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Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities
that quantify both structure and function. These measurements may yield valuable insights into the neural
patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric
Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the
understanding of childhood brain development as seen through the lens of multiple modality neuroimaging
and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI
to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by
Arterial Spin Labeling (ASL), in 120 children 7–18 years of age. We describe the PTBP and show, as a
demonstration of validity, that global summary measurements capture the trajectories that demarcate
critical turning points in brain maturation. This novel resource will allow a more detailed understanding of
the network-level, structural and functional landmarks that are obtained during normal adolescent brain
development.
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Measurement Type(s) nuclear magnetic resonance assay
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Background & Summary
Neuroimaging has the potential to identify changes in the pediatric brain that may precede the
development of neuropsychiatric disorders later in life1 and to quantify otherwise subjective symptoms
such as pain2. Considerable effort has been devoted to building developmental brain templates across
age3–7 in order to understand the dynamic processes associated with adolescence. However, relatively few
datasets include consistent and cutting-edge structural and functional imaging modalities that are readily
available and present few barriers to analysis.

Two major neurodevelopmental trends have been revealed by pediatric structural brain imaging.
These include a continuous increase in the volume of white matter with age that has been attributed to
myelination and improved connectivity between brain regions8 as well as an inverted U-shaped function
for age-related variations in grey matter (GM), potentially the result of the ‘pruning’ of excitatory
synaptic connections9 or intracortical myelination10. Giedd et al.9 reported prepubertal increase followed
by postpubertal loss in GM volume in the frontal and parietal lobes, a general trend supported by
subsequent studies11,12. Diffusion tensor imaging (DTI) has also been used to assess white matter
integrity in the pediatric population13,14. Beyond normative data sets, brain morphometry analyses have
also been successfully applied for probing neuroanatomical aberrations in various neurodevelopmental
and neurogenetic disorders1,15,16.

Structural cortical and white matter trajectories provide only part of the picture in terms of
neurodevelopmental processes that are important from childhood through adolescence. The function and
metabolism of the pediatric brain has been relatively less explored than structural anatomy. To date, only
a handful of nuclear medicine studies17–20 reported longitudinal developmental changes in cerebral blood
flow (CBF). Current findings suggest a peak around 5–8 years followed by tapering to adult levels
throughout adolescence. These patterns are, to a degree, consistent with structural MRI findings13,21,22.
However, little research has been done to quantify the spatial and temporal relationships between
function and structure as the brain develops.

The unique cross-sectional and longitudinal components of the Pediatric Template of Brain Perfusion
(PTBP) will allow researchers to explore the relationships between brain structure, function and developmental
landmarks, as well as environment. Calibrating normative relationships between structural and functional
maturation is key to future work that may use neuroimaging to test for imminent psychiatric disorders or as
an efficacy metric for emerging behavioral or pharmaceutical intervention strategies23,24. The PTBP is the first
multi-modality functional/anatomical MRI template of the developing brain from prepubescence to
adolescence based on longitudinal and cross-sectional data. The functional component of the template is based
on quantitative cerebral blood flow (CBF) measurements using arterial spin labeling (ASL) perfusion magnetic
resonance imaging (MRI)25 as well as blood oxygen level dependent (BOLD) neuroimaging data26. The
structural component of the template includes both high-resolution T1-weighted neuroimaging, ideal for
quantifying cortical structure27, as well as diffusion tensor imaging (DTI) for white matter quantification. DTI
has been proposed as a valuable image-based biomarker in pediatric populations that may be used to stage
tract myelination28. This confluence of modalities enables us to interpret neural development with respect to
the cortical and white matter architecture that supports function and emergent cognition.

The host of imaging measurements provided by the PTBP is complemented by both socioeconomic
and neuropsychological metrics. The novel PTBP dataset is publicly available and is accompanied by
open-source processing tools29 that enable the measurements reported in this work to be reproduced by
other scientists. In summary, this collection of data and standardized, open processing will both serve as a
reference multiple modality dataset and shed light on the complex and multivariate process of
adolesecent brain development.

Methods
This document and all figures save Fig. 1 are generated on the fly by compiling the input file via the R and
LaTeX interpreters using the knitr package. This produces the output pdf along with all statistical figures
and quantitative demographic summaries.

Cohort selection
The sample was recruited between January 2010 and February 2014. Overall cohort selection sought to
match the demographic distribution of children ages of 7 to 18 years in the United States, based on US
Census data, in terms of race, ethnicity, gender and family income. Data were collected at a single site, the
Ahmanson-Lovelace Brain Mapping Center at UCLA, by the Laboratory of Functional MRI Technology
(LOFT). Typically healthy developing children between 7 and 18 years of age were enrolled in this study.
Exclusion criteria were designed to screen out children: (1) with previously diagnosed medical conditions
(including developmental, neurological, psychiatric, and learning disorders); (2) who met criteria for a
learning/psychiatric disorder or neurological condition not previously diagnosed; (3) who had been exposed
to environmental conditions known, or likely, to impact normal development; (4) who cannot undergo an
MRI scan; and 5) with limited English proficiency (as several tests to be administered as part of this study
were not available in languages other than English). The complete list of exclusionary criteria is below:

