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Previous analyses of evolutionary patterns, or modes, in fossil
lineages have focused overwhelmingly on three simple models:
stasis, random walks, and directional evolution. Here we use
likelihood methods to fit an expanded set of evolutionary models
to a large compilation of ancestor–descendant series of popula-
tions from the fossil record. In addition to the standard three mod-
els, we assess more complex models with punctuations and shifts
from one evolutionary mode to another. As in previous studies,
we find that stasis is common in the fossil record, as is a strict
version of stasis that entails no real evolutionary changes. Inci-
dence of directional evolution is relatively low (13%), but higher
than in previous studies because our analytical approach can more
sensitively detect noisy trends. Complex evolutionary models are
often favored, overwhelmingly so for sequences comprising many
samples. This finding is consistent with evolutionary dynamics
that are, in reality, more complex than any of the models we
consider. Furthermore, the timing of shifts in evolutionary dynam-
ics varies among traits measured from the same series. Finally, we
use our empirical collection of evolutionary sequences and a long
and highly resolved proxy for global climate to inform simulations
in which traits adaptively track temperature changes over time.
When realistically calibrated, we find that this simple model can
reproduce important aspects of our paleontological results. We
conclude that observed paleontological patterns, including the
prevalence of stasis, need not be inconsistent with adaptive evo-
lution, even in the face of unstable physical environments.

evolutionary mode | stasis | gradualism | punctuated equilibrium |
climate change

Paleontologists have long sought to document patterns of trait
change within fossil species and to infer from these patterns

their underlying evolutionary drivers (1–3). However, only re-
cently have sufficient case studies accumulated to assess what the
aggregated fossil record has to say about phenotypic evolution
occurring on the 105- to 107-y timescales routinely captured in
paleontological sequences. Several factors have contributed to
this cumulative increase, including advances in geochronology that
more readily permit time-calibrating evolutionary sequences,
better morphometric practices for documenting trait change, and
new analytical tools to examine the resulting data. Perhaps most
important, however, is that paleontologists were motivated to
capture many additional examples of trait evolution in fossil lin-
eages in response to the intense debate centered around punctu-
ated equilibrium (4–6)—the notion that species do not usually
evolve gradually over long periods of time but instead emerge in
a discontinuous pattern, in bursts of change associated with
cladogenesis followed by longer intervals of morphological stasis.
Punctuated equilibrium proponents and critics disagreed

about how best to interpret the same patterns of trait evolution,
and thus early reviews (7, 8) did little to resolve the debate. Newly
developed statistical approaches (9–11), particularly likelihood-
based methods (12, 13), helped by providing objective means
to determine which interpretations are most strongly justified
by data. Method development focused on three canonical
models germane to punctuated equilibrium: stasis, directional or

sustained gradual change, and an intermediate model of a ran-
dom walk. Two recent compilations found much more support
for stasis than gradual evolution on paleontological timescales; in
only 5% of cases was directional evolution the best supported
model, with the remaining sequences divided almost equally
between random walks and stasis (14, 15).
These compilations helped to resolve some lingering issues,

but they have an important limitation in that they applied a rather
restricted set of models. Stasis, random walks, and directional
change are simple models in the sense that they require few
parameters to specify, and also in that they each imply uniform
evolutionary dynamics within fossil sequences (16). When a se-
quence is modeled as a directional trend, for example, it is as-
sumed that the trend holds with the same strength over the entire
temporal span of measured fossil populations. Paleontologists
have long explored explanations that violate this kind of unifor-
mity (10, 17, 18), and several have warned of the limitations of
trying to coerce a broad variety of evolutionary phenomena into
a few, too-simplified models (16, 19–21).
Here we present a database of case studies of trait evolution

compiled from the published paleontological literature that
expands upon recent efforts (14, 15) to total 709 sequences of
trait evolution from nearly 200 different lineages. Our main goal
is to examine evolutionary patterns by fitting these sequences to
a wider set of models including ones with complex (nonuniform)
evolutionary dynamics. We consider models with punctuated
change (16), as well as those characterized by a shift from one
evolutionary mode to another (e.g., directional change followed
by stasis). Including such mode-shift models should result in
a fairer test of the frequency of directional evolution because this
strategy can recognize directionality that occurs but does not
persist throughout an entire time-series. Compared with pre-
vious compilations, we also use a different algorithmic approach
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that is better able to detect noisy trends when they are present
(22). Taken together, our procedures should increase the sensi-
tivity with which directional evolution can be recognized.
One previous finding that we confirm here is that stasis is

