significantly different from
IH-1 � vehicle; two-way RM ANOVA, Fisher LSD post-test).
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active period) actually enhances pLTF (Ling et al., 2001) and
ventilatory LTF (McGuire et al., 2003, 2004), possibly due to
qualitative differences in inflammatory signaling molecules
and/or increased expression of trophic factors known to promote
respiratory plasticity (Baker-Herman et al., 2004; Dale-Nagle et
al., 2011; Dale et al., 2012). After IH-1, the negative effects of
inflammation may predominate, undermining respiratory mo-
tor plasticity. The presence or absence of respiratory plasticity
after prolonged IH may be determined by the duration of IH
exposure, diurnal variations, the inflammatory cascade, expres-
sion of proplasticity molecules (e.g., growth/trophic factors),
and/or other yet to be determined factors (Mateika and Narwani,
2009).

A fundamental understanding of mechanisms undermining
AIH-induced motor plasticity is of considerable interest in the
treatment of multiple clinical disorders since repetitive (low-

dose) acute intermittent hypoxia has been applied therapeutically
to restore breathing capacity in rodent models of cervical spinal
injury (Lovett-Barr et al., 2012) and ALS (Nichols et al., 2013),
and in humans with chronic, incomplete spinal injuries (Tester et
al., 2014). Such therapeutic intermittent hypoxia also restores
nonrespiratory motor functions, such as leg strength (Trum-
bower et al., 2012) and walking ability (Lovett-Barr et al., 2012;
Hayes et al., 2014) in both rodent models and humans with
chronic, incomplete spinal injuries. Since patients with spinal
injury and ALS are prone to systemic infections and inflamma-
tion, inflammation may undermine the therapeutic efficacy of
low-dose IH. Judicious application of anti-inflammatory drugs
in association with therapeutic IH may enhance its effectiveness.
Here, we have begun to elucidate means of counteracting the
impact of inflammation on AIH-induced motor plasticity.

Systemic ketoprofen restores pLTF, demonstrating that in-
flammation per se undermines pLTF following IH-1. Ketoprofen
is a potent anti-inflammatory and analgesic agent used in many
species, including humans (Foster et al., 1988) and rats (Foster
and Jamali, 1988; Carabaza et al., 1996). Ketoprofen inhibits
prostaglandin and leukotriene synthesis (Netter et al., 1985;
Walker, 1995; Cabré et al., 1998) by inhibiting the enzymatic
activities of both COX-1 and COX-2 peripherally (Gynther et al.,
2010; Kokki, 2010), though some work suggests that it can have
direct effects centrally (Netter et al., 1985; Mannila et al., 2006) or
when modified to increase blood– brain barrier permeability
(Gynther et al., 2010). As such, pLTF rescue by ketoprofen most
likely results from (1) directly diminishing CNS inflammation;
(2) altering systemic inflammation, thereby decreasing transduc-
tion of systemic inflammatory signals via the vagus nerve (Han-
sen et al., 1998); (3) decreasing systemic expression of cytokines
that cross the blood– brain barrier (Carson et al., 2006); and/or
(4) preventing blood– brain barrier disruption and alteration of
the brain’s microenvironment (Lim and Pack, 2013). Although
systemic NSAIDs do not localize the relevant inflammation,
pLTF rescue by ketoprofen confirms that IH-1-induced inflam-
mation undermines pLTF. Targeted inflammatory treatments
would be advantageous since chronic NSAID use causes gastro-
intestinal and cardiovascular problems.

Spinal p38 MAPK inhibition also rescues pLTF, demonstrat-
ing that (1) the relevant inflammation is localized within cervical
spinal segments encompassing the phrenic motor nucleus, and
(2) p38 MAPK is a key link between IH-1-induced inflammation
and pLTF suppression. Because inflammation has complex tem-
poral dynamics and involves numerous molecules, we targeted
p38 MAPK because it is a convergent, downstream molecule ac-
tivated by many proinflammatory molecules (Widmann et al.,
1999). p38 MAPK also increases posttranslational modification
and gene transcription of inflammatory molecules, thereby prop-
agating ongoing inflammation (Kaminska, 2005; Clark et al.,
2009). Here, we provide the first demonstration that p38 MAPK
is critical for IH-1 pLTF impairment. Consistent with this hy-
pothesis, activated p38 MAPK increases within phrenic mo-
toneurons and adjacent microglia. It is not yet clear whether p38
MAPK orchestrates the relevant inflammation or is a convergent,
downstream molecule that directly impairs pLTF. Furthermore,
it is not yet clear whether the relevant p38 MAPK activity is within
phrenic motoneurons, adjacent microglia, or both. Microglial
p38 MAPK plays a key role in neuroplasticity after spinal nerve
ligation (Tsuda et al., 2004; Katsura et al., 2006; Ji and Suter,
2007) and spinal cord injury (Hains and Waxman, 2006), and it is