● Developmental & Medical Disorders: Known developmental disorder (Failure to thrive; PKU etc.).
● Hearing impairment requiring hearing aid.
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● Visual impairment (strabismus, visual handicap not correctable with regular glasses).
● Diabetes (Type I, treated with insulin).
● Systemic rheumatologic illness (for example, glomerulonephritis, endocarditis).
● Systemic malignancy requiring chemo- & CNS radiotherapy Congenital heart defect.
● Neurological Disorders, Seizure disorder.
● CNS infection (for example, meningitis).
● Brain tumor.
● History of closed head injury with loss of consciousness > 5 min.
● Muscular dystrophy or Myotonic dystrophy.
● Behavioral, Psychiatric, & Learning Disorders: Schizophrenia, Autism Spectrum Disorder, Bipolar
Disorders, Recurrent Major Depression, Attention Deficit Hyperactivity Disorder (ADHD), Conduct
Disorder, Tourette Disorder, Obsessive Complusive Disorder (OCD), Drug Dependence.

● Child Behavior Checklist (CBCL) subscale score o70.
● IQ rating o80.
● Achievement score >2 s.d. below age norms.
● Current/past language disorder (dyslexia, stuttering).
● Special education placement.
● MRI Contra-indications: Metal implants (braces, pins) or metal fragments, Pacemaker or electronic
medical implants, claustrophobia, pregnancy.

● Limited English Proficiency.

Written informed consent to participate in the study and public release of the data was obtained from
each subject and their parents according to the Institutional Review Board (IRB) of University of
California Los Angeles (UCLA) guidelines prior to IQ assessment and MR scans.

Assessment of behavior and environment
Psychometric evaluation. The Wechsler Abbreviated Scale of Intelligence (WASI)30,31 was
administered to each subject resulting in three complementary measurements of IQ: the Verbal IQ
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Figure 1. Overview of the PTBP. The multiple modality processing pipeline inputs and outputs. The

population average T1 template is shown at upper right. The AAL labels are mapped to each modality and,

along with 6-tissue segmentation, used to help compute summary measurements for all modalities and for

multivariate prediction.
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(Vocabulary, Similiarities), the Performance IQ (Matrix Reasoning, Block Design) and the Full Scale IQ.
Correlations between the full-scale IQ and verbal IQ is 0.89, between the full-scale IQ and performance
IQ is 0.86 and between the performance IQ and verbal IQ is 0.54.

Assessment of socioeconomic status and parental background. Family income was quantified
within a self-reported range defined in USD. The distribution of basic cohort demographics is shown in
Fig. 2. Paternal and maternal educational levels were determined by years of education with, in this
cohort, a minimum of eight years with several subjects having ≥20 years of education. These were
subsequently translated into years of education for both parents, when available. Subjects also provided
self-report Ladder scores on both the community and SES scales. The community scale identifies subject's
perceived social standing within their local community. The Ladder-SES identifies subject's perceived
wealth relative to society as a whole. Both sub-scales are in the range of 1 to 6 where values correspond to
rungs on the ladder.

Image acquisition methods
All MRI data were acquired on a Siemens 3 T TIM Trio scanner using the product 12 channel head coil.

T1-weighted acquisition. Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE)
images were acquired using a 3D inversion recovery sequence with TR/TE/TI= 2,170/4.33/1,100 ms. The
resolution is 1 × 1 × 1 mm3 with a matrix size of 256 × 256 × 192. The flip angle= 7° and total scan time
was 8:08 min.

Cerebral blood flow. Pseudo continuous arterial spin labeled (pCASL) images were acquired using
gradient-echo echo-planar imaging (EPI) with TR/TE= 4,000/12 ms. The resolution is 3.125 × 3.125 × 6
mm (5mm with 1 mm gap) over a 64 × 64 × 24 matrix. 40 label/control pairs were acquired. Generalized
autocalibrating partially parallel acquisition (GRAPPA) was used with an acceleration factor of 2.
Labeling duration was 1.5 s and the post-labeling delay was 1.2 s. Total imaging time was 5:30 min.
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Figure 2. Overview of the PTBP demographics. The age distribution (12.4 +/− 3.12 years) for male (n= 59)

and female (n= 61) subjects in the cohort is shown at top left. The histogram of paternal education (16 +/−

3.22 years) is at top right. The histogram of family income, in USD, across the full cohort is a bottom left. At

bottom right is the histogram of full-scale IQ, grouped by gender, as measured by WASI (109 +/− 14.6).

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150003 | DOI: 10.1038/sdata.2015.3 4



Diffusion tensor acquisition. Diffusion weighted images were acquired with single-shot multi-slice
using spin-echo EPI with TR/TE= 9,500/87 ms. A single b= 0 volume was acquired along diffusion
weighted images for 30 directions with b-value= 1,000. The resolution is 2 × 2 × 2 mm with a matrix size
of 128 × 128 × 75 voxels. The flip angle= 90°.

BOLD acquisition. Blood oxygen level-dependent (BOLD) images were acquired in the resting state
using 2D EPI with TR/TE= 2,000/27 ms. The resolution is 4 × 4 × 4 mm over a 64 × 64 × 25 matrix and up
to 244 time points were acquired. The flip angle= 80°. Subjects were required to relax quietly while
looking at a fixation point.

