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Diabetes is a disease involving metabolic derangements in multiple organs. While the spectrum of diabetic complications has been
known for years, recent evidence suggests that diabetes could also contribute to the initiation and propagation of certain cancers. The
mechanism(s) underlying this relationship are not completely resolved but likely involve changes in hormone and nutrient levels,
as well as activation of inflammatory and stress-related pathways. Interestingly, some of the drugs used clinically to treat diabetes
also appear to have antitumour effects, further highlighting the interaction between these two conditions. In this contribution we
review recent literature on this emerging relationship and explore the potential mechanisms that may promote cancer in diabetic

patients.

1. Introduction

Type 2 diabetes (T2D) and cancer are two of the most
prevalent diseases facing modern society. Recent estimates
suggest that close to 400 million people worldwide have
T2D [1], while 12.7 million cancer cases and 7.6 million
cancer deaths are reported each year [2]. Both diseases are
multifactorial in origin and cancer is recognized as being a
particularly heterogeneous disease.

Both T2D and cancer are characterized by marked
alterations in metabolic profile and recent epidemiological
evidence suggests a close link between diabetes and some
forms of cancer [3]. Indeed, individuals with diabetes have
significantly higher likelihood of developing a range of dif-
ferent cancers including liver, pancreatic, colorectal, breast,
endometrial, and bladder cancers [4, 5]. The molecular basis
for this link has not been fully elucidated but likely relates to
changes in several factors, including nutrient availability and
growth factor signaling. In this review we will briefly describe
the metabolic alterations that are present in T2D and cancer
and will discuss some of the factors that may potentially link
these two diseases. We will also examine emerging evidence
around therapeutic agents that may have utility in treating
aspects of both diseases.

2. Metabolic Features of Type 2 Diabetes

In healthy individuals, the variation of plasma glucose
levels is kept minimal despite considerable fluctuations in
nutrient intake (Figure 1(a)). The maintenance of circulating
glucose levels under conditions of high nutrient availabil-
ity is mainly mediated through the actions of insulin, a
potent anabolic hormone secreted by the pancreatic f3-
cells in response to an increase in blood glucose level.
Upon binding to its receptor, insulin initiates a cascade of
downstream signaling events that influence a spectrum of
enzymatic and transcriptional activities for the maintenance
of glucose, lipid, and protein homeostasis [6]. Specifically,
insulin promotes glucose uptake in skeletal muscles and
adipose tissue by stimulating the membrane translocation of
the GLUT4 transporter and activating enzymes involved in
glycolysis [7]. In parallel, it facilitates carbohydrate disposal
via both glycolysis and the nonoxidative pathways glycogen
synthesis and de novo lipogenesis [8]. Meanwhile, insulin
suppresses the processes generating circulating nutrients
such as gluconeogenesis in the liver and lipolysis in the
adipose tissue [6, 8]. The regulation of protein metabolism
is another important aspect of insulin signaling, involv-
ing downregulation of proteolysis in skeletal muscles and
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FIGURE 1: Under normal conditions, insulin is secreted from pancreatic 3-cells in response to an increase in plasma glucose levels. It promotes
glucose uptake into skeletal muscle and adipose tissue while suppressing hepatic glucose output, resulting in maintenance of blood glucose
concentration to ~5 mM (a). In insulin resistant individuals, an increased amount of insulin is required to compensate for diminished effects
on insulin-target organs, giving rise to hyperinsulinaemia. As insulin resistance worsens, blood glucose level gradually increases despite
increased insulin secretion and a prediabetic state is established (b). In susceptible individuals, relative insulin deficiency progressively
develops due to failure of S-cells to secrete adequate levels of insulin, resulting in loss of glucose homeostasis if exogenous insulin is not

provided (c).

promotion of protein synthesis through the mTOR pathway
[9].

T2D is a pathological condition involving defects in
both insulin action and secretion. It is characterised by
elevations in postprandial and fasting blood glucose levels.
Insulin resistance (IR), which is defined as the diminished
biological effects of insulin on target tissues, is a major early
defect in the pathogenesis of T2D [10, 11]. In the state of
IR, the regulatory actions of insulin action on carbohydrate
metabolism are impaired in target tissues. Accordingly, a
state of hyperinsulinemia ensues due to the requirement of
increased amounts of insulin to suppress hepatic glucose
output from the liver and promote clearance of glucose
into peripheral tissues (Figure 1(b)) [8]. When IR becomes
more severe and glucose homeostasis cannot be maintained
despite increased insulin levels, mild hyperglycemia sets
in and a prediabetic state begins to manifest (Figure 1(b)).
In susceptible individuals, the sustained increase in insulin
secretion leads to the failure of pancreatic f-cells and the
progression to T2D and marked hyperglycemia. In T2D
patients this relative insulin deficiency necessitates insulin
from exogenous sources to maintain whole-body glucose
control (Figure 1(c)).

