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According to recent evidence, stimulus-tuned neurons in the
cerebral cortex exhibit reduced variability in firing rate across trials,
after the onset of a stimulus. However, in order for a reduction in
variability to be directly relevant to perception and behavior, it must
be realized within trial—the pattern of activity must be relatively
stable. Stability is characteristic of decision states in recurrent attrac-
tor networks, and its possible relevance to conscious perception has
been suggested by theorists. However, it is difficult to measure on
the within-trial time scales and broadly distributed spatial scales
relevant to perception. We recorded simultaneous magneto- and
electroencephalography (MEG and EEG) data while subjects ob-
served threshold-level visual stimuli. Pattern-similarity analyses ap-
plied to the data from MEG gradiometers uncovered a pronounced
decrease in variability across trials after stimulus onset, consistent
with previous single-unit data. This was followed by a significant
divergence in variability depending upon subjective report (seen/
unseen), with seen trials exhibiting less variability. Applying the
same analysis across time, within trial, we found that the latter
effect coincided in time with a difference in the stability of the
pattern of activity. Stability alone could be used to classify data
from individual trials as “seen” or “unseen.” The same metric applied
to EEG data from patients with disorders of consciousness exposed
to auditory stimuli diverged parametrically according to clinically
diagnosed level of consciousness. Differences in signal strength
could not account for these results. Conscious perception may in-
volve the transient stabilization of distributed cortical networks,
corresponding to a global brain-scale decision.
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Recent evidence suggests that population neuronal activity in
stimulus-tuned regions of cortex is reliably drawn to the same

region of state space in response to a stimulus (1). Churchland
et al. (1) analyzed recordings frommany different areas of monkey
cortex, under a variety of different task conditions, and found a
common decrease in intertrial firing-rate variability beginning just
after stimulus onset. At the macroscopic level, intertrial variability
of the pattern of activity, measured using functional MRI (fMRI),
is reduced immediately following stimulus onset (2) and has been
shown to correlate with perception (3) and explicit recognition
memory (4). However, to be relevant for decision making and
behavior, a reduction in variability must be realized within trial, in
the form of a stable pattern of activity.
Both stability (within episode) and reproducibility (between

episodes) are characteristic of decision states in recurrent at-
tractor networks: When presented with a learned input pattern
of sufficient intensity, the activity within the network will evolve
from an arbitrary initial state toward a relatively low-energy stable
state that can be read out as the network’s decision (completion,
recognition, or grouping) given the input (5, 6). Theorists have
proposed that recurrent network dynamics in general, and stability
in particular, might be relevant to conscious perception (7–11),

with nonlocal recurrent interactions selecting the information that
becomes consciously perceived (12–14). The dynamic selection
of a stable global network would tend to further stabilize local
populations via feedback connections. Thus, we predicted that the
global pattern of neural activity in response to a threshold-level
sensory stimulus will be more stable when subjects report having a
conscious percept, with potentially a slight decrease in the net
global level of activity. A prior computational model (9, 15) pre-
dicted that a period of stability should appear immediately fol-
lowing the onset of the late-positive potential (LPP, often referred
to as the P300), and lasting ∼200–300 ms.
We recorded simultaneous magnetoencephalography (MEG)

and electroencephalography (EEG) measurements while sub-
jects performed a category discrimination task on threshold-level
visual stimuli rendered nearly invisible by dichoptic color fusion.
We used a measure of angular dispersion over the entire array
of MEG gradiometers to test our prediction that the global
pattern of neuronal activity evoked by a stimulus will tend to be
more stable when the subject reports having consciously seen
the stimulus.
In addition to covarying with subjective reports in response to

threshold-level stimulation, a good signature of conscious per-
ception should also covary with conscious state (e.g., wakefulness
versus deep sleep) in response to suprathreshold stimulation.
Thus, to test the generality of our hypothesis we applied our
analysis to independent EEG data from a large cohort of pa-
tients with disorders of consciousness (DOC), who were exposed
to auditory stimuli (16–18). This analysis also tests whether sta-
bility, as a signature of conscious perception, generalizes to a dif-
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ferent sensory modality (audition) and links research on conscious
state (e.g., coma versus awake) with research on conscious per-
ception (e.g., seen versus unseen stimuli in an awake individual).

Measuring the Variability of Patterns of Activity
A given macroscopic pattern of neural activity in the brain will
produce a distinct, albeit noisy, spatial pattern of activity across
an array of M/EEG sensors. Spatiotemporal variability in the
underlying pattern of neural activity will result in variability in
the mutivariate pattern of activity at the sensor level. There are a
number of ways that one might measure variability in a multi-
variate (multidimensional) space, and all are essentially mea-
sures of representational similarity (19): the degree to which the
different patterns resemble one another. Treating each sample
across N sensors as a vector in an N-dimensional space, similarity
can be computed as the degree to which a set of such vectors are
all pointing in the same direction (Fig. 1), called the “directional
variance” [or “circular variance” (20)]: With the norm (or
length) of each vector set to 1, the norm of the mean of the
vectors gives the degree to which the vectors are all pointing in
the same direction, called the directional coherence (R, where
0<R< 1). This gives the degree to which the associated patterns
collectively resemble one another. The directional variance is
simply 1 minus the directional coherence (1−RÞ. “Similarly to
the variance of linear data, the smaller the value of the circular
variance, the more concentrated the distribution” (ref. 20, p. 32).
A set of vectors pointing in the same direction, even if of

different lengths, are all considered to have the same pattern,
because the correlation coefficient between any two of them will
be 1.0. A stable pattern is one that remains the same over time.
A reproducible pattern is one that is the same every time it is
instantiated (i.e., across trials) (3). Directional variance is com-
puted in the same way in either case (Fig. 1B). We use the label
dva to stand for directional variance, and 1 – dva is the di-
rectional coherence (stability within trial or reproducibility be-
tween trials). Note that stability/reproducibility is high when dva
is low. We report directional variance (dva) in all figures, rather
than stability or reproducibility (1 − dva), adopting the same
convention as prior work using the Fano factor (1), which is also
a measure of dispersion.
One important caveat regarding dva (and possibly all measures

of representational similarity) concerns the role of noise. Two
sets of equally stable vectors will score differently if one set is
weak and the other strong relative to the noise (called the signal-
to-noise ratio, or SNR): For very weak patterns, even if perfectly
stable, the angle of the vectors will be mostly determined by the
noise. Unfortunately, the relationship between dva and SNR is
highly nonlinear, especially in the range where the signal ampli-
tude is not much larger than the noise amplitude (Fig. 1C, Inset),
as is the case for EEG, MEG, and fMRI. So, in this context, as in
ref. 1, differences in signal amplitude are a potential confound.
We address this in two ways. One is to measure the average norm
of the vectors and make sure that lower variance is not associated
with a larger norm. The other is to apply the mean-matching
procedure described by ref. 1 to the vector norms (Materials and
Methods) and verify that the result holds even when the norms are
made to be equal.