common in fossil sequences. Paradoxically, stasis prevails even
though rapid evolutionary shifts are well documented within living
populations and geological proxies suggest a continually dynamic
environmental milieu (23, 24). For some paleontologists, this
paradox is inconsistent with neo-Darwinian interpretations of
stasis that emphasize stabilizing selection and trait adaptedness
(25–27). We explore this suggestion by comparing our empirical
results with evolutionary series simulated under a scenario in
which traits adaptively track environmental change, using a long-
term and highly resolved climate record as a proxy. The goal of
these simulations is to test whether this simple environmental/
adaptive model, when calibrated realistically, is able to reproduce
pertinent aspects of the empirical fossil record.

Results
The compiled stratigraphic sequences range in length from 7 to
114 samples (median, 14) and in duration from 5 ky to more than
50 My, with most between 100 ky and 10 My (SI Appendix, Fig.
S1). As in our previous quantitative analyses, purely directional
evolution is rarely (9%) the best-supported model, although this
total increases to 13% when all models with a directional com-
ponent are combined (Table 1). Random walks (28%) and stasis
(38%) are common, with nearly half of the latter category best
accounted for by a strict version of stasis that implies no true
evolutionary differences among samples in a sequence. These
percentages are even higher when complex models that feature
these models in part are included: 39.4% of best-supported models
include a random walk, and 62.9% include stasis. In total, 175
sequences are best described by one of the complex evolutionary
models; punctuations and shifts from a random walk to stasis are
particularly well represented (Table 1). This tally represents 25%
of sequences overall but 45% of those long enough (≥14 samples)
to be fit by complex models.
Complex models tend to receive increasing support as sequen-

ces include more and more samples (Fig. 1). For example, 94%
of sequences (58 of 62) with >40 samples are best supported by
a model that implies complex evolutionary dynamics. The small-
sample modified Akaike Information Criterion (AICc) has some
tendency to overfit in this context (Methods); to address this po-
tential bias in favor of complex models, we also implemented a
more stringent parametric bootstrapping test. Results indicate that
complex models favored by AICc are usually also significantly
better than the best simple model according to the bootstrap
test (Fig. 1).

Several factors contribute to the propensity for different models
to be favored (Table 2). Strict stasis is less probable with in-
creasing temporal duration of sequences, and the broad version
of stasis is also less likely to be best supported as the number
of samples increases. Both kinds of stasis are more prevalent in
marine compared with terrestrial or lacustrine environments, and
in macroinvertebrates and vertebrates compared with microfossils
(SI Appendix, Tables S1 and S2). Purely directional evolution is
more likely to be favored in sequences of longer temporal dura-
tion (Table 2), but strong correlates of directionality are not evi-
dent otherwise (SI Appendix, Table S3). Complex models are
substantially more likely to be favored with increasing numbers of
samples, but not with increasing temporal duration (Table 2); this
class of model is also less prevalent among benthic microfossil
sequences (SI Appendix, Table S4). In addition, age model error
that is caused by undetected variation in sedimentation rate has
a tendency to spuriously favor complex evolutionary models,
but the effect is not large enough to account for these patterns
(SI Appendix, SI Text).
Rarely do all traits within a species lineage show the same

evolutionary mode, although pairwise comparison of traits within
species lineages shows that modes may be shared among a few or
the majority of traits (Fig. 2A). It is, however, very common for
traits within a species lineage to show the same type of evolu-
tionary model (either simple or complex; Fig. 2B). The timings
of mode shifts among traits best fit by complex models are co-
ordinated as frequently as they are not (Fig. 2C).
When simulated evolutionary sequences are generated accord-