Obesity, especially the visceral form where mesenteric,
epididymal, perirenal fat depots surround internal organs, is
a well-recognised predisposing factor for developing T2D [12,
13]. Research in the last two decades has clearly demonstrated
that, in the obese state, deposition of lipid in insulin-sensitive
tissues such as muscle and liver is a key driver of IR [8]. In
particular, bioactive lipid metabolites such as diacylglycerol
and ceramide are thought to be the key culprits antagonising
insulin action [8]. The ectopic accumulation of lipid metabo-
lites is primarily due to elevated influx of fatty acids (FAs) into
nonadipose tissues, due to the high availability of circulating
FA coming from excess lipid intake and/or impaired insulin
action to suppress adipose tissue lipolysis [8]. Liver steatosis
is also secondarily enhanced by the paradoxical maintenance
of insulin-stimulated de novo lipogenesis, despite reduced
insulin sensitivity in glucose metabolism pathways [14]. In
addition to inappropriate lipid deposition, obese individuals
display chronic low-grade inflammation, especially in white
adipose tissue, as well as elevations in local and systemic
oxidative stress. Both of these factors are thought to attenuate
insulin action, in part, by activating pathways that interfere
with or oppose insulin signaling and thus they have also
been implicated in the development of obesity-induced IR
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FIGURE 2: Glycolysis and glutaminolysis are two of the most important pathways for cancer cells. Increased glucose uptake, together with
reduced glycolytic flux, accumulates glycolytic intermediates for synthesis of biomolecules such as nucleotides, amino acids, and lipids.
Similarly, glutamine uptake is also increased. Glutamine is converted to glutamate by mitochondrial glutaminase. Glutamate is then converted
to a-ketoglutarate which can be oxidised in the TCA cycle to generate ATP or reductively carboxylated to citrate. Citrate is exported to the
cytoplasm where it is converted to acetyl-Co-A or oxaloacetate, which are used for synthesis of fatty acids or amino acids, respectively.
Metabolic changes in cancer cells are driven by changes in the regulation of critical enzymes. Examples of these enzymes are shown in bold.
Regulation of metabolic pathways by oncogenes (Myc and K-Ras) and tumour suppressor genes (p53) is also shown. Glycolysis is shown in
red. Glutaminolysis is shown in orange. Biosynthetic pathways are shown in green. Other pathways are shown in grey.

[15-17]. Collectively, the coexistence of obesity and T2D
suggests that patients with these conditions have a fertile
whole-body environment saturated in growth factor signals
(insulin), an abundance of circulating nutrients (glucose,
FAs), inflammatory cytokines, and reactive oxygen species.

3. Altered Metabolism in Cancer

Cancer is a heterogenous disease, characterised by the
acquisition of successive mutations in protooncogenes and
tumour suppressor genes [18]. These mutations allow tumour
cells to sustain their growth signaling pathways, evade cell
death, and continue to proliferate in an uncontrolled manner.
Despite diversity in the precise molecular origin of different
cancers, most (but not all) tumours tend to converge on a
common metabolic phenotype, which was first described by
Otto Warburg. In his seminal work in this field, Warburg
observed that tumour cells exhibit aerobic glycolysis (i.e.,
high rates of glycolysis even in the presence of abundant
oxygen) where pyruvate is converted to lactate instead of
entering mitochondria for the TCA cycle [19, 20]. This
phenomenon, known as the Warburg effect, has been the
subject of intense research in recent years. Warburg reasoned

that defective mitochondria prevent pyruvate from entering
the TCA cycle and this underlies the enhanced rate of
conversion of glucose to lactate [19]. However, later studies
found that mitochondria in many tumour cell types are
functional [21-23] and it is now clear that the alterations in
the uptake and metabolism of different nutrients are critical
for meeting both the bioenergetics needs of tumour cells and
more importantly the increased requirement for biosynthesis
of macromolecules.

