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Abstract

evidence for random drift and/or admixture.

ongoing Sus speciation.

method

Background: Unraveling the genetic mechanisms associated with reduced gene flow between genetically
differentiated populations is key to understand speciation. Different types of structural variations (SVs) have been
found as a source of genetic diversity in a wide range of species. Previous studies provided detailed knowledge on
the potential evolutionary role of SVs, especially copy number variations (CNVs), between well diverged species of
e.g. primates. However, our understanding of their significance during ongoing speciation processes is limited due
to the lack of CNV data from closely related species. The genus Sus (pig and its close relatives) which started to
diverge ~4 Mya presents an excellent model for studying the role of CNVs during ongoing speciation.

Results: In this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These CNVRs encompass 624
genes and were found to evolve ~2.5 times faster than single nucleotide polymorphisms (SNPs). The majority of
these copy number variable genes are olfactory receptors (ORs) known to play a prominent role in food foraging
and mate recognition in Sus. Phylogenetic analyses, including novel Bayesian analysis, based on CNVRs that overlap
ORs retain the well-accepted topology of the genus Sus whereas CNVRs overlapping genes other than ORs show

Conclusion: We hypothesize that inter-specific variation in copy number of ORs provided the means for rapid
adaptation to different environments during the diversification of the genus Sus in the Pliocene. Furthermore, these
regions might have acted as barriers preventing massive gene flow between these species during the multiple
hybridization events that took place later in the Pleistocene suggesting a possible prominent role of ORs in the

Keywords: Speciation, Structural variation, Copy number variation, Next generation sequencing data, Read depth

Background

Speciation is one of the major evolutionary drivers of the
diversity of life on earth. Understanding the process by
which populations diversify leading, ultimately, to speci-
ation has been one of the major focuses of evolutionary
biologists for decades [1-3]. Two major models of speci-
ation have been put forward. The first model, also known
as allopatric speciation, involves cessation of gene flow
between two newly formed populations as a result of
geographical isolation (i.e. mountain ranges, rivers). The

* Correspondence: paudelyogesh@gmail.com

'Animal Breeding and Genomics Centre, Wageningen University, 6700 AH
Wageningen, The Netherlands

“Current address: Roche Pharma Research and Early Development, Roche
Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland

( BioMed Central

second model, parapatric or sympatric speciation, involves
cessation of gene flow between two populations with over-
lapping geographical range [4-6]. Many recent genetic
studies, on organisms as diverse as fish [7], birds [8], in-
sects [9,10], amphibians [6], mammals [11-13] and plants
[14], have shown that genetic exchange during population
diversification is more common than was originally antici-
pated. Hence, the reduction of gene flow between sub-
populations or species, that inhabit the same geographic
range, often involves a period of extrinsic reproductive
isolation before acquiring an eventual intrinsic reproduct-
ive isolation.

The mechanisms by which gene flow reduces between
diverging populations that overlap in their geographical
range are still not very well understood. A major goal of
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geneticists and evolutionary biologists is to identify the
mechanisms or genes and/or regions in the genome that
are involved in the reduction of gene flow and eventual
emergence of reproductive isolation between diverging
populations. In animals, only a few genes have so far been
identified to be involved in speciation, for example Prdm9
in mouse [15], and Odysseus-site homeobox [16], JYalpha
[17] and GAI19777 Overdrive [18] in flies. These sparse
examples of identified speciation genes do not seem to
suggest a common or general universal pathway/process
leading to speciation but rather point to the involvement
of a variety of different mechanisms in the evolution of
pre- and post-zygotic barriers between different species.

Speciation with gene flow could be achieved through
the reduction of gene flow at specific loci in the genome,
also coined islands of speciation [19,20]. Multiple studies
have successfully identified possible islands of speciation
in the genomes of diverging species [8,19]. However, the
exact contribution of these regions in speciation is still
to be unraveled. Furthermore, these studies have mainly
focused on genetic variation due to single nucleotide
polymorphisms (SNPs) and very few studies have investi-
gated the role that structural variations (SVs) play in the
process of population diversification [21,22]. Copy num-
ber variations (CNVs), a class of SVs, can be a major
mechanism driving gene and genome evolution by dupli-
cating and deleting segments of the genome and as a re-
sult, create novel gene functions, disrupt gene functions,
or affect regulatory mechanisms in the genome. The ma-
jority of inter-species CNV studies have focused on pri-
mates [23-27] and suggested that species-specific copy
numbers (CNs) can be evolutionarily favored because of
their adaptive benefits [24,25,27-30]. However, these stud-
ies only provide insights into the role of CNVs between
well-diverged species (i.e. Chimpanzees and Humans),
making it difficult to determine whether these variations
between species have arisen during speciation or rather
accumulated during post-speciation.