Results
Summary of Experiment and Task. Stimuli were line drawings of
faces and houses, rendered difficult to see by presenting them
dichoptically in two opposing isoluminant colors (dichoptic color
masking; SI Appendix, Fig. S1). Visibility was manipulated by
varying the color contrast over a range of five different peri-
threshold levels randomly interleaved across trials. Stimuli were
always presented with the opposite color assignment in the two
eyes. One-third of stimuli were uniform color patches with no
object, subjectively indistinguishable from low-contrast objects.
Subjects were not told about the control stimuli. Stimulus du-
ration was 50 ms, and then at 1,000 ms the fixation point flick-
ered, cueing the subject to respond. The task was to discriminate

the object category (face/house), guessing if necessary, and then
to report whether or not the object had been “seen.” Subjects
were explicitly instructed to respond “unseen” only if they saw
nothing at all inside the yellow square, and to respond “seen”
even if what they saw was not clearly recognized. This choice of
task should not be taken to imply an assumption that perception
is dichotomous in the brain. All seen-versus-unseen data analyses
were restricted to a single threshold level of color contrast
chosen individually for each subject, summarized in the hori-
zontal bar at the bottom of SI Appendix, Fig. S2A.

Behavioral Responses. SI Appendix, Fig. S2 summarizes the be-
havioral results. Mean accuracy on the face–house identification
task (SI Appendix, Fig. S2A; computed exclusive of control tri-
als), from lowest to highest color contrast, ranged from chance
level (53.8% correct, P > 0.5) to near ceiling (91.0% correct, P < <
0.01). The mean proportion of face and house stimuli reported
as seen (SI Appendix, Fig. S2B) remained constant at ∼0.3 across
contrast levels 1 and 2, and then increased linearly to ∼0.8 at
contrast level 5. The proportion seen for blank control stimuli

Fig. 1. Schematic illustration of dva. dva is explained graphically in A and B;
C and D show the results of a simulation used to illustrate its properties. v1,
v2, v3, and v4 are samples taken at four successive time steps in a single trial
epoch, across a multichannel sensor array (A; time is on the horizontal axis
and sensor on the vertical). v1, . . ., v4 can also be treated as vectors in n di-
mensions, where each element (dimension) carries a measurement from one
of the n channels (B). dva is a measure of dispersion in the directionality of
the vectors (dashed circle in B). dva can be computed for any number of
channels, but in Bwe illustrate a hypothetical subset of three channels. dva is
mathematically independent of the length of the vectors (L2 norm or spatial
power), and depends only on their orientation with respect to one another.
According to our hypothesis successive patterns of activity on seen trials,
within a certain window of time, are more like the blue vectors—consistently
pointing in the same direction. (C) The average over 500 simulated trials
where a random stable pattern emerges from 100 to 300 ms (with time on
the horizontal axis and sensor on the vertical; Materials and Methods).
(D) The average dva and L2 norm over this set of simulated trials. Note that
dva is sensitive to the presence of the pattern even though there is no differ-
ence in the mean norm in this simulation (Materials and Methods). Note also
that the total power, or norm, of the mean (i.e., the norm over each column in
C; gray line in D) is not equivalent to the mean norm (black line in D). This can
explain why conscious perceptions is commonly associated with larger-am-
plitude evoked potentials: Trial averaging highlights stable/reliable patterns
and suppresses unstable/unreliable ones, even if the spatial energy is the
same on single trials. The relationship between dva and the SNR is highly non-
linear (C, Inset), which must be taken in to account when analyzing the data.
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(SI Appendix, Fig. S2E) was roughly constant across all contrast
levels, at ∼0.25, which was not significantly different from the
proportion seen for object stimuli at contrast levels 1 and 2 (P >
0.1, signed rank test). This suggests that object stimuli at contrast
levels 1 and 2 were not perceived differently from blank control
stimuli. This latter observation is further supported by the fact
that detection d-prime (d′) (SI Appendix, Fig. S2C; the sensitivity
of seen responses to the presence of an object; Materials and
Methods) was not significantly different from zero for either
contrast level 1 or 2. At contrast level 2, discrimination d′ (i.e.,
for faces versus houses; SI Appendix, Fig. S2D) was significantly
greater than zero (P < 0.01, signed rank test; Materials and
Methods), but the difference between detection and discrimina-
tion d′ was not significant (P < 0.1, signed rank test).

Evoked Responses and Time-Frequency Analyses. We found no sig-
nificant differences in the evoked responses to the control stimuli
across the five levels of color contrast in either the EEG or MEG
data (SI Appendix, Fig. S3 A and B). However, when we exam-
ined the responses to objects rather than blank control stimuli
(SI Appendix, Fig. S3 C and D) we found a clear and significant
modulation of the amplitude of the LPP EEG component
(400–700 ms after stimulus onset; SI Appendix, Fig. S3C) as a
function of color contrast, and a significant, although not as pro-
nounced, modulation in roughly the same time window in the
MEG data (SI Appendix, Fig. S3D).
We compared the amplitude of the late-positive evoked po-

tential (LPP) on seen and unseen trials. Recall that for all seen–
unseen analyses we chose a single, threshold level of color con-
trast for each subject so that the physical properties of the stimuli
were fixed and only the subjective report varied. Consistent with
prior studies (21) we found a significant difference in the am-
plitude of the LPP for seen versus unseen stimuli at parietal
EEG electrodes (P < 0.001, cluster-based permutation test),
from ∼500–700 ms (SI Appendix, Fig. S4 A and B). We found no
time point at which the LPP evoked response to blank control
stimuli was significantly different from the response to unseen
object stimuli (P > 0.2 signed-rank test).
Previous studies comparing trials with seen and unseen sub-

jective reports have found that reports of a conscious percept are
accompanied by a relative decrease in power in the alpha band
and low beta band (22–24) and a relative increase in power in the
gamma band (22–26). We replicated these prior observations by
performing a time-frequency decomposition on the output of
spatial filters derived (for each subject) based on the difference
between seen and unseen trials (27) among the MEG gradiom-
eters. This analysis revealed an increase in high-gamma power
(∼60–80 Hz), coincident in time with the LPP (at ∼500 ms), and
a later suppression of alpha and low-beta power between 500 and
1,000 ms (P < 0.01 corrected; Materials and Methods and SI
Appendix, Fig. S4C). We also found a decrease in alpha power,
within this same time window, in the output of spatial filters
derived based on the difference between face and house trials
(P < 0.01, corrected;Materials and Methods and SI Appendix, Fig.
S4D), but with no significant increase in gamma power.

Norm (Overall Intensity) of the Patterns. For both object and con-
trol stimuli, where there was a difference in the norm, the norm
was greater for unseen stimuli (Figs. 2E and 3E). This is the op-
posite of what might indicate an artifactual difference in variability,
and thus the results without mean matching are conservative. Note
also that for a biologically plausible recurrent network (i.e., with a
mix of excitatory and inhibitory connections), convergence to-
ward a stable state predicts a decrease in the overall (free) energy
in the network, and hence a decrease in the norm, which is what
we observe overall in the trial epochs: an initial small increase
in the norm just after stimulus onset, followed by a drop in the
norm reaching a minimum at about +450 ms (Figs. 2E and 3E).
For blank control stimuli, the norm was significantly lower on
trials where the stimulus provoked an illusory conscious percept
(∼600–800 ms; Fig. 3E), which is both counterintuitive and con-

sistent with our hypothesis. A similar pattern appears in the pa-
tient data (discussed below).