Image processing methods
We employ Advanced Normalization Tools with R (ANTsR) http://stnava.github.io/ANTsR/ in order to
check, organize and assemble a multiple modality database file that summarizes the range of
measurements available in the PTBP. All scripts and source code are available in ANTsR and its
dependencies.

ANTsR (answer) is an open-science analysis framework that seeks to enable predictive biomedical
studies that integrate imaging modalities with other data. ANTsR resolves statistical needs with R, the
statistical computing language, while using an ANTs core for image registration, segmentation and
template construction32–36. This framework is uniquely general purpose in that it makes no assumptions
about image content or organ systems to which it is applied and is appropriate for N-dimensional data
(2-D, 3-D, 4-D). As evidence of this generality, ANTsR tools won two independent registration
competitions, one in brain MRI37 and one in lung CT38. Furthermore, ANTsR is instrumental to one of
the leading joint label fusion (multi-atlas segmentation) methods currently available for automated
anatomical labeling39 and recently won open competitions in segmentation/prediction, BRATS 2013 at
MICCAI 2013 (ref. 40) and the SATA challenges at MICCAI 2012 and MICCAI 2013, the latter of which
employed several modalities across species and organ systems. At the same time, the framework is
customizable such that it may be used to solve specific analysis problems by incorporating prior
knowledge. We describe, below, how we employ ANTsR to: (1) provide a multi-channel population
template representative of the modalities available in PTBP; (2) check data quality and validity of
processing decisions in each modality; (3) compute summary measurements that enable biostatisticians
and other researchers easy access to PTBP data with no burden of large-scale image processing. In the
following section, we will report key summary measures that serve to support validity of both acquisition
and post-processing. All software used to achieve these results is publicly available with significant efforts
made to document both high-level use cases and individual tools. Releasing both data and post-
processing streams, together, constitutes an open-science approach increasingly recognized as critical to
the advancement of science41–43.

Multiple modality population template. Normalizing images to a standard coordinate system
reduces intersubject variability in population studies, allows coordinates to be compared across studies
and allows one to employ prior-based segmentation/labeling techniques. The latter are important for
tissue segmentation, brain extraction, cortical parcellation and functional or structural connectivity
studies. Various approaches exist for determining the normalized space such as the selection of a pre-
existing template based on a single subject, for example, the Talairach atlas44, or a publicly available
averaged group of subjects, for example, the MNI45 or ICBM46 templates. We employ the symmetric
groupwise normalization method (SyGN) of ref. 47 which explicitly models the geometric component of
the normalized space during optimization to produce brain images that represent the population under
study in terms of both the shape of anatomy and the appearance of anatomy. Coupling the intrinsic
symmetry of SyN pairwise registration33 and SyGN's optimized shape-based averaging of the template
appearance leads to a powerful framework for population-specific imaging studies across modality and
species47–51. We achieve this generality of application by storing population-specific prior information
within the template space to aid with brain extraction or other quantification steps.

Traditionally, this approach was used for single modalities but, more recently, is extended for multiple
modalities via cohort-specific templates that capture the average shape and appearance of T1, DTI and
functional images, as in refs 25, 32, 49, 52. Some of these templates have been released for public use29

and include population averages with variation across both age and modality. While these resources are
of value, we follow the philosophy of building a population-specific template for the PTBP and its
modalities such that we take advantage of the latest image registration methodology.

Our template building procedure first constructs an average T1 brain image from the full population
(n= 119). We then extract the template brain based on multi-template labeling39,53, currently the state-
of-the-art for automated labeling. Using a similar procedure, we generate probabilistic tissue/structure
priors for each of the 6 tissues of interest: cortex, deep gray matter, cerebrospinal fluid, white matter and
the cerebellum. A summary of the template building procedure is available, with two example datasets, at
https://github.com/ntustison/TemplateBuildingExample (this is a pedagogical usage example, not an
archived dataset or published software). The same methods constructed the templates available at ref. 29
which we used as a starting point for PTBP custom tissue prior generation. Once the average image and
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priors are completed (file PTBP.zip), one may transfer all of the data by a small deformation registration
into the standard MNI space54 (file PTBP_MNI.zip).

Template-based processing of individual subject T1 images. An overview of the ANTs-based
structural pipeline is available in ref. 29. Given a finalized T1 template, we are able to segment and
process the individual T1 data. We subsequently process individual modalities including DTI, ASL and
BOLD. Finally, we generate the geometric transformations from the companion modalities to the core T1
anatomical image as well as the template space. We achieve this after the full multiple modality dataset is
processed, as described below. In total, the steps involved for processing an individual multiple modality
dataset are detailed here http://jeffduda.github.io/NeuroBattery/, along with an example dataset and
template that may be used to verify reproducibility of the procedure. This is repeated for each individual
in a population. We now provide an overview of the processing steps for T1 and then for each modality.
Figure 1 summarizes the full pipeline.

