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Cognition presumably emerges from neural activity in the net-
work of association connections between cortical regions that is
modulated by inputs from sensory and state systems and directs
voluntary behavior by outputs to the motor system. To reveal
global architectural features of the cortical association connec-
tome, network analysis was performed on >16,000 reports of his-
tologically defined axonal connections between cortical regions
in rat. The network analysis reveals an organization into four
asymmetrically interconnected modules involving the entire cor-
tex in a topographic and topologic core–shell arrangement. There
is also a topographically continuous U-shaped band of cortical
areas that are highly connected with each other as well as with
the rest of the cortex extending through all four modules, with
the temporal pole of this band (entorhinal area) having the most
cortical association connections of all. These results provide a
starting point for compiling a mammalian nervous system con-
nectome that could ultimately reveal novel correlations between
genome-wide association studies and connectome-wide associa-
tion studies, leading to new insights into the cellular architecture
supporting cognition.
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The cerebral cortex is the core of the brain’s cognitive system
(1, 2). Emerging evidence suggests that misdirected and/or

dysfunctional cortical connections established during neuro-
development, or degenerative events later in life, are funda-
mental to cognitive alterations associated with brain disorders
like Alzheimer’s disease, autism spectrum disorder, and schizo-
phrenia (3). Presumably, an understanding of biological mech-
anisms underlying cognition and the control of voluntary behavior
rests at least partly on the structure–function wiring diagram of
the cortex. Design principles of this neural circuitry are based on
a network of interactions between distributed nervous system re-
gions, and on the underlying function of their constituent neuron
populations, and individual neurons.
Unfortunately, a global structure–function wiring diagram of

the cortex has not yet been elaborated (4). A necessary, but not
sufficient, prerequisite for establishing this basic plan is a com-
prehensive structural model of cortical connectivity (5–7). Such a
“roadmap” could then be used as a database scaffolding for mo-
lecular, cellular, physiological, behavioral, and cognitive data and
for modeling (8)—analogous to a Google Maps for the brain.
The research strategy described here provides the starting point
for such a model, as well as a framework, benchmark, and in-
frastructure for developing a global account of nervous system
structural network organization as a whole.
The conceptual framework underlying our strategy to analyze

global nervous system connection architecture is twofold. First,
because of considerable complexity—for example, human iso-
cortex on one side has 6–9 billion neurons (9–11) interconnected
by orders-of-magnitude-more synapses—three hierarchical (nested)
levels analysis are considered (12, 13). A macroconnection be-
tween two gray-matter regions considered as black boxes is at the
top of the hierarchy, a mesoconnection between two neuron

types (14) within or between regions is nested within a macro-
connection, and a microconnection between two individual neurons
anywhere in the nervous system is nested within a mesoconnection.
Second, small mammals, instead of humans, are analyzed. Data
are generated much more quickly from small brains, and experi-
mental pathway tracing of human axonal connections is currently
impermissible.
MR diffusion tractography offers exciting new approaches to

identifying human cortical connections, but inherent resolution
limits require correlation and validation with experimental his-
tological pathway tracing data in animals. Tractography deals
only with white-matter organization, not the cellular origin and
synaptic termination of connections in gray matter, and the
method cannot identify unambiguously the directionality (from–

to relations) of identified tracts or distinguish histologically de-
fined gray-matter regions themselves. Historically, similar limi-
tations applied to the gross anatomical methods used to discover
human regionalization and cortical association tracts almost 150 y
ago (15).
Because the richest current experimental histological data on

intracortical connectivity are for adult rat, this peer-reviewed
neuroanatomical literature was systematically and expertly cu-
rated for network analysis. One goal was to begin by establishing
a general plan for mammalian cortical association connections
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(4): excitatory (glutamatergic) connections established between
cortical regions in one hemisphere by pyramidal neurons, as
opposed to commissural connections between right and left hemi-
spheres (a logical next step, followed by axonal inputs and outputs

of the cortex). The other goal was to propose a comprehensive
and systematic correlative bridge between data from experi-
mental pathway tracing in animals and diffusion tractography
in humans.
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Fig. 1. Rat cortical association connectome. Directed synaptic macroconnection matrix with gray-matter region sequence (top left to right, list of macro-
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Results
Cortical Association Connection Number. Systematic curation of the
primary neuroanatomical literature yielded 1,923 rat cortical
association macroconnections (RCAMs) as present (242, or