Across-Trial Pattern Variability (Reproducibility). We tested the
across-trial directional variance of stimulus-evoked patterns of
activity (Materials and Methods), by computing dva independently
at each time point, across trials. This analysis revealed a signif-
icant decrease in variability (increased reproducibility) beginning
∼150–200 ms after stimulus onset (P < 0.01 corrected, signed-
rank test, for both seen and unseen trials; Fig. 2A), remarkably
similar to prior single-unit data in monkeys (1). This was fol-
lowed by a significant difference in variability between seen and
unseen trials from ∼400–900 ms poststimulus, with seen trials
exhibiting less variability across trials (P < 0.01 corrected, clus-
ter-based permuted signed-rank test, P < 0.01 samplewise
threshold; Fig. 2A). We also found a significant difference at
∼100–200 ms (P < 0.01 corrected). The results remain significant
after performing the mean matching procedure of ref. 1 (Fig. 2 B
and D). Thus, seen trials are more reproducible compared with
unseen trials at the same threshold level of color contrast.
A significant difference in dva was also found for seen versus

unseen blank control stimuli throughout the trial epoch (Fig.
3A). Although the temporal extent of this difference was greatly
reduced by the mean-matching procedure, the difference in the
norm was in the opposite direction of what might indicate an
artifactual difference in dva. Thus, a decrease in energy (norm)
was associated with an increase in stability (lower dva). This
pattern is inconsistent with the notion that perceptual decisions
are heralded by an increase in activity but is consistent with the
settling of a recurrent network into a decision state. In addition,
even with mean matching the difference remained significant at
∼100–200 ms poststimulus and ∼950–1,050 ms (Fig. 3B and cf.
Fig. 2B). Interestingly, mean matching also revealed a difference
at and slightly before the time of stimulus onset for blank control
stimuli, consistent with prestimulus activity playing a role in
nonveridical perception (28).

Fig. 2. Reproducibility, stability, and vector norm for object trials. Across-
trial and within-trial dva and spatial L2 norm, for noncontrol (object) trials,
are shown both with (left column) and without (right column) meanmatching.
(A) Across-trial directional variance (1 – reproducibility) as a function of time
for unseen (gray) and seen (black) target-present trials. Stars at the bottom
of each panel mark time points where the difference unseen – seen is sig-
nificantly greater than chance (gray, P < 0.05; black, P < 0.01, both corrected
for temporal nonindependence using a cluster-based permutation test).
(C) Within-trial directional variance (1 – stability). (E) L2 norm of the mean
vector within the sliding window. (B, D, and F) Same as A, C, and E after
performing the mean-matching procedure (1) on the L2 norm. Analyses were
performed using a 100-ms sliding window.
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Within-Trial Pattern Variability (Stability). We measured dva within
a 100-ms-wide sliding window over the entire array of 204 planar
gradiometers at a fixed threshold level of color contrast chosen
individually for each subject (Materials and Methods; unless
otherwise indicated, all figures present results for a 100-ms-wide
sliding window). We found a short-lived but significant differ-
ence in dva between seen and unseen trials at ∼100 ms post-
stimulus (Fig. 2C, P < 0.01, corrected), followed by a general
peak in variability at ∼150 ms. This was followed by a sustained
significant difference in dva between seen and unseen trials from
∼500–800 ms, with seen trials exhibiting greater stability (lower
variability) consistent with our prediction. This was mainly
accounted for by a destabilization of the pattern on unseen trials
(P < 0.05, dva at 750 ± 10 ms versus dva at 370 ± 10 ms).
As an independent verification of our implementation of di-

rectional variance, we repeated the analysis using a singular-
value decomposition (SVD) to measure stability: The variance
accounted for by the first singular vector is higher when the
pattern of activity within a given sensor × time-sample window is
more stable (see SI Appendix, Fig. S5 for details). We obtained a
qualitatively similar result using the SVD (SI Appendix, Fig. S5),
although dva seems to be a more sensitive measure. Importantly,
there were no significant differences in the norm of the response
vectors that could account for the difference in stability. As a
more stringent test, the analysis was repeated using the mean-
matching procedure of ref. 1, and the effect remained significant
(Fig. 2D), effectively ruling out even a small difference in signal
strength as a potential explanation. Although the main differ-
ence in stability overlapped in time with the peak of the LPP, the
peak difference in stability lagged behind the peak difference in
the LPP by ∼140 ms (P < 0.02, signed-rank test; Fig. 4 C and D).
As mentioned previously, we found a significant reduction in

the power of alpha oscillations for seen versus unseen stimuli
during the same time period as the difference in stability (SI

Appendix, Fig. S4). Because alpha oscillations tend to have a
large amplitude, it is conceivable that their suppression might
create an artifactual difference in stability, especially if the os-
cillations vary from above to below the noise floor. To rule out
this possible explanation we reran the stability analysis after
applying a fifth-order Butterworth bandstop filter (7–13 Hz stop
band) to the data. The results remained unchanged (SI Appendix,
Fig. S6).
Although the level of color contrast was fixed for these analyses

(Materials and Methods), the probability of a correct response and
the probability of a seen response are tightly coupled in general
across the range of color contrasts used (SI Appendix, Fig. S2 A
and B). Thus, any effects associated with subjective report might
be confounded by a difference in task performance. To control for
this, we compared the stability associated with seen and unseen
trials for correct responses only and found that the main results
survived (SI Appendix, Fig. S7 A and B). In addition, we found no
difference in stability for correct versus incorrect unseen trials (SI
Appendix, Fig. S7 C and D). The number of incorrect seen trials
was too small to allow for the same analysis to be applied only to
seen trials.
We chose to use a 100-ms sliding window to capture the slow

sustained dynamics associated with conscious processing. How-
ever, we also performed the stability analysis across a range of
different sliding-window widths (SI Appendix, Fig. S8). The effect
is not apparent for windows below ∼80 ms in width and has a
consistent ∼300-ms duration across a range of longer window
sizes. A prior computational model (9, 15) predicted that this
period of stability should appear immediately following the onset

Fig. 3. Reproducibility, stability, and vector norm for blank control trials.
A–F are the same as in Fig. 2, but for target-absent (control) trials. In this
case, reports of “seeing” an object reflect endogenously generated per-
ceptual false positives. Data were noisier because there were fewer trials of
this type. Because no object was present on the screen, these trials count as
instances where perceptual decision making was decoupled and decon-
founded from bottom-up sensory information processing. Note that the
significant difference in the norm at ∼600–800 ms (E) is in the opposite di-
rection of what might otherwise lead to a lower average dva for seen trials
(A), and thus the observed difference in across-trial variability (re-
producibility) cannot be tied to a simple difference in signal strength. The
difference in the norm is also the opposite of what one might intuitively
predict for seen versus unseen trials. Recurrent network models, however,
allow for higher energy in a network that fails to settle into a decision state.
The timing of the early difference in within-trial variability (stability) is
consistent with that of the visual-awareness negativity (88).