ing to a model in which traits track a long-term global climate
curve (Fig. 3), these artificial sequences match patterns found in
empirical paleontological data in several important ways. The
overall distribution of how often each model is best supported is
remarkably similar between simulated and real data sets (Fig. 4A).
Both simulated and empirical data are most often accounted for
by stasis, followed closely by the random walk model. Directional
evolution is rare in the empirical data and even more so in the
simulated datasets. In both real and simulated data, punctuations
and mode-shift models are best supported in approximately 20%
of sequences. The temperature-tracking model was calibrated with
two empirical examples of a trait, body size, showing temperature-
dependences among living and fossil populations. Both of these
calibrations produce similar results.
The strict version of stasis is common in the empirical data but

rare in the simulations (Fig. 4A). Indeed, compared with the dis-
tribution from the simulated sequences, evolutionary changes are
generally smaller in magnitude in the empirical dataset (Fig. 4B).

Discussion
Our expanded survey is consistent with its predecessors in find-
ing that stasis and random walk modes are prevalent in pale-
ontological sequences, and in suggesting that sustained directional
evolution is infrequently observed. The total incidence of direc-
tionality, 13%, is higher compared with the 5% found in previous
studies (14, 15). Part of this increase comes from allowing mode-
shift models in which directional change operates for only a por-
tion of the observational window; the remainder stems from a
methodological shift from restricted maximum likelihood
(REML) to a more sensitive maximum-likelihood approach. An-
alyzing the present data using REML does result in lower fre-
quencies of directional change, but the distribution of winning
models is otherwise very similar (SI Appendix, Table S5). Although
we favor the directional mode more so than in previous studies,
our 13% figure is likely an overestimate because the published
literature that we summarize has disproportionately analyzed traits
and lineages for which prior evidence exists for directional patterns
of trait change (27, 28).
Previous indications that directional trends are more likely to

be observed in planktonic microfossils than in other fossil groups

Table 1. Frequency with which each model is the best
supported

Model category Model Frequency Percentage

Simple Strict stasis (1) 124 17
Stasis (2) 147 21

Random walk (2) 201 28
Directional (3) 62 9

Complex Punctuation (4) 67 9
Stasis-RW (4) 19 3
Stasis-Dir (5) 16 2
RW-Stasis (5) 59 8
Dir-Stasis (6) 14 2

Models are listed in order of increasing numbers of parameters (in pa-
rentheses). Complex models imply nonuniform dynamics, either as a punctu-
ation or a shift in evolutionary mode within a sequence. RW, random walk;
Dir, directional evolution.
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(14, 29, 30) are not supported by logistic regression (SI Appendix,
Table S3). Similarly, the raw proportion of sequences best fit
by directional models is not very different among planktonic
microfossils (15.3%), benthic microfossils (19.8%), and verte-
brates (14.2%). This proportion is notably lower among mac-
roinvertebrates (7.8%), but this figure may be depressed by two
studies (31, 32) that included numerous traits in which stasis
dominated.
The propensity of complex models to be favored increases

strongly with the number of samples in a sequence. If, in reality,
mode shifts or punctuations occur at some rate per unit time,
sequences observed over longer temporal windows also should
be more likely to exhibit complex dynamics, but this is not evi-
dent in our compilation (Table 2). One way to reconcile this
finding is to posit that the evolutionary reality that we seek to
characterize is usually more complicated than even the most
complex models we are likely to entertain. If this were true, du-
ration would not matter because the underlying reality of even
short temporal intervals is complex. Instead, the ability of complex
models to win is limited only by the information content of a se-
quence, and therefore its number of samples. Regardless of how
complex evolutionary patterns truly are, simple models are still
useful as tools for extracting first-order information about the
nature (22) and pace (33) of evolutionary divergence, as long as
one is mindful of their limitations.
The variation in the timing of shifts in evolutionary dynamics