Glucose and glutamine constitute two of the most impor-
tant sources for meeting synthetic and energetic needs of
tumour cells (Figure2) [24]. The rate of glucose uptake
in tumours is profoundly increased and the glycolytic
intermediates provide building blocks for the synthesis of
nucleotides, lipids, and amino acids [25-28]. Nucleotides
are synthesised via the pentose phosphate pathway (PPP)
using the intermediates generated by glycolysis including
glucose 6-phosphate, fructose 6-phosphate, and glyceralde-
hyde 3-phosphate. The PPP also generates NADPH which
is necessary for lipid synthesis and for maintenance of cel-
lular redox potential. Lipid biogenesis also requires glycerol
phosphate which is converted from another intermediate
of glycolysis, dihydroxyacetone phosphate. Furthermore,



the end product of glycolysis, pyruvate, is the substrate for
synthesising nonessential amino acids alanine, whereas 3-
phosphoglycerate is used for synthesising serine and glycine.
The importance of aerobic glycolysis in cancer cells is high-
lighted by the fact that glucose withdrawal or inhibition
of glucose uptake by small molecule inhibitors of PI3K
signaling (discussed below) induces tumour cell death and
tumour regression [29, 30] and that inhibition of lactate
dehydrogenase (LDH) which converts pyruvate to lactate
impairs cell proliferation [22, 31].

The increases in glucose uptake and glycolytic pathway
activation are consequences of alterations in a range of
metabolic enzymes and proteins. Tumour cells exhibit a
marked increase in the expression of glucose transporters
and their presence on the cell membrane, to achieve the
required increase in glucose uptake [28, 32, 33]. This has
been exploited in the clinic for the detection of tumours by
imaging radioactive F-19-2-deoxyglucose uptake by positron
emission tomography (PET). Once inside the cell, glucose
is phosphorylated and trapped by hexokinase which is
also hyperactivated in cancers. Cancer cells predominantly
express the hexokinase II isoform [34], which is present
on the outer membrane of mitochondria where it rapidly
phosphorylates glucose. Despite the high rate of glucose
uptake and phosphorylation, the overexpression of pyruvate
kinase M2 (PKM2), which is less active than the Ml form
in converting phosphoenolpyruvate (PEP) to pyruvate and
subject to negative regulation by growth factor signaling,
causes an overall reduction in glycolytic flux reaching the
end-point pyruvate in cancer cells [26]. Overall, increased
glucose uptake and reduced glycolytic flux going to comple-
tion result in the accumulation and channeling of glycolytic
intermediates towards biosynthetic pathways.

Due to the diversion of most glucose-derived interme-
diates to biosynthesis, glutamine uptake is also increased in
tumours to replenish the depletion of TCA cycle intermedi-
ates which are normally supplied from glucose sources and
to fuel mitochondrial ATP production. Additionally, recent
work has shown that under certain conditions glutamine can
also play another important role in the growth of tumour
cells, providing acetyl-CoA for lipid synthesis through a
process known as reductive carboxylation [35-38]. Similar to
glucose, the expression of membrane glutamine transporters
(e.g., ASCT2), in particular the high affinity isoforms, is ele-
vated in cancer [39]. Furthermore glutaminase, the enzyme
responsible for the metabolism of glutamine, is markedly
increased in many cancers, consistent with an addiction of
tumours to the use of this nutrient [40].

The biosynthesis of lipids is another key aspect of the
tumour metabolic program. Cancer cells perform de novo
fatty acid synthesis extensively from glucose and glutamine-
derived precursors and NADPH to supply materials for
the production of membranes and signaling molecules, as
opposed to the majority of normal cells that rely mainly on
lipids from the environment [41]. Several proteins involved
in lipogenesis including ATP citrate lyase (ACL) [42], acetyl-
CoA carboxylase (ACC) [43], fatty acid synthase (FAS) [44],
and sterol response element binding protein (SREBP) [45]
have been shown to be intimately related to cancer cell
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growth and survival. In addition, a subset of cancers also
scavenges lipids from adipocytes [46] and the circulation
[47] by upregulating FA transporters fatty acid binding
protein 4 and CD36. Together, the coordinated upregulations
of aerobic glycolysis, glutamine uptake, and biosynthetic
processes represent a fundamental shift in cellular metabolic
landscape to support tumour growth and rapid expansion.