T1 brain extraction. Brain extraction using ANTs combines template priors, high-performance brain
image registration33, and Atropos32 with topological refinements based on mathematical morphology, as
described in ref. 29 and implemented in antsBrainExtraction.sh. An example use case is here https://
github.com/ntustison/antsBrainExtractionExample (this is a pedagogical usage example, not an archived
dataset or published software). Briefly, In this stage, we use a coarse and relatively fast registration to
calculate a warp between the template whole-head image and the subject of interest. This enables us to
warp a probabilistic brain extraction from the template into the subject space. The warped template
probability map is thresholded at 0.5 and the resulting mask is dilated with a radius of 2. Atropos is then
used to generate an initial 3-tissue segmentation estimate within the mask region. Each of the three tissue
masks undergo specific morphological operations which are then combined to create a brain extraction
mask for use in the rest of the cortical thickness workflow. A comparison using open access brain data
with publicly available brain extraction algorithms including AFNI's 3dIntracranial55, FSL's BET2 (ref.
56), Freesurfer's mri_watershed57, and BrainSuite58 demonstrated that our combined registration/
segmentation approach47 performs at the top level alongside BrainSuite (tuned) and FreeSurfer.

Six tissue segmentation. Our segmentation procedure leverages two methods that are guided by
anatomical priors and that work in concert to parcellate the brain into six anatomical/tissue classes:
cerebrospinal fluid, cortical gray matter, deep gray matter, white matter, brain stem and cerebellum.
These tissue priors are first mapped into the subject space by performing a large deformation SyN
registration between the template cerebrum and the individual subject cerebrum, as in refs 37, 42, 59. The
deformed template priors are then used to guide expectation-maximization (EM) segmentation (Atropos
prior-based segmentation32) alternated with inhomogeneity correction via the N4 bias field correction
algorithm34. The name N4 derives from the fact that it is an improvement on the classic N3 algorithm60.
Atropos refers to a figure in greek mythology who wielded ‘shears of fate’; in the case of segmentation, the
shears refer to dividing the image into parts. Due to the important interplay between segmentation and
bias correction, we perform multiple N4 ⇔ Atropos iterations. In order to better integrate Atropos and
N4, we use a pure tissue probability weight mask generated from the posterior probabilities generated
from the segmentation process. This procedure is described in more detail in refs 29 and 32. A
reproducible example segmentation dataset and command line for the ANTs method antsAtroposN4.sh
is here https://github.com/ntustison/antsAtroposN4Example (this is a pedagogical usage example, not an
archived dataset or published software).

DiReCT (aka KellySlater/KellyKapowski) cortical thickness estimation. Brain segmentation enables
us to compute cortical thickness via the Diffeomorphic Registration-based Cortical Thickness (DiReCT)
algorithm. DiReCT was introduced in ref. 61 and made available in ANTs with the program KellySlater.
Since then several improvements have been made and incorporated into the program KellyKapowski, in
particular determining an automated parameter set based on extensive experimentation and comparison
with reference cortical thickness values available in the literature. Importantly, we recently showed that
these methods outperform the FreeSurfer package62 in terms of extracting information from cortical
thickness that is predictive of gender and age in a large collection of neuroimages across the lifespan29.
Among the most significant advancements is that the more recent implementation is multi-threaded,
written in rigorous ITK coding style, and has been made publicly available through ANTs complete with
a unique user interface design developed specifically for ANTs tools. An example use case with reference
two-dimensional data is in https://github.com/ntustison/antsCorticalThicknessExample (this is a
pedagogical usage example, not an archived dataset or published software). Ultimately, the DiReCT
algorithm produces an image, in subject T1 space, that contains voxel-wise measurements of cortical
thickness that are appropriate for use in voxel-based or region-based statistical studies as in refs 50, 63–65.

Regional brain labeling with AAL labels. The final step in our T1 pipeline involves producing
summary measurements for overall brain volume, the six tissue segmentation and for regional and lobar
cortical thickness. We employ the widely used AAL labelset for this purpose66. These labels are
transformed from our high-resolution group template space into the individual subject space by following
the inverse of the template diffeomorphic mapping. AAL contains standard regional parcellations of the
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cortex, cerebellum and deep gray matter structures including the putamen, thalamus, hippocampi and
caudate. For each subject that we process, we measure these volumes and regional average thickness
producing a single row of information which is ultimately entered into a summary demographics file.
This is used not only for performing studies of cohort variables but also for initial data checking that is,
identifying subjects with global or regional outlier values with respect to known reference values.

DTI processing. Our procedure for analyzing DTI with ANTs was validated in ref. 67. In brief, we have
developed an automated processing pipeline for diffusion imaging using the open source tools Camino68

and ANTs, which provides pre-processing, brain extraction, diffusion tensor computation, and
normalization to template space, as well as diagnostic images in the subject space to aid quality control,
including fractional anisotropy, average corrected DWI, and noise variance. The core of the method is to,
first, process data in DWI space and, subsequently, transform the data into individual T1 or group
template space.

The first step in DTI processing is to perform motion and distortion correction of the diffusion
weighted images. The first unweighted image in the diffusion sequence is used as the reference image for
motion and distortion correction. The remaining unweighted images are rigidly aligned to the reference
image and averaged; this average image is used as the reference image for affine correction of the
diffusion-weighted images (DWI) for motion and distortion caused by the diffusion weighting gradients.
A brain mask is computed by aligning the average DWI to a template, and warping the template brain
mask into the subject space. Processing then continues on the brain-extracted image. Diffusion tensors
are calculated using an iterative weighted linear least squares algorithm69.