emphasizes the mosaic nature of evolution documented here and
elsewhere (15). Although trait evolution may be tightly corre-
lated within a lineage (e.g., SI Appendix, Fig. S2), traits that show
the same mode of evolution can still vary in the timing of shifts,
and vice versa (e.g., SI Appendix, Figs. S3 and S4), and in some
cases there may be no similarity at all (e.g., SI Appendix, Fig. S5).
The extent to which evolutionary coordination among traits de-
pends on internal biotic factors (e.g., the degree of integration
among traits) versus external pressures (e.g., shared sensitivity to
changes in some aspect of the environment) cannot be de-
termined from these data alone. The increasing support for
complex models with increasing sequence length may partly ac-
count for the tendency for all measured traits within a species
lineage to share simple or complex dynamics (Fig. 2B), if not the
specific mode (Fig. 2A), because trait time-series measured from
the same evolutionary sequence usually have the same number of
samples. The same effect may contribute to the similar break-
down of simple versus complex in the empirical data and the
climate tracking simulations (Fig. 4A).
Evolutionary sequences simulated under a simple temperature-

tracking model provide a surprisingly close match to the empirical
distribution of winning evolutionary models (Fig. 4A). Contrary
to previous suggestions (25–27), it seems that stasis can be an
expected outcome even in the face of dynamic environmental

change. Two keys can help to make sense of this result. First, al-
though we develop here a strict version of stasis that implies
constancy of form, the broader notion of evolutionary stasis only
holds that changes are modest and fluctuating rather than accu-
mulating (23, 27). Thus, evolutionary changes in response to
changing environments can be consistent with stasis, as long as
environments do not change in an accumulating manner. Second,
the temporal structure of climate, at least as measured from our
proxy curve, is dominated by fluctuations that are short (100 ky or
less) compared with durations of species in our compilation. Al-
though it is true that temperature shows dramatic swings, this
variation is strongly bounded by glacial–interglacial limits. Ac-
cordingly, most traits that track temperature will also show a
bounded, fluctuating pattern that we recognize as stasis.
Our proxy for environmental change is particularly useful here

because its exceptional duration and resolution permit realistic
evolutionary modeling. In addition, it reflects temperature and
correlated environmental variables with clear biological rele-
vance. However, it is still just one proxy climate curve whose
magnitudes and frequencies pertain most clearly to the late Ce-
nozoic icehouse world. Its boundedness, however, may apply to
other important drivers, such as sea-level fluctuations, or rainfall
and seasonality in terrestrial environments. In each of these
examples natural limits are reached at both ends of an environ-
mental continuum. These limits can be reached and returned to
repeatedly over species’ lifetimes. We suspect that such bounded
patterns in environmental proxies are the norm. Characterizing
the mode of evolution in response to additional environmental
proxies may be important for understanding how physical drivers
may broadly influence biological evolution (34).
The main difference in outcomes between the temperature-

tracking simulations and the empirical data are that the simulations

A B C D

Fig. 1. Frequencies with which each model is best supported with sequences divided into four categories on the basis of sequence length: (A)
sequences with fewer than 14 samples (n = 321), (B) with 14–20 samples (n = 200), (C ) with 21–40 samples (n = 126), and (D) >40 samples (n = 62).
Models are listed in order of increasing numbers of parameters from bottom to top, with the dotted horizontal line separating the simple (uniform)
models below from the complex (nonuniform) models above. Model names follow Table 1. Total bars indicate models favored by AICc; dark gray
represent portion in which a complex model is also significantly favored by a more conservative parametric bootstrapping test.

Table 2. Factors that predict whether certain models are the
best supported

Model(s) Retained variables in logistic regression

Strict stasis dur (−), env, taxon
Strict stasis + stasis ns (−), dur (−), env, taxon
Directional dur (+), taxon
Complex* ns (+), env, taxon