Fig. 4. Specificity and latency of dva and the LPP. In this figure we compare
the specificity of dva and the LPP to the “seen – unseen” dimension and also
compare the latency of the peak difference in dva (seen − unseen) with that
of the LPP. (A) Evoked potential at parietal EEG electrode Pz and (B) within-
trial directional variance for seen face (gray) and seen house (black) stimuli
at maximum color contrast. The LPP, which is higher in amplitude for seen
versus unseen subjective reports, is also significantly higher in amplitude for
face versus house stimuli (A). Gray and black stars at the bottom of the panel
indicate time points where the difference is greater than chance at P < 0.05
and P < 0.01, respectively (corrected for temporal nonindependence). No
significant differences between face and house stimuli were found for
within-trial directional variance (stability, B), suggesting that stability is a
more specific indicator of a positive subjective report. (C) Amplitude-nor-
malized time course of the difference potential at electrode Pz (P300, gray)
and the difference in directional variance, seen – unseen object. The dif-
ference in the latency of the peaks was 140 ms (P < 0.01, two-sided signed-
rank test; Materials and Methods). (D) Scatter plot of the time of peak dif-
ference between evoked potentials at Pz, versus the time of peak difference
in directional variance (each circle is one subject, n = 12). Gray cross shows
the mean and SE of both variables. The peak stability effect follows the peak
difference in the LPP, consistent with the notion of the LPP as an “ignition”
event, the outcome of which is a transient period of relative stability of
perceptual information.
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of the LPP and last ∼200–300 ms, which is very close to what
we found.
It might seem surprising that the norm of the activation vec-

tors did not differ significantly as a function of subjective report
(Fig. 2E), given the difference in amplitude of the LPP. How-
ever, we point out that trial averaging suppresses activity whose
spatial distribution is variable across trials, even if the net activity
across sensors (L2 norm or rms) is high on individual trials (Fig.
1D). Also, although individual populations captured by one or
more sensors might increase their activity when their preferred
stimulus is consciously perceived (29), the spatial norm across
the sensor array may or may not differ, depending on the change
in activity at other sensors.

Single-Trial Classification of Subjective State. A nearest-mean classi-
fier was able to correctly predict the subjective response (seen or
unseen) on individual trials based only on the time course of di-
rectional variance (63.7% correct, d′ = 0.69 ± 0.1 SEM, P < 0.001
two-sided signed-rank test). As with all of the seen/unseen anal-
yses, this analysis was restricted to a fixed threshold-level of color
contrast chosen for each subject. The performance of the same
classifier when using a matched spatial filter to reduce the data to
one dimension (27) was not significantly different from chance
(51.3% correct, d′ = 0.066 ± 0.053 SEM, P = 0.3 two-sided signed-
rank test).

Selectivity. The LPP (often referred to loosely as the P300) is a
well-known correlate of conscious perception (12, 30). However,
the LPP is also significantly modulated by the relative frequency
of different stimuli, independent of conscious perception, as in
the well-known oddball paradigm (30). In our data, we found
that the LPP was significantly larger in response to seen face
stimuli, compared with its response to seen house stimuli (P <
0.01 corrected, at maximum color contrast, correct responses
only; Fig. 4A). Within-trial directional variance (stability) was
relatively insensitive to the stimulus category (Fig. 4B) but highly
sensitive to the seen–unseen contrast (Fig. 2 C and D), sug-
gesting that stability is a comparatively selective signature of
conscious perception.

Estimation of Conscious State in DOC Patients.We measured within-
trial directional variance (100-ms sliding window) and L2 norm
in scalp EEG data previously acquired from a cohort of 165
patients with DOC and 12 healthy control subjects (CTRLs)
using 256-electrode geodesic sensor nets (EGI Inc.). We used a
subset of 166 of the 256 electrodes, excluding electrodes around
the periphery of the nets that are often noisy in bedside re-
cordings. Details of this dataset acquired from patients at the
Hôpital Pitié Salpêtriere have been reported elsewhere (16–18).
Patients were evaluated by trained neurologists using the French
version of the Revised Coma Recovery Scale (31). This scale
allows for the behavioral classification of the patient as being in a
vegetative state (VS), minimally conscious state (MCS), or (re-
covered) conscious state (CS). As part of an auditory stimulation
protocol, subjects were repeatedly exposed to trains of five 50-ms
auditory beeps with a 150-ms interstimulus interval (ISI) (32). We
treated each tone sequence as a “ping” of the brain, allowing us to
measure how the brain responds, similar to the approach that has
recently been taken up using transcranial magnetic stimulation (33).
Fig. 5 summarizes the results of our analysis of these data. The

mean time course of dva and norm diverged parametrically
according to conscious state throughout the period of stimula-
tion, with maximal divergence roughly 150 ms after the onset of
the last beep (SI Appendix, Fig. S9). We computed the mean
directional variance and the mean vector norm over the period
from 600 to 1,000 ms after the onset of the train of beeps (the
final beep in each train was at 600 ms) separately for each patient
category. For each variable we also computed the difference
between its mean value in this time window and its value at the
time of stimulus onset (i.e., change relative to baseline; Fig. 5A).
The L2 norm was highest for the VS patients and lowest for the

controls, both in absolute terms and relative to the value at
stimulus-train onset (both P < 0.01, one-way ANOVA, df = 3).
Directional variance, however, increased in absolute terms with
increasing conscious state but decreased relative to baseline
(both P < 0.0001, one-way ANOVA, df = 3) (Fig. 5A). This
suggests that the healthy brain maintains a higher overall level of
variability, but a greater reduction in variability in response to a
stimulus, consistent with the idea that the brain normally oper-
ates at or near the point of criticality (34–36)—capable of a much
greater number of different states, but also a much greater re-
duction in uncertainty when one of those states is attained (37).
The area under the receiver operating characteristic curve

(AUC, for area under the curve) for baseline-subtracted dva
shows that this variable can discriminate between all pairs of the
three patient classes (MCS-VS 0.63 ± 0.05 SEM, P < 0.005; CS-
VS 0.74 ± 0.05 SEM, P < 0.0001; CS-MCS 0.65 ± 0.06 SEM, P <
0.02, permutation test; Fig. 5B). The AUC for the L2 norm was
not significantly different from chance (0.5) for MCS versus VS
(0.54 ± 0.048 SEM, P < 0.2, consistent with Fig. 5A), but the
norm could discriminate between CS and VS, and between CS
and MCS patients (CS-VS 0.68 ± 0.058 SEM, P < 0.01; CS-MCS
0.64 ± 0.062 SEM, P < 0.03; Fig. 5B). A linear-discriminant
analysis classifier applied to the combined dva and L2 norm from
all patients and control subjects was able to correctly classify the
conscious state from among the four possibilities (VS, MCS, CS,
and CTRL) far better than expected by chance (49.6% correct,
P < 0.01, permutation test, bootstrap mean = 26.5%). When the
classifier assigned the incorrect label, it tended to assign one of
the neighboring states (e.g., mistaking VS for MCS; Fig. 5 C and
D). Importantly, the classifier was able to correctly separate the
patient categories, exclusive of the normal controls (50% correct,
P < 0.01, permutation test, with bootstrap mean = 33%) and
most importantly was able to correctly distinguish MCS from VS