The transformed DTI are warped to the template space by combining the intra-subject DWI to T1
warp with the warp previously defined to normalize the subject's T1 image to the template space. The
correct anatomical orientation of the diffusion tensors is preserved by applying the preservation of
principal direction method70, and scalar statistics such as FA and mean diffusivity are computed from the
normalized diffusion tensors.

Estimating nuisance variables in functional images. Several steps are common to processing either
BOLD or ASL functional MRI. These include brain extraction, motion correction and nuisance variable
estimation. Over the last one to two years, we introduced methods into ANTs for estimating these
parameters from 4D time series data. Motion correction is performed by the antsMotionCorr program in
ANTs which uses a mutual information similarity metric and a nonlinear conjugate gradient optimizer to
maximize the Affine or Rigid similarity between each image in a time series and a sequence specific
reference image. These methods are based on the Insight ToolKit version 4 revision, as described in
ref. 71. The motion parameters for each time frame are written out to a CSV file such that they may be
summarized and possibly used as nuisance variables within population-level statistics72. We make
different choices of reference image for each modality. For BOLD, we choose the average image from the
full time series. For CASL and pCASL, we choose the average control labeled image. For PASL, we use the
acquired M0 image. A brain mask is computed by either a simple morphology procedure (morphological
erosion followed by largest component selection and morphological dilation) or by aligning the reference
motion correction image to a sequence-specific template and warping the template brain mask into the
subject space. For the PTBP, we used the latter approach.

The second major nuisance, beyond motion, is physiological noise73–75. While one should select
optimal nuisance parameters for each study and based on data quality, we elect to use the data-driven and
automatic CompCor approach75 which was validated in ASL and BOLD and does not rely on anatomical
segmentation. The approach performs singular value decomposition on high temporal variance voxels
and uses (typically 3 to 6) singular vectors as nuisance regressors. These regressors were shown to capture
physiological motion, scanner noise and other factors that are unrelated to cerebral blood flow or BOLD
activation. Both motion correction and CompCor estimation with ANTs are shown here https://github.
com/stnava/fMRIANTs (this is a pedagogical usage example, not an archived dataset or published
software).

Cerebral blood flow (CBF) from ASL. Parenchymal perfusion is an important physiologic parameter
in the evaluation and management of brain disorders as well as a surrogate index of neural activity76. ASL
perfusion MRI is also ideally suited for pharmaceutical trials in pediatric populations as it allows absolute
CBF quantification, is totally noninvasive and is potentially sensitive to treatment response23. In contrast,
neuroanatomically defined measurements such as cortical thickness22,77,78 and FA derive directly from a
relevant physical property of the imaged brain tissue and may fail to capture shorter term functional
effects due to intervention or training. The PTBP establishes the feasibility of ASL-MRI in an age range
during which the brain is rapidly developing and when early signs of future neuropsychiatric disorders
may emerge. This functional quantitative measure (versus the relative values provided by BOLD) has the
potential to reveal alterations in the brain due to injury79, pain80, pharmacological intervention81,82 or
that precede visible structural change and may indicate cortical reorganization83. CBF is a more
repeatable functional measurement than BOLD84,85, may be used in network analysis in lieu of or
combination with BOLD86 and provides a unique view on the brain complementary to DTI and T1.
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Each subject's M0 image, obtained as the mean of the control images, was warped to the subject's T1
image using the antsIntermodalityIntrasubject.sh script. These transforms were concatenated with the
subject-to-template transforms to warp the template labels to the subject native ASL space. The M0 image
served as a reference for motion-correction of all time-point volumes. In addition to the motion and
nuisance regressors described above, we included either the tag or control label of the image as a
regressor, with the coefficient of that regressor corresponding to the average difference between tag and
control. All regressors were included in a robust regression scheme for CBF calculation87. The equation
for CBF calculation can be found in ref. 88 with an assumed labeling efficiency of 0.85. Full details are
available in the open-source script at https://raw.github.com/stnava/ANTs/master/Scripts/antsASLPro-
cessing.sh (this is available as part of the Figshare repository, Data Citation 1). The blood T1 value was
adjusted for age and gender as T1= (2115.6–21.5*age-73.3*sex) ms, where female sex was set to 0 and
male was set to 1, as suggested in ref. 88.

Network analysis with resting BOLD fMRI. Network analysis may be performed with any of
three types of input time series data: standard BOLD, ASL-BOLD or ASL-CBF. The ASL-CBF signal
may have advantages over BOLD particularly in the orbitofronal and anterior temporal regions
where standard BOLD signal dropout occurs89,90. However, as ASL-CBF network analysis is relatively
new and we have other methods of validating ASL-CBF, we focus on network analysis using the
resting BOLD modality from the PTBP. The goal is to extract standard network measurements that
may be assessed for comparison with demographics to help establish validity of the acquisition and
processing.