Figure 5. Phospho-p38 MAPK immunofluorescence is prevalent in back-labeled phrenic
motoneurons and microglia of the ventral cervical spinal cord after IH-1. A, Confocal images
(20	) show representative phospho-p38 MAPK (green) staining in the ventral cervical spinal
cord after IH-1 (n � 6), which colocalized with back-labeled phrenic motoneurons (cholera
toxin B (CtB); blue) and CD11b (microglia label; red). Minimal staining was evident after the
normoxia treatment (n � 6, bottom). B, Higher magnification (100	) from the boxed area in
A of the phrenic motor nucleus clearly shows colocalization with phrenic motoneurons and
microglia after IH-1 (bottom). Less colocalization is evident after normoxia and is highlighted by
white arrows (identifying CtB and phospho-p38 MAPK labeling) and yellow arrows (identifying
CD11b and phospho-p38 MAPK labeling; top). V, Ventral; L, lateral.
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associated with other conditions causing chronic pain (Boyle et
al., 2006; Cui et al., 2006). Additional research is needed to un-
derstand specific p38 MAPK actions following IH-1.

While the p38 MAPK inhibitor used here (SB 202190) is reported
to be a selective p38 MAPK inhibitor (Manthey et al., 1998; Lv et al.,
2013), other p38 MAPK inhibitors with similar chemical struct-

ures (e.g., 4-[5-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-
1H-imidazol-4-yl]pyridine (SB 203580)) inhibit cyclooxygenase
enzymatic activity (Borsch-Haubold et al., 1998). Although, no
studies are available concerning the actions of SB 202190 on cyclo-
oxygenase activity, we cannot completely rule out cyclooxygenase
inhibition as a contributor to pLTF rescue post-IH-1.

Table 1. Physiological variables for Sprague Dawley 211 rats during electrophysiological experiments after IH-1 and normoxia with AIH or time control

Time Treatment group Temperature PaO2 PaCO2 pH MAP

Baseline Time control 37.7 � 0.1 343 � 12 47 � 1 7.336 � 0.006 121 � 5
IH-1 � AIH 37.7 � 0.1 328 � 17 45 � 1 7.364 � 0.008 116 � 7
Nx � AIH 37.5 � 0.2 325 � 20 45 � 1 7.371 � 0.005 120 � 5

Hx Time control 37.6 � 0.1 346 � 5* 46 � 1 7.330 � 0.008* 118 � 6*
IH-1 � AIH 37.6 � 0.1 42 � 2 46 � 1 7.350 � 0.008 66 � 9
Nx � AIH 37.3 � 0.1 36 � 2 45 � 1 7.343 � 0.005 64 � 7

60 min Time control 37.5 � 0.1 347 � 3 47 � 1 7.343 � 0.012 114 � 7
IH-1 � AIH 37.6 � 0.1 347 � 10 45 � 0.5 7.391 � 0.010 112 � 7
Nx � AIH 37.4 � 0.2 308 � 15** 45 � 1 7.371 � 0.005*** 115 � 7

*p � 0.001 (difference from all other Hx (hypoxia) groups); **p � 0.05 (difference from time control within 60 min); ***p � 0.01 (difference from time control within 60 min). MAP, Mean arterial pressure.

Table 2. Physiological variables for Sprague Dawley 211 rats during electrophysiological experiments after IH-1 and normoxia with AIH or time control and systemic
treatment with ketoprofen (keto)

Time Treatment group Temperature PaO2 PaCO2 pH MAP

Baseline Time control 37.2 � 0.1 342 � 5 43 � 2 7.380 � 0.010 102 � 4 ###

Nx, keto � AIH 37.4 � 0.1 325 � 13 44 � 1 7.376 � 0.006 110 � 5
IH-1, keto � AIH 37.4 � 0.1 340 � 5 43 � 1 7.365 � 0.009 116 � 3

Hx Time control 37.3 � 0.1 339 � 4* 43 � 2 7.381 � 0.010 102 � 3*
Nx, keto � AIH 37.3 � 0.1 37 � 2** 44 � 1 7.367 � 0.010 55 � 5**
IH-1, keto � AIH 37.4 � 0.1 37 � 1** 42 � 1 7.354 � 0.010 ## 54 � 3**

60 min Time control 37.3 � 0.1 330 � 4 43 � 2 7.389 � 0.010 100 � 4
Nx, keto � AIH 37.4 � 0.1 296 � 11*,*** 44 � 1 7.376 � 0.010 104 � 4
IH-1, keto � AIH 37.4 � 0.2 327 � 8 44 � 1 # 7.376 � 0.006 107 � 6

*p � 0.001 (difference from all other groups within time point); **p � 0.001 (difference from other time points within group); ***p � 0.01 (difference from baseline within group); #p � 0.05 (difference from other time points within
group); ##p � 0.01 (different from other time points within group); ###p � 0.05 (difference from IH-1, keto � AIH within time point). Hx, Hypoxia; MAP, mean arterial pressure.