Fig. 5. Stability and norm in DOC patients. (A) Mean (± SEM) dva and L2
norm over the time period from 600 to 1,000 ms after the onset of the first
tone in the tone sequence (0–400 ms after onset of the last tone; SI Ap-
pendix, Fig. S9) for each of the three patient categories and the healthy
control subjects. Bottom row of A shows the same two measures, each rel-
ative to its value at the onset of the first tone (t0). (B) The area under the
receiver operating characteristic (AUC) gives an unbiased measure of the
degree to which each of the three pairs of patient categories can be dis-
tinguished from each other based on dva (Left) and the spatial L2 norm
(Right). (C and D) Confusion matrices summarizing the results of a linear
discriminant analysis (LDA) applied to the patient data. The analysis was run
once on all of the patient data (C; 50% correct, P < 0.01, chance = 33%) and
again on only the data from MCS and VS patients (D; 65% correct, P < 0.01,
chance = 50%), which are more challenging to distinguish. (E) A scatter plot
of the dva versus norm, both relative to t0 (A, bottom row), with each
patient category color coded as in A. abs, absolute; rel, relative; Δ, change
relative to baseline.
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patients (65% correct, P < 0.01, permutation test, bootstrap
mean = 49.6%).
Taken together these results demonstrate that a very simple

transformation of the data into the total magnitude of activation
(norm) and the net change in temporal variability (within-trial
dva) in response to a stimulus is highly sensitive to the conscious
state of human subjects (Fig. 5F). Counter to intuition, loss of
consciousness and greater degree of brain damage was associ-
ated with a stronger overall neuronal response to stimulation.
Interestingly, this latter observation confirms recent reports of
consistently and significantly higher-amplitude transient EEG
responses to cortical magnetic stimulation in VS compared with
MCS or locked-in patients (38) and in non-REM sleep compared
with REM sleep or wakefulness (39). This pattern is suggestive
of “runaway” activation that, unlike runaway activation in epi-
lepsy, is not self-reinforcing, perhaps owing to a general disruption
of both excitatory and inhibitory feedback pathways.

Transient Stability Versus Low-Frequency Energy. A recent study
found that conscious perception was correlated with a large slow
event-related field and a significant increase in phase locking and
spectral power in the 0.05–1.0 Hz range (40). This finding may
also arise from the stability phenomenon reported here. A sim-
ple monophasic “on–off” episode during which a stable pattern
of activity appears over the sensor array (as in Fig. 1C), seen
from the point of view of a single sensor or local cluster of
sensors, will produce both significant energy and phase locking in
the frequency whose period is approximately twice the duration
of the episode of stability (SI Appendix, Fig. S10). Using simu-
lated data (as in Fig. 1C, see Materials and Methods) we show
that a discrete episode of stability in the pattern of activity over
an array of sensors of duration 1 s, results in both significant
phase locking and significant spectral power at ∼0.5 Hz (SI
Appendix, Fig. S10). The same also results in a large slow evoked
potential at individual sensors, even though total spatial power
(L2 norm) was constant throughout all of the simulated epochs
(Fig. 1D). In addition, the preferred phase for sensors showing a
significant effect is guaranteed to cluster around the peak and
trough of the low-frequency “cycle” because significant effects
have a high (positive or negative) amplitude, and the “phase” of
a monophasic event is tied to its amplitude. Thus, stability can
account for the low-frequency energy and phase locking associ-
ated with conscious perception (40) but provides a different per-
spective on the underlying cause. Note that whereas “<1 Hz
energy” is ill-defined for data windows shorter than ∼500 ms,
stability is well-defined for any window size (minimum two sam-
ples; SI Appendix, Fig. S8).

General Discussion
Using MEG and EEG in human subjects, we investigated
changes in the variability of cortical responses to threshold-level
stimuli and their implications for the encoding of sensory in-
formation. Although the study of variability in neural responses
is a relatively recent line of inquiry in human neuroscience (2–4,
41), it has been a major area of research in the macaque, going
back at least to the seminal study of Britten et al. (42) who
showed, by combining single-unit data with theory, that corre-
lated trial-to-trial variability is associated with reduced fidelity of
neuronal signaling.* Subsequent work showed that presentation
of a stimulus reduces the magnitude of slow fluctuations in
correlated trial-to-trial variability (43) and that directing atten-
tion to a stimulus further reduces trial-to-trial variability in the
neuronal response (44). Others have gone on to show that
fluctuations in spontaneous cortical activity over time may be
correlated between neurons separated by as much as 10 mm (45,
46), and that these correlations are cut in half when attention is
directed toward a stimulus (47, 48). Collectively, these studies

lead to a picture in which cognitive state modulates neuronal
response variability, resulting in improved sensory processing.
The present study adds to our understanding of the relation-

ship between neuronal variability and perception in humans by
showing direct evidence that measures of response variability
predict subjective report, and by examining these in patients with
DOC. Our measure of variability was defined in a multivariate
space, incorporating activity from broadly distributed areas of
cortex, thus distinguishing our study from prior studies that have
primarily used univariate measures such as the Fano factor. Most
importantly, whereas previous studies have focused on variability
across trials, we also examined variability within trial, which re-
flects the stability of the distributed neuronal response (Fig. 2 A
and C). Variance across trials cannot play a causal role in cog-
nitive and behavioral phenomena that manifest within each
single trial (such as whether or not a subject reports having seen
a visual object), but within-trial variability across a short span of
time (stability) can.
Previous research has shown that the duration and level of

activation of neural activity encoding a perceptual object or
feature tend to be higher when that object or feature is reported
as consciously perceived (29, 49). Dynamic long-range phase
synchrony is also enhanced when visual stimuli are consciously
seen (14, 22, 50). Importantly, recurrent rather than feed-for-
ward interactions have been implicated in conscious perception
(8, 51), and such interactions may reflect a process of conver-
gence toward a transiently stable state (9). The notion of tran-
sient stability (or metastability) has been invoked in many
theoretical accounts of conscious sensory perception (9, 11, 13,
15, 37, 52, 53). Here we asked whether reports of a conscious
sensation in response to a sensory stimulus are preceded by a
transient period of relative stability (reduced variability) of
neuronal activity following the onset of the stimulus, compared
with when no sensation is reported.
The presence of stable attractor states is a computationally

useful property of recurrent networks (5, 6). Convergence to a
stable state takes longer than feed-forward decisions but results
in a sustained activity pattern that is robust to perturbation and
provides a transient internal “memory” of the stimulus after it is
gone. The stable state can be thought of as an optimal comple-
tion of the current input, and thus represents a “high-certainty”
state. Temporal stability at the population or systems level will
also increase the impact of a given pattern of activity on other
neurons that are computing a weighted temporal integral over
that pattern. The resulting slow sustained activation may be es-
sential for conscious perception owing to the long-range corti-
cocortical connections that are thought to be involved (54).
Thus, the notion of stability is consistent with the properties that
are thought to characterize conscious brain states: They take
longer to develop (55, 56) than purely feed-forward processes,
such as certain fear responses that can proceed outside of
awareness (57); they arise late in the sequence of neural events
following stimulus onset (58), are sustained over time (22, 29, 49,
54, 59), and are associated with high metacognitive certainty (60–
62) and objective discrimination accuracy (3, 14, 21).
The P3 LPP is thought to reflect a domain-general processing