We base our graph/network construction on the standard AAL cortical labels which we transform
from the T1 subject space to the BOLD space. We prefer to perform analysis in the BOLD space to
minimize the confounds associated with interpolation and resampling of low resolution imagery as these
may bias the results in a subject-dependent manner. Each BOLD image is first residualized with respect to
the baseline nuisance parameters described above, that is, motion parameters and CompCor singular
vectors. For each AAL label of interest (here only the cortex, labels 1–90), a region-averaged time-signal is
calculated. Each time-series is then bandpass filtered using the Christiano-Fitzgerald filtering91, as
implemented by the R function cffilter in package mFilter, to examine a range of frequencies appropriate
for the specific data type. For band-pass filtering, we select the frequency range 0.01–0.1 Hz based on
prior work92 and on preliminary analyses, in a few subjects, of network reproducibility. The network
component of the processing pipeline is available in the ANTs/ANTsR script antsBOLDNetworkAnalysis.
R which assumes that brain labels and motion parameters are available. The primary output of this script
used in data checking, below, is the N×N Pearson correlation matrix defined by the correlation between
the filtered time-signals for each of the N labeled regions.

Data Records
Within the neuroimaging community, it is advantageous to release both reconstructed volumetric or
spatiotemporal images in a commonly used processing format (often the NIFTI format) along with some
post-processing and summary measurement data to help serve different reuse cases and communities that
do not have the ability to process images at a large scale. We therefore present PTBP data as both easy to
analyze summary measurements and raw NIFTI images at figshare (Data Citation 1). An overview file
summarizing subjects and modalities is in ‘ptbp_data_index.csv’. The raw imaging data is organized by
subject identifier (for example, PEDSXYZ) where PEDS is constant and X, Y and Z are each numerals in
0–9. Within each subject folder is multiple modality imaging data organized by date of acquisition and, at
the last level, by imaging modality. Each medical image is shared within the NIFTI data format, a
common anonymized data format ready for image processing. All released data is in raw nifti form. An
example subject folder is:

ls PEDS012/*/*
PEDS012/20121031/Anatomy:
PEDS012_20121031_mprage_t1.nii.gz

PEDS012/20121031/BOLD:
PEDS012_20121031_bold_fc_1.nii.gz

PEDS012/20121031/CBF:
PEDS012_20121031_meanbold.nii.gz
PEDS012_20121031_meancbf.nii.gz

PEDS012/20121031/DWI:
PEDS012_20121031_0013_DTI_1_1x0_30x1000.bval
PEDS012_20121031_0013_DTI_1_1x0_30x1000.bvec
PEDS012_20121031_0013_DTI_1_1x0_30x1000.nii.gz
PEDS012_20121031_0019_DTI_1_1x0_30x1000.bval
PEDS012_20121031_0019_DTI_1_1x0_30x1000.bvec
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PEDS012_20121031_0019_DTI_1_1x0_30x1000.nii.gz
PEDS012/20121031/PCASL:
PEDS012_20121031_pcasl_1.nii.gz

These modalities include the T1-weighted MRI mprage_t1, the PCASL time series image pcasl, its
derived CBF image meancbf and the BOLD time series image bold_fc. The DTI dt is accompanied by
derived images including the RBG showing principal direction rgb, the fractional anisotropy fa, the mean
diffusion md, the average diffusion weighted image (DWI) dwi and the estimated (approximate) DTI-
space brain mask brainmask.

These data are quantified within a demographics file named ptbp_summary_demographics.csv that is
indexed by the same subject identifiers. This primary data includes cortical thickness based on T1
segmentation, BOLD connectivity, fractional anisotropy DTI measurements and cerebral blood flow. A
population summary is in Fig. 2. We also summarize the raw neuroimaging data values across all subjects
for structural modalities in Supplementary Figs 1 and 2 and functional modalities in Supplementary Figs
3 and 4. We quantify the T1-weighted imaging using regional cortical thickness values derived from AAL.
The column names of this label set are of the form ThickMeanAALLabelName. The range of thickness
values is largely within the expected range that is, between 1 and 5mm93 when using 1 mm3

neuroimaging. In similar manner, we quantify the DTI using fractional anisotropy within the six tissues
of our brain segmentation. The column names of this label set are FAMeanTissueLabelName and show
age-related increase, as expected94. We quantify the ASL-derived cerebral blood flow measures using
regional AAL labels. The column names of this label set are CBFMeanAALLabelName. The range of CBF
values is largely within the expected range that is, between 50 and 120 ml per 100 grams per minute
similar to values reported previously in ref. 25. Reduction in CBF occurs both globally with age and
specifically in the inferior temporal cortex, precuneus, middle frontal gyrus and insula. We also quantify
the BOLD connectivity by the mean correlation of each AAL node with all other nodes described in the
methods section. The column names of these mean BOLD correlation levels are BOLDAALLabelName.

Imaging data collection summary
We made every effort to collect data that is complete in terms of both demographic measurements and
imaging measurements for all n= 120 subjects. However, some subject data could not be obtained or did
not reach adequate quality. One subject is missing 8 timepoints of T1 data; There are 25 missing DTI
datasets, 30 missing CBF datasets and 43 missing BOLD datasets. Of n= 183 total datasets acquired,
n= 118 had complete datasets which is defined as having T1, DTI, CBF and BOLD data at baseline. 6, 13,
9 and 37 subjects had T1 data with 4, 3, 2 and one image collected, respectively. Note that to facilitate
analysis of the largest possible dataset, one may employ the ANTsR function antsrimpute in order to
impute missing data. However, our analyses below do not use imputed imaging data. Furthermore, note
that our released summary demographics file details, for each subject and time point, which modalities
are present or absent.