12.6% from the L.W.S. laboratory) and 2,341 as not present (of
those possible, 45.1% present, indicating a very highly connected
network)—between the 73 gray-matter regions analyzed for the
cerebral cortex as a whole. No adequate published data were
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found for 992 (18.9%) of all 5,256 (732 − 73) possible macro-
connections. Assuming the curated literature representatively
samples the 73-region matrix, the complete RCAM dataset would
contain ∼2,370 macroconnections (5,256 × 0.451), with a re-
markably high average of 32 output association macroconnections
per cortical region (2,370/73). However, RCAM number varied
greatly for particular cortical regions (input range 9–51, output
range 1–57). The dataset was derived from >16,000 RCAM con-
nection reports, publicly available in the Brain Architecture
Knowledge Management System (BAMS), expertly curated from
>250 references in the primary literature.

Network Analysis for Modules. The RCAM dataset was first dis-
played in matrix format with column and row ordering following
the cortical region sequence in the hierarchical structure–function
nomenclature of Swanson-04 (16). Fig. 1 is a connection lookup
table (matrix) automatically generated in BAMS2Workspace (17)
and provides a visual overview of connections that are reportedly
present, are not present, or remain unexamined. Each of the 73
histologically defined cortical regions displays a unique set of input
and output association connections with other cortical regions on
the same side of the brain.
Modularity analyses (18) of the RCAM dataset that optimize a

metric based on connection weights (Fig. S1 A and B) showed in
connection matrix form (Fig. 2) that all 73 cortical regions cluster
in one of four distinct modules (M1–M4) arranged in the matrix,
such that more strongly connected modules are adjacent, and
within-module regions more strongly connected are also adjacent
(Fig. 2; Fig. S2 lists the 73 components with their abbreviations).
This result was confirmed by using an alternate, circuit dia-
gram graph analysis approach based on a force-directed al-
gorithm (Fig. 3).
To distinguish visually whether module components are ana-

tomically either interdigitated or segregated, they were mapped
onto a topologically accurate cortical flatmap (16). Clearly, each
module is a spatially continuous domain, with the four modules
together covering the entire cortical mantle in a shell and core
arrangement (Fig. 4A). This basic arrangement is also seen, al-
though less clearly, in more familiar surface and cross-sectional
views of the cortex (Fig. 5), and it is revealed in yet another
view—all 1,923 association connections mapped onto the flat-
map (Fig. 6).

Two modules form a complete shell (ring) around the medial
edge of the cerebral cortex—roughly corresponding to the limbic
region (lobe)—whereas the other two modules form a core
within the shell—roughly corresponding to the cerebral hemi-
sphere’s lateral convexity. The caudal core (hemispheric) module
(M1) contains visual and auditory areas and related association
areas including posterior parietal and dorsal and ventral tem-
poral. The rostral core (hemispheric) module (M2) contains
somatic and visceral sensory–motor and gustatory areas and re-
lated association areas including orbital, agranular insular, and
perirhinal. The dorsal shell (limbic) module (M3) contains the
anterior cingulate and retrosplenial areas and major parts of
the hippocampal formation, including medial entorhinal area,
parasubiculum, presubiculum, postsubiculum, dorsal subiculum
and dorsal field CA1, field CA3, and dentate gyrus. The ventral
shell (limbic) module (M4) contains the most components, pri-
marily regions belonging to the olfactory system, infralimbic and
prelimbic areas (of the so-called medial prefrontal cortex), lat-
eral amygdalar nucleus, and some hippocampal formation parts
(lateral entorhinal area, ventral subiculum, and ventral field CA1).

Small World, Hubs, and Rich Club.Weighted network analysis of the
RCAM dataset revealed two important hallmarks of local and
global network organization—high clustering and high global
efficiency, respectively. A high clustering value (C = 0.084), ex-
ceeding that found in a null model comprising a population of
randomized networks (Crand = 0.057 ± 6 × 10−4, mean and SD
for 10,000 randomized controls), indicates that if two cortical
regions (nodes) are mutually connected, then it is highly prob-
able (and more likely than expected by chance) that they also
have common network neighbors. Such high clustering suggests
that mutually connected regions have similar connectivity pro-
files as commonly found in local network clusters. The value of
RCAM dataset’s global efficiency (G = 0.352) is high and very
close to those found in a population of randomized controls
(Grand = 0.379 ± 0.002), indicating that the shortest paths be-
tween any two regions tend to comprise only a small number of
steps, thus enabling effective global communication across the
network. Together, high clustering and high efficiency (short
path length) have been recognized as the defining features of
small-world networks (19).
As in other connectome analyses, network measures allow us