event and has been directly associated with explicit perceptual
decision making (63). For example, data from whole-cell re-
cordings in mouse barrel cortex point to a causal role for sus-
tained late excitation (∼300–400 ms) in sensory perceptual
decision making (64). We replicated the prior observation of a
significant difference between seen and unseen trials in the LPP
(21), but we also found that the onset of the LPP (SI Appendix,
Fig. S4A) seemed delayed compared with prior studies using
achromatic stimuli (21). The late LPP response may have been
due to the nature of the stimuli used in the present paradigm,
with boundaries defined by color and not by luminance, which
may have been processed primarily by the slower parvocellular
pathway. Stimuli of low color contrast are perceived as having a
longer duration (65) and reaction times are slower when edges
are defined only by differences in color and not luminance (66).

*In the literature, “correlated variability” refers to variability across trials that is shared
between neurons or populations of neurons.
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In general the latency of the LPP might vary depending on the
strength of the sensory evidence, which would in turn affect the
rate at which it is accumulated, consistent with prior reports (63).
One might argue that our results can also be interpreted in

terms of working memory (WM), owing to the imposed 1-s in-
terval between stimulus onset and responding. However, in a
typical WM study the task itself is designed to load WM, and
WM effects are only observed when its capacity is loaded, and
are largely absent when only a single item is maintained (67, 68).
In our task the load placed on WM was trivial, because subjects
were asked only to report whether the target was a face or a
house. In our data, possible evidence of WM involvement [a
sustained negative deflection in the evoked potential after the
LPP (68)] appears well after the cutoff of the stability effect (SI
Appendix, Fig. S3C, ∼1,000–1,200 ms). Also, given the relatively
long response times associated with isoluminant chromatic
stimuli (66), subjects may have taken close to 1 s to respond even
without the imposed delay. In general it is difficult to separate
WM from conscious perception, both conceptually and empiri-
cally (69). Even if subjects had made speeded responses in our
task one could always argue that WM was engaged any time the
subject was asked to produce a response and/or pay attention to
and take note of stimuli.
A specific empirical challenge along these lines comes from

the recent work of Pitts et al. (70), who argue that two of the
canonical correlates of conscious sensory perception, the LPP
and induced gamma-band activity, reflect postperceptual pro-
cesses rather than conscious perception. They found that these
correlates disappear when stimuli are task-irrelevant, but still
consciously noticed. One limitation of their study is that sub-
jective reports were given after each run rather than after each
trial. Thus, there is no way to know precisely when processing of
the irrelevant objects took place relative to the trial onsets, be-
cause a very demanding primary task was being performed in
parallel. Central processing of the irrelevant stimuli may have
been pushed back in time by the psychological refractory period
because target and irrelevant stimuli were synchronous, but their
data analyses only extended out to 600 ms posttarget. Further
research will be required to elucidate the apparent disconnect
between these results and prior evidence linking the LPP/induced
gamma response with conscious perception.
A more general caveat has been raised recently concerning the

contrastive method (71, 72), where trials are grouped by sub-
jective report and contrasted, as we did in the present study:
Differences in the average over trials with and without conscious
perception confound the “core” neural correlate of conscious-
ness with other neural events that reliably precede or follow it
(71, 73). One limitation of this view is that it assumes that there
exists a single “core” correlate of conscious perception in the
first place. Trying to isolate this hypothetical rarefied conscious
event (71) may be too restrictive, because it need not be the case
that a single isolated parameter or event in the poststimulus time
course constitutes the neural correlate of consciousness. Instead,
the minimally sufficient condition (10) might be a conjunction of
separate necessary events happening at different points in time,
or a conjunction of factors such that the “minimally sufficient”
level of one factor depends on the level of the others (11). Also,
the view hinges on the degree to which conscious perceptual
events can be said to occur at a specific moment (74), against
which “before” and “after” can be defined. Instead, the present
results suggest that consciousness may be tied to an extended
period of neuronal activity.
We also show that within-trial stability is reflected in between-

trial reproducibility, which has previously been proposed as a
correlate of conscious perception (3). [Note that in the present
study stimuli were always presented in the opposite color con-
figuration to the two eyes. Therefore, prior criticisms of (3)
pointing to a possible confound of pre-conscious inter-ocular ri-
valry (75, 76) are effectively countered.] Increased reproducibility
of a pattern of activity across trials should be accompanied by a
reduction in individual-neuron firing-rate variability across trials,

which has recently been shown to be a general phenomenon fol-
lowing the onset of sensory stimuli (1). Here we show that the
variability of the pattern of activity across trials is not only de-
creased at the onset of a stimulus (equivalent to increased re-
producibility), but also, within a later time window, differentiates
whether or not the stimulus is reported as seen (Figs. 2 A and B
and 3 A and B). In addition, both reproducibility and stability
might also be associated with more sharply tuned (77) and/or
discrete (78) patterns of activity, which have also been proposed
as correlates of conscious perception.
Note that stability does not change to nearly the same degree

as reproducibility at any time during the trial epoch (Fig. 2). This
highlights the partial independence of the two phenomena
(variability within and across trials). A neuronal response could
be relatively unstable within a certain window of time within each
trial, but the average over that same window could still be rela-
tively invariant across many trials. Hence, the appearance of the
increase in reproducibility at ∼150–200 ms after stimulus onset
(Fig. 2A) does not necessarily imply an equally pronounced in-
crease in stability at the same time (Fig. 2C).
An important clarification regarding the notion of transient

stability is that it should not be taken to imply a single brain-wide
point attractor. Our proposal is that a widely distributed subset
of ongoing cortical activity, involved in processing and in-
tegrating the information content of perception, is transiently
stable compared with when the same information content is not
consciously perceived. This kind of state might be described as a
“chimera state” (52, 79) wherein a subset of a system is relatively
integrated (synchronized) and the remainder of the system is
relatively nonintegrated (desynchronized). Future theoretical
work in this direction could be fruitful. Finally, we point out that
our data do not address the question of whether stability is a cause
or an effect of conscious perception: It may be both an effect and
(through recurrent interactions) a cause (80). The formal defini-
tion of stability most commonly used in dynamical systems theory
is couched in terms of robustness to perturbation (81) and predicts
the persistence of patterns of activity (which we tested here). This
definition could be used in future work to directly investigate the
causal relationship between stability and perception. Whatever the
causal relationship, stability seems to be, as predicted, a reliable
and specific signature of conscious perception.