4. Factors Driving Metabolic
Changes in Cancer

A major factor leading to alterations in metabolic enzymes
and pathways in cancer is the presence of tumour hypoxia.
Hypoxia leads to the stabilisation of hypoxia-inducible fac-
tors 1 and 2 (HIF-1 and HIF-2) and HIF-1 is known to
upregulate 9 out of 10 enzymes of glycolysis [48, 49]. HIF-
1 also prevents entry of pyruvate into the TCA cycle, firstly
by upregulating LDH which converts pyruvate to lactate
and secondly by upregulating pyruvate dehydrogenase kinase
(PDK1) which inhibits PDH thus blocking the conversion of
pyruvate to acetyl-CoA [50, 51]. HIF-2, on the other hand,
increases Myc function (discussed below) allowing cells to
proliferate under hypoxia [52]. HIF transcription factors
themselves are under regulation of the TCA cycle enzymes
succinate dehydrogenase (SDH) and fumarate hydratase
(FH). Although mitochondria are not typically defective in
tumour cells, SDH and FH enzymes are mutated in some
types of cancers [53]. Mutations in these enzymes cause an
accumulation of fumarate and succinate, which results in the
inhibition of prolyl-hydroxylases that mediate degradation of
HIF proteins, thereby enhancing glycolysis [53].

The changes in metabolic enzymes in cancer are not
always an adaptation to hypoxia, as cancers such as leukaemia
and lung cancer have abundant oxygen supply during
tumourigenesis but still operate aerobic glycolysis [54-56].
There is increasing evidence that oncogenes and tumour
suppressor genes directly regulate metabolic pathways in
tumourigenesis. Not only do mutations in these genes repro-
gram metabolic pathways for progression of the tumours, but
also metabolic changes induced by them may be primary
events in cellular transformations [57]. Myc, an oncogene
frequently mutated in many cancers, was one of the first to
be linked to metabolism, as it directly activates expression of
LDH [31, 58]. Myc target genes include enzymes of glycolysis,
glutaminolysis, and fatty acid synthesis [39, 59, 60]. The
enhanced expressions of membrane glutamine transporters
and mitochondrial glutaminase and the consequent increase
in glutaminolysis are mediated by the Myc oncogene [39,
40]. Conversely, inhibition of mitochondrial glutaminase
by pharmacological inhibitors impairs tumour growth of
Myc-expressing B cells in xenograft models [61]. Similarly,
glutamine removal from culture media results in cell death
in Myc overexpressing cancer cells [62].

Another well characterised oncogene, Ras, can also pro-
mote changes favouring tumour growth and proliferation.
For example, oncogenic K-Ras, which is associated with over
90% of pancreatic ductal adenocarcinoma (PDAC), mediates
changes in both glucose and glutamine metabolism that are
essential for PDAC maintenance. K-Ras stimulates glycolytic
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flux and diverts glycolytic intermediates to hexosamine
biosynthesis pathway (HBP) and PPP [63]. This effect appears
to be dependent on Myc, as its knockdown significantly
downregulated the expression of metabolic genes involved
in glycolysis, HBP and PPP [63]. PDAC cells also operate a
distinct metabolic pathway for glutamine metabolism where
glutamine is metabolized through the noncanonical pathway
to produce aspartate which is subsequently transported to the
cytoplasm for the maintenance of NADPH/NADP" ratio and
cellular redox state [64]. Downregulation of enzymes in this
pathway leads to suppression of PDAC growth in vitro and in
vivo [64].

Mutation of tumour suppressor genes, such as p53, is a
critical event in many cancers, but their emerging roles in
metabolism have been elucidated only recently [65]. One
of the most discussed links between p53 and metabolism
is via TIGAR-dependent inhibition of glycolysis [25]. The
p53 target gene TIGAR lowers intracellular concentration
of fructose 2,6-bisphosphate (FBP), an allosteric activator of
phosphofructokinase, thus inhibiting glycolysis and diverting
glucose to PPP. Additionally, p53 represses transcription of
glucose transporters GLUTI and GLUT4 [66]. Apart from
suppressing glycolysis, p53 also influences mitochondrial
metabolism by increasing the transcription of synthesis
of cytochrome ¢ oxidase 2 (SCO2) which assembles into
oxidative phosphorylation complex and enhances mitochon-
drial respiration [67]. Therefore, loss of tumour suppressors
confers growth advantage to tumours from a metabolic angle,
by favouring a metabolic profile conductive to rapid cell
proliferation.