Technical Validation
We check for expected statistical outcomes to establish the biological plausibility of PTBP behavioral and
neuroimaging measurements. These analyses focus on global metrics of validity and reveal cross-sectional
trends that are largely extant in the literature. To achieve this, we employ R, a popular programming/
scripting language that is designed to make advanced statistical analysis accessible and support free and
reproducible statistical studies. When combined with the image processing utilities available in ANTs, R
provides a convenient and powerful interface for performing common statistical analyses of imaging data.
In addition, R's standardized syntax minimizes the learning curve for performing a wide variety of
different analyses. The basic form of a statistical model in R is

Outcome� Predictor 1þ Predictor 2þ Predictor 3þ ¼ ð1Þ
Factor and continuous variable predictors can be combined seamlessly, and a wide variety of model types,
including linear models with Gaussian noise, logistic, and Poisson models are available. We use such
models with R's lm function to assess both imaging and demographic models. When performing region-
of-interest (ROI)-based analysis of the relationship between imaging data and cognition, one typically
averages the voxel values within a given ROI and then tests the averaged values against a predictor. In R
syntax, this is written as

ROI value� cognitionþ nuisance demographic variables: ð2Þ
We follow a similar strategy to technical validation of our baseline demographic measurements and
testing for known relationships between ROI values derived from neuroimaging, age and gender.

Basic demographic relationships
The PTBP demographics include age, gender and handedness. The PTBP also includes self-reported
measures relating to environmental experience such as family income, Ladder SES scores, WASI IQ
scores and parental educational level. Here, we detail basic relationships between these variables as
evidence of appropriate data curation.
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The relationship between parental education and IQ metrics during adolescence is well-established95.
The PTBP recapitulates this relationship, as expected, when using a model of the form IQ ≈ age+gender
+LadderSES+P.Edu+rank(Income), where ‘rank’ indicates a rank transform. The P-value for the
relationship between paternal education and performance IQ is 0.0012426. The P-value for the
relationship between paternal education and verbal IQ is 0.001403. Furthermore, the Ladder SES
score relates to family income, as expected, with P-value 0.0254036. The regression equation for the
LadderSES and income relationship is (using R syntax) LadderSES ≈ age+gender+FIQ+P.Edu+rank
(Income).

Multiple modality neuroimaging quality assurance
We employ procedures described in ANTs documentation https://github.com/stnava/ANTsDoc for rapid
visual inspection of image registration and segmentation results.

Multiple modality repeatability
We previously verified the repeatability of our structural measurements in ref. 29, the specificity and
sensitivity of our DTI analysis protocol in ref. 67, reliability of BOLD network measurements in ref. 92
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and ASL-CBF in ref. 25. In the latter work, we verified that CBF repeatability achieved intraclass
correlation (ICC) of 0.65. ICC of cortical thickness based on structural segmentations is 0.98 (ref. 29).

Multiple modality neuroimaging predictors of age
The insights gained from multiple modality MRI inform our understanding of brain network elaboration
during childhood and adolescence. Observed neuroanatomical changes in the brain during maturation
may be attributed to many different mechanisms96,97, such as: increasing myelination, neuron
production, decreasing cortical thickness due to pruning of neural cell bodies, changes in axonal caliber,
pruning of fiber tracts and axonal branching. Developmental trajectories of these processes are likely
influenced by both endogenous and exogenous variables. Here, we establish that global summaries of
each PTBP imaging modality relate to basic descriptors of the cohort. Figures 3 and 4 summarize
relationships between global structural and functional imaging metrics, age and gender. Table 1 and Fig. 5
show how these global summary imaging variables, acting within the same model, predict age in a
training-testing paradigm. This latter analysis is similar to ref. 98 which assesses age relationships across
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several modalities in a large multiple modality study and results in similar accuracy to that reported here.
In the studies below, we use n= 91 of n= 120 subjects that have complete, reasonable quality multiple
modality datasets: T1, DTI, BOLD and ASL-based CBF.

Multiple modality neuroimaging predictors of IQ and Ladder-SES
Following on the model built, above, for age, we report that regression results of the form Full-scale IQ ≈
BrainStem+Thickness+FA+DGM+CBF reveal that cortical thickness is a significant predictor of FIQ
(Po0.004). Similarly, we report that regression results of the form Ladder-SES ≈ BrainStem+Thickness
+FA+DGM+CBF reveal that deep gray matter is a significant predictor (Po0.0007). These results
suggest the validity of PTBP data collection strategies.

Cortical thickness, age and gender
In recent years, a number of groupwise structural morphometry studies have used cortical thickness to
study neurodevelopment and other causes of cortical plasticity5,9,11,99,100. Cortical thickness quantifies the
width of the cortical sheet from its boundary with the white matter to its nearest boundary with the
cerebrospinal fluid. Image-based thickness, typically reported in millimeters, links directly to findings in
histology and post-mortem data, as well as existing normative values available in the literature9,11,12,22.
We analyzed the global mean cortical thickness with respect to age and gender. The PTBP data confirms
age effects in cortical thickness, though does not suggest an interaction. Overall, the rate of global cortical
thinning across genders is similar. Similar effects have been found with more localized analysis11,12,101,102.
Note, however, our data validation model explicitly controls for brain volume within the regression.