Right column summarizes the multiple logistic regression model retained
from a stepwise AIC procedure. The independent variables are sequence
length (number of samples, ns), sequence temporal duration (dur), and broad
categories for the environment (env) and fossil taxon (taxon). A positive sign
after ns and dur indicates that an increase in that independent variable
increases the probability of favoring that model.
*Regression performed only for those sequences with 14 or more samples
(n = 388) because complex models were only fit for these sequences.
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produce larger evolutionary changes and correspondingly fewer
instances of strict stasis. This difference is predictable in that we
have only calibrated the model with examples in which body size
systematically varies with temperature (Bergmann’s rule). Tem-
perature sensitivity is common for body size (35, 36), but it is not
universal, and traits that do not show temperature-related geo-
graphic variation are not expected to change particularly when
climate does. Moreover, body size is seen as a relatively labile trait,
and so it may exhibit ample variation unrelated to temperature,
which translates to high residual variance in our model. If we added
low-variation and temperature-insensitive traits to these simu-
lations, it would depress the magnitudes of evolutionary change
and bring the simulations and empirical data closer into alignment.
Nevertheless, we emphasize that we do not view this environmental
tracking model as a universal explanation for evolutionary patterns
in fossil lineages; metapopulation structure (23, 25), habitat
tracking (37), and other processes (38–43) are undoubtedly also
important. Rather, we use this model to argue against the sug-
gestion that the paleontological record is inconsistent with well-
adapted traits responding to dynamic physical environments.
Recently, Uyeda et al. (40) used a large database of evolu-

tionary changes in body size to demonstrate that differences
spanning less than 1 My varied within a bounded interval but that
magnitudes of change increased markedly with time beyond this
threshold. Their explanation for this pattern combined stasis
over short timescales with longer-term accumulation of stochastic
jumps resulting from rare shifts in the species’ niches or adaptive
zones (2). This account involves two models considered here,
stasis and punctuations, and their interpretation implies that the
latter should dominate over longer intervals. The Uyeda et al.
approach does not include random walks, directional change, or
mode-shift models but, from an appropriately broad perspective,
there are several ways in which these two analyses are compatible.
Our logistic regressions (Table 2) show that the probability of
stasis decreases with increasing temporal duration, which is con-
sistent with Uyeda et al.’s finding that bounded evolutionary
changes dominate over durations shorter than 1 My. Moreover,

the temperature tracking simulations provide a possible micro-
evolutionary mechanism that could account for the bounded
component of their model. Finally, we unexpectedly found that
the temperature-tracking model can reproduce Uyeda et al.’s
marked uptick in evolutionary divergence at ∼1 My (SI Appendix,
Fig. S6). This uptick occurs because a long-term trend of in-
tensifying icehouse conditions is slow enough that it exceeds
glacial–interglacial fluctuations only after one to several million
years of accumulated change. Thus, in addition to breakthroughs
in species’ adaptive zones, it is possible for environmental varia-
tion to be structured such that it imparts a pattern of bounded
change that transitions to one of unconstrained divergence.

Methods
Data Compilation. We compiled published paleontological studies that track
through time one ormoremeasured traits from (in the opinion of the original
authors) a single, species-level lineage. We included slightly revised (SI Ap-
pendix, SI Text) versions of two recent compilations of time-series (also re-
ferred to as “sequences”) of trait evolution from fossil lineages (14, 15) and
added additional cases from the literature. Additional data were obtained
from published tables or appendixes, by digitizing published figures, or from
raw data provided by the authors. Age models were taken from the original
publications, if available, or from other references. A summary table of all
included sequences is available in Dataset S1, and the raw data have been
accessioned into the Dryad data repository (10.5061/dryad.m010p).

Evolutionary Models.We followed previous treatments of the three canonical
models of evolutionarymode (13, 14). Trait increments in the randomwalkmodel
are independent and equally likely to be increases or decreases. This model is
characterized by a parameter, the step variance, that determines the size of the
steps and hence the evolutionary rate (33). Directional evolution is a generaliza-
tion of this process to allow for evolutionary steps that are biased toward
increases or decreases. Stasis was modeled as uncorrelated (white noise) vari-
ation around a steady mean (44). We also considered a special case of stasis
with zero variance around the long-term mean, which we call “strict stasis”
because it represents stasis in its narrowest sense of implying no real evolu-
tionary variation in a trait.

In addition to the above four uniformmodels, we explored a set of models
that allowed evolutionary mode to shift once within a sequence, dividing it
into two segments with different evolutionary dynamics. These include classic
punctuations, in which stasis around onemean instantaneously shifts to stasis
around a different mean (16), and four mode-shift models that start in stasis
but then shift to directional evolution or a random walk, or vice versa. In
total, we considered four simple models (directional evolution, random walk,
stasis, and strict stasis) and five complex ones (punctuation, stasis–random
walk, stasis–directional, random walk–stasis, directional–stasis). SI Appendix,
SI Text discusses further the properties of these models.