5. Metabolic Changes in Diabetes Can
Facilitate Tumourigenesis

As noted above, epidemiological evidence shows that indi-
viduals with diabetes have significantly higher likelihood of
developing multiple types of cancers [3]. Amongst these,
organs associated with energy metabolism such as liver
and pancreas have the strongest association with diabetes.
Furthermore, diabetic patients with colorectal, breast, and
endometrial cancers have significantly higher chances of
dying of cancer than normal individuals [68]. The mecha-
nisms driving cancers in diabetic patients are still not entirely
clear, but some possibilities are discussed below.

In early stages of diabetes, pancreatic fB-cells produce
excess amount of insulin, resulting in hyperinsulinemia.
While insulin-target organs are resistant to the actions of
insulin in diabetes, hyperinsulinemia may have progrowth
effects on a nascent tumour by allowing the tumour to
overcome an important early barrier in tumourigenesis, that
is, lack of growth factor signaling. There is epidemiological
data to suggest that insulin secretion rate and insulin-like
growth factor 1 (IGFI) levels influence cancer risk and/or
cancer progression [69, 70]. Insulin and IGFI stimulate the
proliferation of tumour cells in vitro [71] and promote glucose
uptake in the subset of tumours that are insulin-dependent
[72, 73]. The IGFI receptor (IGFIR) is necessary for the
transforming ability of several oncogenes, suggesting that
parallel growth factor signaling-mediated metabolic changes

are crucial for cellular transformation [74]. In line with
the above observations, reduced growth factor signaling
leads to decreased tumour growth in mouse models [69].
The above observations indicate that hyperinsulinemia or
administration of synthetic insulin in diabetes may enhance
growth factor signaling and promote glucose usage to pro-
mote tumour growth. As many tumours devise means to
evade regulations of growth factor signaling, we propose that
insulin may serve as the spark to initiate cancer development
at early stages when self-sufficiency of growth factors has not
yet been established.

Hyperglycemia, another characterising feature of dia-
betes, may also contribute to enhanced cancer risk [75]. Given
the central role that glycolysis plays in tumour development,
elevated glucose levels in the circulation are likely to provide
abundant glucose resources and a concentration gradient for
convenient usage by cancer cells. Indeed, epidemiological
evidence suggests that hyperglycemia in cancer patients
contributes to increased likelihood of tumour recurrence,
metastasis, or fatal outcome compared to patients with
hyperglycemia [75]. Additionally to the direct metabolic
role, hyperglycemia in a subset of tumour cells can lead to
increased production of ROS from mitochondrial respira-
tion, which below certain levels can lead to DNA damage
that are not severe enough to induce apoptosis [75, 76] but
may give rise to mutations in protooncogenes and tumour
suppressor genes or other changes that are beneficial for the
tumour. For example, hyperglycemia-related increased ROS
production in pancreatic cancer cell lines such as Panc-1 and
BxPC-3 increases cell motility and invasiveness, indicating
hyperglycemia may contribute to pancreatic cancer metas-
tasis [9]. Enhanced glucose metabolism may also prevent
cytochrome ¢ mediated-cell death in cancer cells [77] and
confer resistance to chemotherapy [78, 79], both favouring
continued tumour growth.

At the systemic level in diabetes, the excess availability
of nutrients and local changes in tissues, including adi-
pose tissue, leads to chronic low-grade inflammation. For
instance, the levels of cytokines such as TNFa and IL-6 are
increased, as a result of both the stimulation of monocytes
and macrophages by excess nutrients and the increased
expression and release from inflamed adipose tissue [80-
83]. Inflammation is important in tumourigenesis as it con-
tributes to all stages of tumourigenesis, including angiogene-
sis and metastasis [84]. Both TNFa and IL-6 have been shown
to promote tumour invasiveness and metastasis by secretion
of matrix remodelling proteins matrix metalloproteinases
[85]. IL-6-deficient mice are resistant to multiple myeloma,
while neutralization of TNFa switches inflammation-driven
metastatic growth to inflammation-induced tumour regres-
sion [86-88]. Thus, diabetes associated hyperglycemia and
hyperlipidaemia can promote tumourigenesis by inducing
inflammation.