Materials and Methods
Human Subjects. Simultaneous MEG, EEG, and behavioral data were collected
from a total of 16 human subjects (8 female, minimum/median/maximum age
19/21/34 y, all right-handed). All subjects had normal trichromatic vision and
normal or corrected-to-normal visual acuity. All subjects gave written in-
formed consent andwere given amonetary compensation. Data from four of
the subjects were not used: One subject was unable to identify the stimuli
even at high contrast; one subject completed only 5 runs (out of 12) before
complaining of discomfort; technical problems prevented head-position
measurements for a third subject; and MEG data for a fourth subject were
excessively noisy (inclusion of these subjects, while adding noise to the results,
did not change the main conclusions of the study). Thus, unless noted other-
wise n = 12. (A separate section below discusses DOC patients.)

Stimuli and Task.
Stimuli: Preparation and presentation. We used dichoptic color masking (SI
Appendix, Fig. S1) (3, 82) to reduce the subjective visibility of visual objects
while maintaining a physical stimulus strength that would otherwise be
clearly visible (see SI Appendix, Supporting Methods for details). Stimuli
were simple line drawings of faces and houses (SI Appendix, Fig. S1), 175 ×
175 pixels, rendered in exactly two colors using error-diffusion dither and
presented stereoscopically with the aid of a cardboard divider and prism
lenses mounted in MEG-compatible frames (83). Stimuli were back-projected
onto a translucent viewing screen at a distance of ∼60 cm, under low am-
bient lighting, and were always presented in the “opposite color” configu-
ration (SI Appendix, Fig. S1). Stimuli always appeared within a pair of black
square frames subtending ∼5.5° of visual angle and positioned on either side
of the cardboard divider. The frames remained on the screen at all times
during blocks of trials to aid the maintenance of stereoscopic fusion. When
fused, the two frames were perceived as a single black frame. To confirm
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interocular fusion of the two frames, at the beginning of the experiment a
dual-image random-dot stereogram was presented within the frames and
subjects had to name the symbol hidden in the stereogram. The background
of the stimulus display was blue and adjusted so as to be similar in luminance
to the stimuli, so that the onset of stimuli would be less likely to provoke
blinks or pupillary reflexes, which might disrupt fusion of the two images.
Control stimuli consisted of uniform colored squares, equivalent to the
background of the object stimuli, but without the object. Subjects were not
explicitly told about the control stimuli, but were only told that the stimuli
would vary in salience and might sometimes be imperceptible.
Practice tasks. Before entering the testing room, subjects practiced main-
taining steady fixation by trying to maintain the Troxler illusion (disap-
pearance of a blurred peripheral annulus) for a few seconds at a time.
Subjects were instructed to maintain steady fixation during the experiment,
whenever the fixation point was present on the screen (i.e., for the first 2 s of
each trial, beginning just before stimulus onset). Before beginning the ex-
periment, subjects performed three “preview” blocks during which they
practiced discriminating the category of the stimuli (face versus house) at
three suprathreshold, successively lower levels of color contrast. During the
preview blocks, if the subject responded incorrectly, the fixation point
blinked and the same stimulus was presented again. The purpose of the
practice session was to familiarize the subjects with the stimuli and also to
precipitate perceptual-learning effects that might otherwise accrue during
the experiment itself. Control stimuli were not used during the practice task.
Experimental task. The experiment was performed in 12 blocks of 60 trials each,
with each block lasting ∼5 min. Time constraints and technical difficulties did
not always allow completion of all 12 runs, but we imposed a minimum of
9 runs for inclusion in the data analyses (72 trials per contrast level = 36 face
and 36 house). Each block had an equal number of face, house, and control
stimuli at each of the five levels of color contrast, once for each assignment
of background color to the two eyes (orange to the left eye, green to the
right eye, and vice versa). A single visual stimulus was presented on each trial
and the task was to identify the category (face or house) of the stimulus,
guessing if necessary, and also to report on the subjective visibility of the
object (seen or unseen). Both responses were made by button press. The
assignment of buttons to responses and the order in which the responses
were given were counterbalanced across subjects.

The sequence of events in each trial was as follows (SI Appendix, Fig. S1).
Each trial began with only the black frame(s) on the screen. Then a small
fixation point appeared in the middle of the black frame(s) cueing the
subject to maintain steady fixation for the next 2 s. After a delay of 500 ±
117 ms the stimulus appeared at one of the five preselected levels of color
contrast, for a duration of 100 ms. The fixation point remained on for an-
other 900 ms and then blinked, cueing the subject to respond to the first
question (either face/house or seen/unseen), and then blinked a second time,
cueing the subject to respond to the second question, with a 2-s time limit
for each response. After the second response was made, the fixation point
disappeared for an intertrial interval of 2 s. Subjects were instructed to re-
spond “unseen” only if they had the subjective impression of a uniform yellow
square, and failed to detect the presence of any contours or edges within the
patch of color. As part of a behavioral pilot test, 6 of the 13 subjects were
given the option to respond “seen-but-not-recognized,” in addition to “seen”
or “unseen.” For all data analyses, these were treated as seen responses.

Simultaneous MEG/EEG Data Acquisition. MEG and EEG data were recorded
simultaneously in a magnetically shielded chamber using equipment built by
Elekta Neuromag. The MEG recording apparatus has a total of 306 sensors,
with 102magnetometers and 102 pairs of orthogonal planar gradiometers. In
addition the subject wore an MEG-compatible EEG cap with 60 ring-shaped
electrodes filled with conductive electrode gel, with a reference electrode
placed on the nose, and a ground electrode on the clavicle. The impedance
between the reference and each of the other electrodes was kept below
15 kOhm. Separate electrode pairs connected to bipolar amplifier channels
were used to monitor cardiac and ocular activity. Four small coils used for esti-
mating the head position within the MEG helmet were taped to the EEG cap.
The positions of the four coils with respect to three fiduciary points (nasion
and just above the tragus in each ear) were digitized using a 3D Fastrak
digitizer (Polhemus Inc.). The subject’s head position was recorded at the
beginning of each block of trials. EEG and MEG data were sampled at
1,000 Hz, with a 0.03- to 333-Hz analog band-pass filter. The MaxShield
feature of the Neuromag MEG system, which actively compensates for
external magnetic field fluctuations, was used during the recordings.

MEG and EEG Data Preprocessing. MEG data were preprocessed using the
MaxFilter software application developed by Elekta Neuromag. This appli-

cation automatically detects and interpolates bad MEG channels, applies the
Signal Space Separation algorithm (for attenuation of magnetic field fluc-
tuations originating outside of the MEG helmet), and transforms the MEG
data to a head-centered coordinate system using the head-position mea-
surements taken at the beginning of each block of trials. The MEG and EEG
data were then imported into MATLAB (The MathWorks, Inc.) for further
preprocessing and subsequent data analyses using the FieldTrip software
toolbox for MatLab (fieldtrip.fcdonders.nl). At this stage, both the EEG and
MEG data were down-sampled to 250 Hz. Data epochs were extracted
spanning the time period from 0.5 s before stimulus onset to 1.5 s after
stimulus onset. No baseline correction was performed. Ocular and cardiac
artifacts were isolated using independent components analysis (84) and re-
moved by projecting the data onto the pseudoinverse of the artifact com-
ponents. Trials with noticeable artifacts remaining after this step were rejected
based on visual inspection, performed separately for EEG and MEG data.