Table 3. Physiological parameters for Sprague Dawley 211 rats during electrophysiological experiments after IH-1, normoxia, or time control and spinal inhibition of p38
MAPK (SB 202190, 1 mM)

Time Treatment group Temperature PaO2 PaCO2 pH MAP

Baseline Time control, veh 37.6 � 0.2 331 � 9**** 45 � 1 7.364 � 0.005 124 � 2
Nx, veh 37.3 � 0.1 310 � 12 45 � 1 7.355 � 0.011 117 � 5
IH-1, veh 37.3 � 0.3 311 � 9 45 � 1 7.337 � 0.013 128 � 5
Nx, p38 37.5 � 0.1 328 � 3 44 � 1 7.367 � 0.007 ### 124 � 6
IH-1, p38 37.2 � 0.1 322 � 10 44 � 1 7.346 � 0.007 125 � 7
Time control, p38 37.3 � 0.3 312 � 9.5 45 � 1 7.324 � 0.018 3 134 � 3****

Hx Time control, veh 37.6 � 0.1 328 � 5 # 45 � 1 7.361 � 0.005 123 � 3 #

Nx, veh 37.3 � 0.1 38 � 1* 45 � 1 7.341 � 0.014 62 � 7*
IH-1, veh 37.2 � 0.3 40 � 1* 46 � 1 7.322 � 0.014 ## 71 � 7*
Nx, p38 37.4 � 0.1 35 � 1* 44 � 2 7.339 � 0.012**,## 63 � 6*
IH-1, p38 37.2 � 0.1 38 � 1* 45 � 1 7.332 � 0.011 67 � 5*
Time control, p38 37.2 � 0.2 311 � 10 # 45 � 1 7.329 � 0.014 134 � 32

60 min Time control, veh 37.6 � 0.1 315 � 10 44 � 1 7.381 � 0.008**,*** 118 � 3
Nx, veh 37.5 � 0.1 297 � 11 45 � 1 7.359 � 0.009 107 � 5
IH-1, veh 37.5 � 0.2 305 � 11 45 � 1 7.339 � 0.017***,## 115 � 5
Nx, p38 37.6 � 0.1 305 � 5** 45 � 1 7.362 � 0.010*** 119 � 5
IH-1, p38 37.5 � 0.1 299 � 8** 44 � 1 7.348 � 0.005*** 114 � 4**
Time control, p38 37.2 � 0.2 308 � 12 45 � 1 7.343 � 0.014 ## 121 � 5*

90 min Time control, veh 37.6 � 0.1 327 � 3**** 44 � 1 7.388 � 0.007**,*** 117 � 6
Nx, veh 37.5 � 0.1 295 � 9 45 � 1 7.361 � 0.009*** 108 � 4
IH-1, veh 37.3 � 0.2 300 � 10 46 � 2 7.341 � 0.024*** 113 � 5
Nx, p38 37.5 � 0.1 308 � 4**,## 44 � 2 7.367 � 0.011*** 116 � 6**
IH-1, p38 37.5 � 0.1 303 � 7 45 � 1 7.359 � 0.006*** 109 � 4**
Time control, p38 37.4 � 0.2 307 � 11 45 � 1 7.376 � 0.011**,*** 123 � 4****

*p � 0.001 (difference from all other time points within treatment group); **p � 0.05 (difference from baseline within treatment group); ***p � 0.05 (difference from Hx within treatment group); ****p � 0.05 difference from Nx, veh
within time point); #p � 0.001 (difference from treatment groups receiving AIH within Hx); ##p � 0.01 (difference from time control, veh within time point); ###p � 0.05 (difference from Nx, p38 and Nx, veh). Hx, Hypoxia; MAP, mean
arterial pressure.
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In conclusion, we demonstrate a clear link between systemic
inflammation initiated by physiologically relevant intermittent
hypoxia and impaired respiratory motor plasticity. Even one
night (8 h) of intermittent hypoxia abolishes pLTF by inducing
cervical spinal inflammation. We demonstrate the role of IH-1
induced inflammation and refine our understanding by demon-
strating that spinal inflammation is key, and that p38 MAPK is a
likely key molecule linking that inflammation with pLTF.

It is essential to understand the impact of inflammation on the
neural control of breathing, including respiratory plasticity. In
clinical conditions associated with systemic inflammation, in-
flammation may undermine respiratory plasticity, potentially ex-
plaining at least some differences in carotid body and ventilatory
LTF reported in humans following CIH or with OSA (Mateika
and Narwani, 2009). Although it is unclear whether plasticity
stabilizes or destabilizes breathing, understanding links between
inflammation and respiratory plasticity is necessary to determine
functional outcomes and appropriate treatments. Understanding
and targeting relevant proinflammatory molecules may lead to
new therapeutic interventions that restore plasticity in breathing
and nonrespiratory motor functions in devastating disorders that
compromise ventilatory capacity.
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