to identify nodes (here cortical regions) that are more strongly or
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more centrally connected within the network, corresponding to
so-called network hubs (20, 21). We identified the hubs in the
cortical association network by computing four centrality mea-
sures (Fig. S1C) and ranking nodes according to their aggregate
centrality score (Fig. S2, red cortical regions). The set with the
highest scores (a value of 4, indicating high rankings across all
four measures) comprised three nodes: ectorhinal, perirhinal,
and lateral entorhinal areas. Interestingly, these three hubs form
a topographically continuous patch of cortex that is also highly
mutually connected (see discussion of rich club below). In hu-
mans, this patch generally shows the earliest, most severe path-
ological changes in Alzheimer’s disease (22) and is implicated in
temporal lobe epilepsy (23).
Another significant aspect of network organization is the

presence of a “rich club,” defined as a set of highly connected
nodes (regions) that are also densely connected with each other
(24, 25). Rich-club analysis (Fig. S3 A and B) revealed three
innermost-circle rich-club nodes (lateral entorhinal area, medial
entorhinal area, and claustrum) positioned within a set of 15
rich-club nodes with the greatest statistical significance (adjusted

P = 1.02 × 10−11; false discovery rate set to 0.001). These 15
nodes are distributed within all four modules, with the greatest
participation in the ventral limbic module, M4. Anatomical
analysis by inspection of the reference atlas (16) readily shows
that all but one (field CA1v) of these rich-club nodes form a
topographically continuous U-shaped band that can be divided
into a caudodorsal cortical plate pole (P1), a rostrodorsal cor-
tical plate pole (P2), and between them a ventral cortical sub-
plate pole (P3). The three highest-ranked hubs form a patch in
P3 (Fig. S3C), and the lateral entorhinal area is the only cortical
region that is both one of these three hubs and one of the three
innermost circles of rich-club nodes. The lateral entorhinal area
forms the richest set of association connections of any cerebral
cortical region in rat (26).

Connection Patterns. Analysis of global major connection weight
patterns between all network nodes yielded statistically signifi-
cant asymmetries (Fig. S1 D and E) indicating overrepresenta-
tion and underrepresentation of weight class combinations in
bidirectional connections between region pairs (P < 0.0014) and
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showing that highly asymmetric weight combinations between two
such nodes are less frequently encountered in the empirical con-
nection matrix than expected if weights are randomly assigned to
existing connections. This result implies at least partly “hard-

wired,” genetically determined biases in information flow through
the cortical association macroconnectome network.
The implications of these results for connection patterns

within and between modules were then assessed because all but
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two cortical regions (anterior olfactory nucleus and indusium
griseum in M4) also connect with other modules (Fig. 2). Con-
nection weight distribution analysis within and across modules
M1–M4 revealed 894 intermodular association connections, to-
gether establishing bidirectional connections between each of the
four modules (Fig. 7A and Tables S1 and S2). Overall, ranked
qualitative estimates of connection weight indicate asymmetries
in intermodular bidirectional communication, again implying at
least partly hardwired biases in information flow through the
RCAM network, at the level of modules.
As expected (Fig. 2), intramodular connections tend to be

strong, whereas intermodular connections tend to be moderate

at best (Tables S1 and S2). Furthermore, the distribution of major
unidirectional (Fig. 7A and Tables S1–S3) connections within and
between modules also indicates that each module has a unique,
statistically significant pattern of association connections.
Sets of cortical association outputs and inputs between the

three rich-club poles differ, and asymmetries are related to
connection weight categories (Tables S4 and S5). Two organi-
zation features are obvious: major connections between the three
poles are asymmetric and all share the same orientation, whereas
medium-weight connections all share the opposite orientation;
and between sets of poles only two of the three connection
weights share the same orientation. Clearly, information flow is
heavily biased at this third level of analysis, in the network
formed between the three rich-club poles.

Module Configuration and Data Coverage. A critical question in
statistical network analysis based on empirical data is: What
minimum matrix coverage (“fill ratio”) is required for stable
overall patterns to emerge? This question was examined in two
ways for our data. First, during curation, nine sequential versions
were saved of the RCAM matrix, with coverage from 22% to
81%. Visual inspection showed that module number and com-
position depended on coverage, with a stable pattern emerging
after 65% coverage was achieved (Fig. 8A). Second, module con-
figuration stability as a function of matrix coverage was tested by
performing random deletion of connectional data (Fig. 8 B and
C). The median number of modules (100 random deletions)
approached four and then stabilized at ∼60% coverage, confirm-
ing a minimum coverage of approximately two-thirds for qualita-
tively stable patterns. In our dataset, final coverage for all
intermodular and intramodular connection subsets ranged from
72% to 93% (Table S6).