Because evolutionary mode cannot be determined robustly from short
sequences (16), we required that each segment contain at least seven sam-
ples. As a result, complex models were fit only to sequences comprising 14 or
more samples. The shift point in punctuational and mode-shift models was
estimated as a free parameter, following ref. (16).
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Models were fit in the R environment (45), using functions from the paleoTS
package, version 0.4-5 (46). Previous analyses used a restricted maximum-like-
lihood approach that divides a sequence into adjacent, ancestor-to-descendant
trait differences, which are evaluated by a likelihood function. Here we use
a full maximum-likelihood approach that considers all samples in a sequence
jointly as a single draw from a multivariate normal distribution (22). In the
paleoTS package, these two options are implemented as the “AD” and “Joint”
methods, and simulations show that they perform similarly in most respects
(22), except that the “Joint” approach that we use here is better able to detect
noisy trends (22).

Model support was measured using AICc. Simulations suggest that AICc
may unduly favor complex models in this context, even when simple models
are true (SI Appendix, Fig. S7); this effect seems especially pronounced for
models that involve a shift to a new stasis mean (punctuations, random
walk–stasis, and directional–stasis). Accordingly, for sequences best fit by any
complex model, we implemented an additional, more stringent test via
parametric bootstrapping (47). This approach simulates trait evolution under
the best-supported simple model and then fits that (true) model in addition
to the best-supported complex model. The difference in support was mea-
sured as the likelihood ratio test statistic, which is equal to twice the dif-
ference in log-likelihood between simple and complex models. This process
was repeated over 499 replicates to generate a null distribution of the
likelihood ratio statistic, with the P value computed as (k + 1)/500, where k is
the number of replicates in which the likelihood ratio statistics exceeded the
observed value (48).

Logistic regressions were performed to test whether the probability of
a sequence being best supported by a particular model or set of models was

related to sequence length (number of samples, log-transformed), sequence
duration (log-transformed), broad categories of environment (terrestrial,
lacustrine, marine-shallow, marine-deep, marine-pelagic), and categories of
fossils (planktonicmicrofossils, benthicmicrofossils, invertebratemacrofossils,
vertebrates). Stepwise AIC was used to choose among regression models,
which were run separately to predict the probability of strict stasis, any kind
of stasis, directional evolution, and any complex model. Regressions were
performed using the glm and stepAIC functions in R, and the glht function
from the multcomp package (49) was used to test for post hoc differences
among the environmental and taxon categories. Because individual lineages
often supplied multiple, potentially correlated traits, sequences are not truly
independent and thus these regressions are best considered heuristic (mean
pairwise absolute correlation between changes in trait means measured
from the same series: 0.403, SD = 0.280).

Coordination of Results Among Traits Within Species Lineages. For every spe-
cies lineage for which more than one trait was measured (n = 71), we tallied
how frequently pairs of traits showed (i) the same best-fit model of evolu-
tionary mode; (ii) the same type of evolutionary mode (simple or complex);
and (iii) the same timing of shifts in evolutionary dynamics, if both traits
were best characterized by a complex mode of evolution. We considered all
shift points within 1.92 log-likelihood units of the maximum-likelihood so-
lution when comparing pairs of traits. This set of shift points represents all of
the solutions within a 95% confidence interval (16).

Simulating Trait Evolution That Tracks Environmental Change. Simulating a
scenario in which traits evolve in response to changing environmental con-
ditions requires (i) a proxy curve capturing temporal change in an environ-
mental variable, (ii) a model and calibration that determines the sensitivity
of traits to environmental change, and (iii) realistic sample sizes and chro-
nologies for evolutionary sequences.

We used as our proxy for environmental change a composite curve of
deep-sea oxygen isotope values (50) that is commonly used as a surrogate for
overall climate state (Fig. 3). This curve is particularly suitable because it is of
long duration (5.32 My) and fine temporal resolution (successive points
separated by 1–5 ky). Moreover, this curve mostly reflects an aspect of the
environment—temperature—that commonly covaries with biological traits.
To better relate this curve to traits, we converted it from its original isotopic
units to degrees Celsius by scaling it so that the difference between the
present day and the last glacial maximum (19–23 Ka) is 4 °C, which is a rea-
sonable global estimate (51).