There may also be a more direct link between the
obesity that is commonly observed in diabetes and the
development of some tumours. Recent work has shown that
there is cross talk between adipocytes and certain types of
tumours, whereby signals from tumours can lead to enhanced
provision of FA from the surrounding adipocytes for use in



energy production [46]. The generality of this mechanism for
tumours that exist in regions with high levels of adipocytes
(e.g., breast) remains to be elucidated.

6. Treatments for Diabetes Can Impact
Cancer Progression

There are a range of glucose-lowering therapeutic agents
currently prescribed for T2D. The most widely used front-
line drug is metformin, which alters intracellular metabolism
in insulin-target tissues (liver, skeletal muscle, and adipose
tissue) to reduce end-organ resistance to the actions of insulin
[89]. Other therapies are designed to increase endogenous
insulin secretion by directly acting on pancreatic f3-cells (sul-
fonylurea) or by enhancing the action of insulin secretion-
promoting gut peptides (incretin mimetics) [10, 89]. At late
stage of T2D, relative insulin deficiency due to heightened
IR and pancreatic f-cell failure makes the administration
of exogenous insulin a necessity. As noted above, high level
of circulating insulin may facilitate cancer propagation, and
thus insulin secretagogues and exogenous insulin are likely
to increase cancer risk. Metformin, on the other hand, has
been observed to reduce incidence and mortality of several
cancer types compared to other diabetes medications, based
on numerous population-based epidemiological studies and
meta-analysis [90-93].

There are multiple aspects of diabetes that are improved
by metformin, including suppression of hepatic overpro-
duction of glucose and improvement of peripheral insulin
sensitivity. One mechanism by which metformin achieves
these effects is through activation of the energy sensor AMP-
dependent protein kinase (AMPK). AMPK has versatile
functions in the regulation of cellular energy metabolism,
some of which overlap with and enhance the effects of insulin,
such as the augmentation of glucose uptake in peripheral
tissues [94]. Furthermore, AMPK inhibits endogenous lipid
synthesis and promotes fatty acid oxidation, contributing to
diminished lipid storage in nonadipose tissues and improved
insulin sensitivity [95]. The way that metformin activates
AMPK is thought to be through alterations in nucleotide
levels. As a positively charged drug, metformin is taken
into the mitochondrial matrix due to the inner membrane
electrical gradient where it inhibits complex I of the respi-
ratory chain in a time-dependent and self-limiting manner
[96, 97]. The blockage of mitochondrial energy production
through oxidative phosphorylation leads to changes in the
AMP/ATP and ADP/ATP ratios, which signal energetic crisis
that activates AMPK. Independent of its effects to activate
AMPK it was recently shown that metformin suppresses hep-
atic glucose production by restraining glucagon-dependent
gluconeogenesis [98].

With respect to cancer, several mechanisms have been
proposed to underlie the beneficial antitumour effects of met-
formin and the more potent member of the biguanide class
of drugs, phenformin. Given the tumour-promoting roles of
plasma insulin and glucose, the alleviation of IR in insulin-
target organs and the resulting reduction in glucose and
insulin concentration in the circulation likely contribute to
metformin-mediated tumour-suppressive effects in diabetic
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patients [99]. In addition, the accumulation of biomass in
neoplastic cells is attenuated by metformin, which inhibits
mTOR (mammalian target of rapamycin) signaling via Rag
and Racl GTPase [100, 101].

The more well-described mechanism proposed to medi-
ate the effects of metformin is activation of AMPK, which as
noted above reprograms nutrient metabolism in response to
energetic stress, favouring catabolic over anabolic pathways.
AMPK signaling is downregulated in breast and ovarian
cancers [102, 103] and its upstream activator LKBI, a well-
known tumour suppressor, is nonfunctional in subsets of
endometrial and lung cancers [104, 105]. Activation of AMPK
through metformin treatment inhibits breast cancer growth
through inducing cell-cycle arrest and opposing protein
synthesis [106, 107]. Metformin-induced activation of AMPK
is also associated with reduced growth of a number of other
tumour types [108, 109]. Many of the effects of metformin
are also seen when tumour cells are treated with the AMPK
activator AICAR, which promotes oxidative metabolism
and favours lipid utilization [110]. To further substantiate
the tumour-suppressive role of AMPK in opposing cancer-
related metabolic alterations, Faubert et al. showed that inac-
tivation of the AMPK « catalytic subunit in both transformed
lymphoma cells and nontransformed counterparts resulted in
a shift towards aerobic glycolysis, increased incorporation of
glucose-derived carbons into lipids, and biomass production
while mice deficient in AMPKa had accelerated rate of
lymphomagenesis [111]. Collectively these studies highlight
the important role AMPK likely plays in the efficacy of
metformin and suggest that the development of agents
mimicking some of the effects (e.g., inhibition of lipogenesis
and promotion of fat oxidation) of AMPK activators may
have therapeutic relevance.