Bridge to Human Cortical Connectome. A highly desirable goal is to
leverage detailed systems neuroscience data from animals to
better understand mechanisms generating cognition in humans,
where currently experimental circuit analysis faces major obsta-
cles. For example, experimental animal histological analysis of
circuitry operates at the nanometer to micrometer level for sub-
cellular and cellular resolution, whereas human imaging methods
operate at the millimeter level for gross anatomical resolution. To
stimulate interactions between basic animal research and trans-
lational human connectome research, the anatomical distribution
of association macroconnection modules, hubs, and rich-club
members in rat were mapped onto proposed equivalents in
human cortex (Fig. 4C and Fig. S3D), based on the preponder-
ance of current evidence about the relationship between cortical
parcellation in rat and human (Fig. S2).
The underlying rationale for this approach goes back to

Brodmann (27), who examined >60 species representing seven
orders and hypothesized that there is a basic mammalian plan of
cortical structural regionalization that, like the overall body plan,
is differentiated in different species. This generalization has been
broadly confirmed, so it is reasonable to hypothesize that syn-
aptic connectional data gathered in nonhuman mammals—like
rodents (Figs. 1 and 2) and monkeys (28)—can be used to help
interpret and propose testable hypotheses about cerebral cortical
biological mechanisms in humans (at least at the macro-
connection level), where almost no such data exists or is even
possible with current MRI technology as discussed above.

Discussion
Our results provide an alternative to the traditional approach of
describing the most general level of cerebral cortex organization—
even in rodents—with reference to “lobes” named arbitrarily for
overlying bones and to linear streams of connections identified
by selective functional analysis. Systematic, data-driven, network
analysis of the rat cortical association connectome instead reveals

M3

M4

M2 M1

RCM(2)

DSM(3)

VSM(4)

CCM(1)

A

B

Fig. 7. Basic logic of cortical association module organization. (A) Schematic
diagram of topological relationships between cortical association modules
M1–M4 (color-coded as in Figs. 4 and 5 and abstracted from the patterns in
Fig. 4 and Fig. S3) with aggregate connection weights between them.
Weight estimates are based on total connection number, scaled from 1 to 5
(indicated by line thickness); statistically significant differences (Table S3) are
starred. (B) An alternate schematic view of topological relationship between
modules M1–M4, rich-club regions (within thick red outline), and three
highest ranked hubs (within thinner blue line with star, which indicates the
most connected node of all, the lateral entorhinal area) nested in rich-club
territory. The rich club and hubs are shown on the flatmap in Fig. S3C. CCM,
caudal core module (M1, red); DSM, dorsal shell module (M3, green); RCM,
rostral core module (M2, blue); VSM, ventral shell module (M4, yellow).
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novel design features (Fig. 7B). Based on its association connec-
tions, the entire rat cerebral cortex (i) is divided into four topo-
graphically and topologically nonoverlapping modules with a
core–shell organization, (ii) has a topographically continuous rich
club of regions/nodes with three poles that together span restricted
parts of all four modules, and (iii) has its three highest ranked
hubs clustered together within the caudal rich-club pole. Fur-
thermore, each of the 73 cortical regions has a unique set of input
and output association connections, and each of the four modules
has a unique pattern of intramodular and intermodular connec-
tions—a unique connectional identity that overall tends to mini-
mize connection lengths. Finally, each rich-club pole has a unique
pattern of asymmetrical input and output connections with the
other two poles.
The four association connection modules may thus form basic

morphological units of the rat cerebral cortex. This possibility is
strengthened by their predicted general localization in the ear-
liest recognizable stage of cortical embryonic development (Fig.
4D). Molecular genetic mechanisms generating this regionalization
and wiring pattern remain to be clarified.
The analysis strategy developed here provides a framework for

going on to determine the complete cortical mesoconnectome
(at the neuron-type level) and then microconnectome (at the
individual neuron level) in rodents and to establish in various
species the general plan of mammalian cortical organization and
its differentiable features, which would include commissural
connections as well as extrinsic inputs and outputs.
More globally, the structural microconnectome of nematode

worms began more than a century ago (29) with light microscopy
and is the only generally completed effort thus far (30). More