Deep gray matter volume, age and gender
We define deep gray matter as in ref. 29 where it includes caudate, putamen and the thalamus. The deep
gray matter relationship with age is significantly different between males and females. Males show an
inverted U curve with age that peaks near age 11 whereas females exhibit a U-shaped curve with a
minimum near age 14. There is little background research on this topic and we note, simply, that it

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.3390 4.6227 2.67 0.0091

BStem 0.0002 0.0001 3.01 0.0034

CBF − 0.0319 0.0118 − 2.71 0.0081

FA 74.6610 10.9782 6.80 0.0000

Thickness − 6.0487 1.0827 − 5.59 0.0000

DGM − 0.0001 0.0000 − 3.62 0.0005

Table 1. Age modeling from structural imaging variables. Cross-validation shows that this simple general
linear model can predict age with accuracy of 1.61+/− 0.15 years when training on half of the data and testing
on the other half, as assessed by 100 data resamplings. Using multiple modalities to predict age shows that each
modality contributes useful information even in the presence of other imaging measurements.
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perhaps deserves additional investigation in future work. As cross validation, we tested the same model in
a separate dataset provided by the Nathan Kline Institute and found a similar trend.

White matter integrity, age and gender
Eluvathingal used the FA to investigate sex differences in white matter development and found no
significant differences between males and females in the age range of 6–17 (ref. 103). The PTBP suggests
that FA increases rapidly with age in both genders and is slightly higher in females. Furthermore,
as seen in Table 1, FA contributes different information to age prediction than cortical thickness,
as suggested in ref. 102.

Cerebral blood flow, age and gender
The mean PTBP CBF in cortex is 96.5, in white matter is 32.7 and in deep gray matter is 86.1. Normative
perfusion data in both control and pathological states has been sparse in the pediatric population, in part
because traditional perfusion measurement has relied on radioisotopes and contrast agents. Primarily,
raw cerebral blood flow relates strongly to age with inflection points that appear to be coupled closely
with puberty104,105. In the PTBP, the inflection points for cerebral blood flow appear to occur before age
8. Even in the presence of several other modalities, cerebral blood flow is strongly predictive of age.
Gender effects do not appear to be significant in raw CBF though do emerge when dividing the global
CBF by brain volume. However, further elaboration of these measurements might be gained by the use of
partial volume correction or voxel-wise or regional measurements. There is little impact of the brain
volume nuisance variable on the relationship of CBF with age.

BOLD connectivity, age and gender
BOLD-based network connectivity analysis is a recent development106 and remains controversial107 due
to the many confounds in the acquisition and subsequent analysis75, in particular motion72. However,
several groups successfully use BOLD to establish the consistent presence of the default mode108 and
salience networks109 and to quantify relative levels of connectivity across brain regions110. We investigate
global levels of BOLD correlation with the PTBP and find evidence that is consistent with the limited
extant analyses of adolescent network development111 that is, age-related connectivity changes, gender
differences between males and females in connectivity levels and, finally, greater connectivity in default
mode regions. However, the global Pearson correlations used here have limited interpretability and may
be confounded with motion or other variables despite our efforts to control for these effects via standard
volume censoring72,112.

Usage Notes
We recommend data processing with Advanced Normalization Tools and R (ANTs http://stnava.github.
io/ANTs/ and ANTsR http://stnava.github.io/ANTsR/). We recommend these tools because of their
relatively deep validation based on the software engineering cores of the Insight Toolkit (ITK) http://
www.itk.org/ and R http://cran.us.r-project.org/. Both of these resources, in which ANTs and ANTsR
cores exist, are tested nightly on multiple platforms that involve both unit tests and tests for memory
leaks using valgrind or related tools. Scientific software requires continual testing and maintenance to
ensure the validity of scientific results that depend on correctness; regression testing is also crucial for
maintaining reproducibility41.

An additional reason that we recommend dependence on scientific software with continual testing and
a consistent implementation and definition of physical space is to enable data/modality fusion. As noted
by Chris Gorgolewski in personal communication, ‘What is LPS in ITK world is RAI in NIPY or
FreeSurfer world.’ These inconsistencies can lead to artificial findings when trying to combine processing
methods across different analysis systems. Thus, we have sought to build a complete analysis pipeline that
accommodates the PTBP modalities in an integrated manner.

This document is compilable markup that, when combined with the demographics files, produces this
pdf via knitr http://yihui.name/knitr/. The source file for this document is stored within the Figshare
repository for this article (Data Citation 1). Dependencies for both data acquisition and analyses are listed
here. Software which we have permission to redistribute is within the Figshare site.

● http://cran.us.r-project.org/-statistics.
● http://stnava.github.io/ANTsR/-imaging specific I/O, statistical models and data curation with R.
● http://stnava.github.io/ANTs/-template building, image registration and segmentation tools wrapped

by ANTsR for R.
● http://www.itk.org/-image processing library.
● http://www.itksnap.org/-for visualization and semi-automated segmentation113.
● All analyses were performed on OSX or Linux operating systems.
● The associated code files are provided under the CC BY licence.

While we make every effort to achieve a reproducible analysis across all platforms, some operating
systems are less amenable to this goal. Unix-alikes are most reliable for the software referenced here.
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