The temperature-tracking model assumes a simple linear relationship
between temperature and trait values: x = b0 + b1T + e, where x is the trait,
b0 and b1 are the intercept and slope of its relationship with temperature
(T), and e is a normally distributed residual term. The sensitivity of the trait
to temperature is given by b1. Evolutionary changes that are unrelated to
temperature are represented by the variance of e. This relationship is con-
sistent with populations adaptively tracking changes in temperature, as-
suming a response lag that is negligible on paleontological timescales (see
refs. 52 and 53). We calibrated this model using empirical examples of
Bergmann’s rule, the pattern by which body size tends to be larger in colder
parts of a taxon’s geographic range (54). We use two different calibrations
based on taxa for which this relationship has been demonstrated in the
modern world and in the fossil record: the deep-sea ostracode Poseidonamicus
and the packrat Neotoma. The Poseidonamicus regression considered the
log of carapace length among modern populations from the species
Poseidonamicus major (55). Published body mass versus temperature rela-
tionships for Neotoma cinerea were digitized from Smith and Betancourt
(56). The resulting body mass data were cube-root transformed to behave
similarly to linear size measurements, log-transformed, and regressed
against temperature. These particular calibrations bracket a range of
Bergmann’s rule patterns from strong in Poseidonamicus to moderate in
Neotoma (SI Appendix, Fig. S8).

To simulate sequences with realistic chronologies and sample sizes, we
drew randomly with replacement from the subset of the empirical sequences
that were of appropriate duration (<3 My) and resolution (>10 ky) to be
compared with the climate curve (n = 337). Each sampled chronology was
placed randomly within the temporal span of the temperature curve, and
the temperatures at that chronology’s sampling times were computed by
linear interpolation. From these temperature data, trait values were gener-
atedwith the formula above using the values from either the Poseidonamicus
or Neotoma calibrations. These generated sequences reflect true population
means, to which sampling error was added as normally distributed variation
with a mean of zero and a variance of s2/n, where s2 is the within-population
variance and n is the sample size taken from the selected empirical sequence.
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Fig. 4. Comparison of temperature-tracking simulations to empirical results.
(A) Best-fitting models for simulations in which trait evolution tracks tem-
perature comparedwith that for the subset of empirical sequences (n = 337) of
the appropriate duration and resolution to be compared with the global
temperature curve. The empirical results are in tan next to two different cal-
ibrations of the temperature-tracking model: for the deep-sea ostracode
P. major (green) and the packrat N. cinerea (blue). Bar heights indicate the
proportion of empirical or simulated outcomes (2,000 replications) that
resulted in that model or set of models being best supported according to
AICc. Stasis includes the broad sense model and strict stasis, with the contri-
bution of the latter shown as hatching (too limited to see in the simulated
datasets). Mode shift includes the four models involving a shift from stasis to
a randomwalk or directional change, or vice versa. Black lines at the top of the
bars span 95% binomial confidence limits on the proportions. (B) Density plots
showing the distribution of magnitudes of evolutionary change across em-
pirical and simulated data sets. Evolutionary variation was measured as the SD
of sample means, with the contribution of sampling error removed (Methods).
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For Poseidonamicus, the data from reference 55 estimate s2 as 0.000467,
whereas 0.0025 was used for Neotoma because this corresponds to a co-
efficient of variation of 5, which is a typical value for linear size dimensions in
mammals (57). In this manner, 2,000 evolutionary sequences were generated,
each consistent with the assumed model of temperature tracking, but with
empirically realistic sample ages and sample sizes.

These simulated sequences were compared with the relevant empirical
sequences according to how frequently each of the models was best supported.
In addition, we compared simulated versus empirical distributions of magni-
tudes of evolutionary variation, measured as the square root of the stasis

variance parameter. This parameter is essentially equal to the SD of trait values
across samples with the contribution of sampling error removed (33). We also
tracked how this evolutionary variation accrued over time under this model.
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