Data Analyses and Statistics.
Behavioral. “Proportion correct” and “proportion seen” were computed over
noncontrol (face and house) trials. Detection d-prime (d′) was computed by
treating face and house trials as “target present,” control trials as “target
absent,” and a seen response on a target-present trial as a “hit’ (or true
positive). d′ was then computed as zinv(HIT) – zinv(FA), where HIT and FA
are the true-positive and false-alarm rate, respectively, and zinv is the in-
verse normal distribution. d′ for face versus house was computed on non-
control trials, with a “face” response on a face trial treated as a true positive
(hit) and a “face” response on a house trial treated as a false positive.
Seen versus unseen analyses of MEG and EEG data. For all analyses where we
compared responses to seen and unseen stimuli, we chose a single fixed level
of color contrast for each subject and restricted the analysis to trials with
stimulation at that color contrast. The color contrast was chosen separately
for each subject by finding the color contrast where the number of seen and
unseen responses was closest to being equal. Of the 12 subjects included in
the analysis, 6 had more seen than unseen trials, 5 had fewer seen than
unseen trials, and 1 had exactly the same number of seen and unseen trials, at
the chosen contrast level. The average number of trials per subject per
condition (seen or unseen) at the single fixed contrast level was 42 (minimum
35, maximum 59).
Spatial filtering. For the time-frequency analyses, effect-matched spatial fil-
tering (27) was used to summarize multisensor data in a single time course.
Filters were applied only to the gradiometer data, in order for the results to
be directly comparable to the measures of stability and reproducibility (Figs.
2 and 3) that were also computed from gradiometer data. Spatial filtering
was performed separately at each time point in the trial and in a leave-one-
out fashion by projecting each trial’s data onto a filter estimated from all of
the other trials. Filters used in SI Appendix, Fig. S4 C and D were derived by
taking the difference, at each sensor, between the mean over seen trials and
the mean over unseen trials, and between the mean over face trials and the
mean over house trials, respectively.
dva. The operational definition and procedures for estimating stability de-
scribed belowwere defined a priori. Stability was operationally defined as the
relative constancy of the pattern of activity across a set of sensors within a
given window of time, within a given trial. Stability was measured at the
single-trial level using a 100-ms sliding window, and then averaged across
trials. A range of window sizes ≥80 ms gave similar results (SI Appendix, Fig.
S8). We chose (a priori) to perform this analysis on data from gradiometers
because we defined stability in terms of the spatial pattern of activity, and
planar gradiometers are known to have a higher degree of spatial selectivity
than either magnetometers or scalp electrodes (85).

Directional variance can be defined in terms of the norm of the sumof a set
of vectors. If each of the vectors is first normalized to unit length then the
norm of the resultant vector sum will be proportional to the degree to which
the vectors all point in the same direction (Fig. 1). The logic is similar to that
applied in Rayleigh’s statistical test of the distribution of phase angles. Di-
rectional variance (also called circular variance or angular variance), dva, is
formally defined as follows (20):

For a set of vectors, v1, v2, v3, . . ., vn

dva= 1−R,
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0≤dva≤ 1.

Stability is defined as 1−dva, or simply R, which we refer to as “directional
coherence.” Similar metrics have been used for vector-based analyses in
other domains, for example in measuring the persistence (over time) of
ocean currents in a given direction (86).

In computing R each of the vectors in the numerator is divided by its own
norm so that only the angle of the vectors in relation to one another will
determine the norm of their sum. This means that weak vectors and strong
vectors contribute equally. Because the angle of weak vectors will tend to be
influenced by noise to a greater degree than the angle of strong vectors,
differences in the signal-to-noise ratio can produce artifactual differences in
stability. Therefore, it is essential to test for a possible difference in the norm
(signal strength or power) of the vectors (3), which we do systematically for
each analysis here.

Directional variance was also used to compute reproducibility across trials,
except in this case the metric was computed across trials where each vector in
the set of vectors v1...n was the mean vector within the 100-ms sliding win-
dow centered at a given time point in each trial. The L2 norm was computed
by taking the square root of the sum of squares of the vectors within the
sliding window, taking the average within the window, and then averaging
across trials.
Simulations. We performed simulations using MATLAB (The MathWorks, Inc.)
to validate dva and test its behavior under different controlled conditions
(Fig. 1 C and D and SI Appendix, Fig. S10). See SI Appendix, Supporting Methods
for details.
Single-trial classification of subjective state. For the fixed threshold level of color
contrast chosen for each subject, we attempted to classify each trial as either
seen or unseen based only on the time course of directional variance.We used
a variant of a nearest-mean classifier: the mean seen time course and mean
unseen time course were computed with one test trial left out. We then
computed themean-squared distance of the test time course from each of the
two means. The category (seen or unseen) with the smallest mean squared
distance was taken as the predicted class (the classifier’s decision).
Time-frequency analysis. Time-frequency decomposition was performed using
the FieldTrip toolbox for MATLAB (87) using Morlet wavelets, with the ratio
parameter set to 7. The time-frequency decompositions were performed on
the output of a spatial filter derived based on the overall difference be-
tween seen and unseen trials and on the output of a spatial filter derived
based on the overall difference between face and house trials (27). For
statistical analysis, a pointwise two-sided signed-rank test was performed
across subjects (n = 12) for each point in time-frequency space. The resulting
statistics were then corrected for multiple comparisons using a cluster-based
permutation test (87), with a pointwise threshold of P < 0.05.

States of Consciousness Subjects.
Patients. We analyzed 165 EEG recordings taken from 116 unique DOC pa-
tients (a single recording from 86 of the patients, and two or more recordings
from each of the remaining 30 patients). Because of the variability within
patient, between recording sessions, and the large number of patients, we
treated each recording as an independent sample. Each patient was classified
as being in a VS, MCS, or (recovered) CS, based on clinical evaluation by
trained neurologists. The Ethical Committee of the Pitie-Salpetriere hospital
approved this research under the French rubric of Recherche en soins cou-
rants (routine care research). The number of recordings in each category was
as follows: 25 CS (3 female, 22 male), median age 49 y (minimum 16, max-
imum 83); 66 MCS (18 female, 48 male), median age 45 y (minimum 16,
maximum 78); and 74 VS (23 female, 51 male), median age 45 y (minimum
18, maximum 80).
Healthy subjects. Experiments were approved by the Ethical Committee of the
Pitie-Salpetriere Hospital. All 12 healthy subjects gave written informed
consent. Of the 12 healthy control subjects 2 were female, 10 were male, and
the median age was 21 y (minimum 20, maximum 30).
Auditory stimulation. Patients and healthy subjects were exposed to auditory
stimuli following the “local–global” protocol (32). Stimuli were trains of five
brief auditory tone pips (5 × [50 ms tone, 100 ms silence] with 750 ms gap in
between each train) played repeatedly in blocks of 3–4 min. The pitch of the
last tone in each train could be the same as or different from that of the
other four. Further details of the protocol can be found in refs. 16, 18, and 32.
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