In 2004, Shaw and colleagues reported the paradoxical
observation that tumour suppressor LKBI1-deficient mam-
malian cells are resistant to oncogene-induced transforma-
tion but more prone to apoptotic cell death in response
to cellular energy stress [112]. This intriguing finding raises
the possibility that oblation of the energy-sensing LKBI-
AMPK axis, while conferring biosynthetic and proliferative
advantages, also imparts vulnerability to the cells so that they
are hypersensitive to energetic crisis-induced killing. Indeed,
non-small cell lung cancer (NSCLC) mice harbouring Kras
and Lkbl mutations, compared to those with Kras and p53
mutations, are selectively targeted by phenformin, leading to
prolonging of survival [113]. Another potential application
of biguanides as cancer-metabolism based therapies could
be for tumours that have greater reliance on mitochondrial
oxidative metabolism rather than the classical aerobic glycol-
ysis. For example, a subset of human melanoma tumours was
recently characterized to overexpress the master regulator
of mitochondrial biogenesis PGCla and exhibit increased
mitochondrial energy metabolism [114]. For negative PGCl«
melanoma cells, it was demonstrated that inhibition of BRAF,
the most frequently overexpressed oncogene in melanoma,
switched on a mitochondrial phosphorylation gene pro-
gram including PGCle and rendered the cells addicted to
oxidative metabolism for a window of period before resis-
tance developed [115]. A separate study reported synergistic
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tumour-suppressive effects of combining phenformin and a
BRAF inhibitor in melanoma on attenuating mTOR signaling
and inducing apoptosis, which were attributed to cross talk
between AMPK and BRAF signaling pathways [116]. It is
unknown if the cooperation between BRAF inhibition and
phenformin also acts via the induction of addiction to
oxidative phosphorylation by the former and inhibition of
mitochondrial respiratory chain complex I by the latter, but
if the idea of synthetic lethality involving biguanide can be
generalised to other cancer types, the impact on rational
therapeutic design will be considerable.

Another prominent class of diabetic drug is the thia-
zolidinediones (TZDs) including pioglitazone and rosiglita-
zone. TZDs are agonists of peroxisome proliferator-activated
receptor y (PPARy) which are predominantly expressed in
adipose tissue [117]. They function primarily by inducing
adipocyte proliferation and increasing adipose tissue lipid
storage capacity to reduce fatty acid overflow to ectopic
sites such as muscle, liver, and pancreas, along with exerting
transcriptional control of genes involved in glucose and lipid
metabolism [117]. TZDs have been shown to induce cell-
cycle arrest, apoptosis, differentiation, and metastasis in a
range of in vitro and in vivo cancer models [118]. Interestingly,
some of the anticancer effects such as inhibitions of cell-
cycle progression and invasiveness have been suggested to be
independent of PPARY activation [119, 120]. Despite these in
vitro effects, epidemiological studies and meta-analysis over
the past few years investigating the association between TZD
use and cancer risk generated mixed results with the overall
conclusion that TZDs reduce or do not affect the incidence of
most cancer types but may increase the likelihood of devel-
oping bladder cancer [121-126]. The mechanisms responsible
for these disparate findings are still under investigation.

7. Conclusions and Future Perspectives

T2D is increasing in prevalence across the world and with
it comes the well-described complications, as well as an
increased risk of many other diseases (e.g., cardiovascular
disease). There is growing evidence that diabetes can also
increase the risk of certain types of cancers. This relationship
is not fully understood and there are many unanswered
questions. For example, what are the exact features of diabetes
that promote these types of cancer? What is the relative
importance of different circulating nutrients, given the high
level of glucose and lipids in diabetes and the recently
described branched-chain amino acid signature [127]? Why
does diabetes only increase the risk of certain types of cancers,
but not all of them? Since compounds such as metformin
appear to be beneficial for both T2D and cancer, we suggest
that developing further compounds with dual effectiveness
in both diseases, along with the pursuit of the unresolved
questions above, should be the focus of future research in this
area.
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