limited analyses in mammals have usually focused on isocortical
regions of the cortical plate rather than the entire cortical mantle
as here. Metaanalyses revealed four structure–function modules
(visual, auditory, somatomotor, fronto-limbic) in cat (31, 32) and
five modules quite different from those identified here in ma-
caque, although some striking similarities in hub and rich-club
members were identified (33). Discrepancies with results pre-
sented here may be due to a combination of factors, including
differences in species, nomenclature, connection weight scaling,
statistical methods, and dataset completeness. Results from two
recent mouse studies (34, 35) differed from those presented
here, primarily due to less robust connection weight scaling, dif-
ferent network analysis methods, and much lower degree of matrix
coverage (Table S7 and Fig. 8).
Our results encourage completion of the rodent central ner-

vous system connectome at the same level of data accuracy and
reliability, and of network analysis, displayed for the cerebral
cortex (Fig. 2). The current level of curation in our knowledge
management system is shown in Fig. 4B, suggesting a systematic
curation strategy for the 10 basic topographic divisions of the
central nervous system (36, 37), starting most productively with
the cerebral cortex (38) and then progressing caudally through
the cerebral nuclei, thalamus, hypothalamus, tectum, tegmen-
tum, pons, cerebellum, medulla, and spinal cord (Figs. 4A and
5A, medial). A complete rat connectome involves a matrix of 503
gray matter regions with 252,506 elements (macroconnections)
on each side of the central nervous system (16). Even this com-
prehensive matrix of macroconnections would be incomplete. At
the macroscale, a complete structure–function neurome would
also include peripheral ganglia and the muscles, glands, and other

Fig. 8. Data coverage effect on final connectome pattern. (A) Eight versions of cortical association connectome saved during curation with indicated percent
coverage (fill ratio) and number of modules (in parentheses). Matrices are based on 69 regions because the total increased to 73 during the process of
curation. (B) Empirical matrix module number (blue point at 81% coverage), eight less-covered matrices (remaining eight blue points), median module
number for randomly degraded matrices (solid red line) with corresponding minimum (red shaded area lower bound) and maximum (red shaded area upper
bound). (C) Agreement matrix similarities between empirical matrix (81% coverage) and eight incompletely covered matrices (blue points) and randomly
degraded matrices (gray points), expressed as Pearson correlation of upper matrix triangles.
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body parts innervated. As microscale connectome maps continue
to expand (39), a final point of convergence may be a nested
multiscale “zoomable” map (12, 13) of a mammalian nervous
system that reveals nonrandom network attributes of local
neural circuitry as well as large-scale nervous system structure–
function subsystems.
The global cortical association connectome presented here is

for the presumably “normal” adult albino rat, and similar data
are being generated for adult mouse (34, 35). It is now techni-
cally possible to construct similar connectomes in rodent models
of disease where cortical connectopathies (39) are hypothesized,
and it will be important to develop effective statistical methods
for testing these hypotheses by comparing connectomes at the
cellular (micrometer) and synaptic (nanometer) levels for a
particular species—an approach already being applied success-
fully at the regional (millimeter) level for human imaging studies
(40). It will be even more challenging to develop rigorous com-
parisons of connectomes between species, where the difficult
problem of establishing homologies like those proposed here
between rodent and human cortical regionalization (Fig. S2) is
fundamental (41). However, developments along these lines

could eventually lead to connectome-scale association studies at
multiple scales of resolution and even involving multiple species—
similar in principle to genome-scale association studies (42) and
perhaps even correlated with them as a powerful new approach
to the classification, etiology, and treatment of connectopathies
underlying mental health disease.

Materials and Methods
Methods for the underlying analysis are described in detail in SI Materials
and Methods. Briefly, data were curated for the entire cerebral cortical
mantle, including both isocortex (neocortex) and allocortex (paleocortex
and archicortex), and thus including all regions associated with the cortical
plate and underlying cortical subplate (16). All relevant data in the primary
literature were interpreted in the only available standard, hierarchically
organized, annotated nomenclature for the rat (16) and compiled with sup-
porting metadata in BAMS (brancusi.usc.edu; refs. 8, 43, and 44) by using
descriptive nomenclature defined in the Foundational Model of Connectivity
(12, 13). Cortical association connection reports in BAMS were encoded with
ranked qualitative connection weights based on pathway tracing method-
ology, injection site location and extent, and anatomical density. Network
analysis for modularity, small world organization, hubs, and rich club
followed standard procedures described in refs. 18 and 19.
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