The species of the genus Sus provide a good model to
study the effect of CNV regions (CNVRs) in the process
of speciation. Genus Sus comprises of at least seven
morphologically and genetically well-defined species
[31], that inhabit the five biodiversity hotspots in Islands
and Mainland South East Asia (ISEA and MSEA) [32].
Recent findings showed that these species diverged dur-
ing the late Pliocene (4-2.5 Mya), due to their isolation
on different islands of ISEA and underwent multiple
rounds of small scale inter-specific hybridization during
the glacial periods of the Pleistocene (2.5-0.01 Mya) [31].
Indeed, the frequent occurrence of glacial periods during
the Pleistocene, resulted in land bridges between ISEA
and MSEA allowing migration between islands [31].
Therefore, the process of divergence between the pigs in
ISEA and MSEA, effectively follows alternating periods
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of allopatric (warm periods) and parapatric (glacial
periods) conditions. However, while these species can be
identified based on morphology and/or DNA and are still
capable of producing fertile offspring [33], the mecha-
nisms that prevented these species from large scale hom-
ogenizing during the numerous glacial periods of the
Pleistocene remain unclear.

In this study, we analyzed the complete genome se-
quence of four different species of the genus Sus, that are
restricted to ISEA (Sus-ISEA): Sus barbatus (Bearded pig
on Borneo), Sus celebensis (Sulawesi warty pig), Sus cebi-
frons (Philippine warty pig), Sus verrucosus (Javan warty
pig) and three populations of the species Sus scrofa from
Europe, China and Sumatra. We compared and contrasted
the pattern of CNVs among population/species, in order
to investigate the role that CNVRs may play in this on-
going process of speciation.

Results

Whole genome re-sequencing data were obtained for seven
populations (two individuals of the same species from
ISEA; Sus cebifrons (critically endangered [34]), Sus celeben-
sis, Sus verrucosus (endangered [34]) and Sus barbatus (in
case of Sus barbatus we obtained data from four indi-
viduals) and two individuals each from three diverged
populations of Sus scrofa; from Sumatra, China and
Europe (Table 1, Figure 1, Additional file 1: Table S1A).
Previous analyses have shown the read depth (RD)
method to be an accurate method for computational
detection of the CN of regions throughout the genome,
especially with high coverage data [35-38]. Since our
main goal was the identification of inter-population
CNVRs, the two samples from the same population
were combined. The combined data was used to iden-
tify inter-population CNVRs between the seven popula-
tions by aligning short reads to the Sus scrofa reference
genome [39]. In the case of Sus barbatus, all possible
pairwise combinations of the four individuals displayed
a high level of congruence in CN detection in both
intra- and inter-population comparison (data not
shown). To avoid bias due to sampling size and total
coverage we selected two of four Sus barbatus individ-
uals in order to give a read coverage comparable with
the other populations studied (Additional file 1: Table S1A).
We tested the assumption that combining individuals from
the same population would not create any significant bias
due to the expected higher inter- than intra-population
variation by comparing CN among and between the seven
populations. We found that the copy number differences
(CNDs) between pairs of individuals from different popula-
tions were significantly higher than between individuals
from the same population (p-value <0.001, Wilcoxon test,
Additional file 2: Figure S1A and S1B). Thus, combining
two individuals of the same population, will likely result in
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Table 1 Read depth of individuals and grouped individuals used (information of other Sus barbatus individuals can be

found in Additional file 1: Table S1A)

Names Combined Separate Separate depth Combined depth

Sus barbatus Sbar Sbarl 9.087 17.186
Sbar2 8.087

Sus cebifrons Sceb Sceb1 9.36 186
Sceb2 9.174

Sus celebensis Scel Scell 18.409 25475
Scel2 7.046

Sus verrucosus Sver Sverl 9.088 18.844
Sver2 10.127

Sus scrofa Sumatra Sumatral 10.961 22247
Sumatra2 11.113

Sus scrofa China Chinal 7.965 19.172
China2 11.268

Sus scrofa Europe Europel 7.555 18529
Europe2 11.056

a higher sensitivity in calling CN with a relative minimal
bias in the inter-population comparison. For each popula-
tion, multi copy regions (MCRs) were defined by applying a
threshold of a minimum of 6 consecutive 1 kilobase (Kb)
bins that have an average CN higher than 2.5. All the MCRs
were then retrieved from all populations and we then
chained MCRs that were (partially) overlapping between
two or more populations. We computed the CN for all
chained MCRs in each population and for each MCR, the
standard deviation (s.d.) of CN between the seven popula-
tions was estimated. All MCRs with a sd. 20.7 were
regarded as CNVRs [38]. We identified 1408 regions,
encompassing 17.83 megabases (Mb) on the Sus scrofa
reference genome, as CNVRs (Additional file 1: Table S1B
and S1C, Additional file 2: Figure S1) (see material and
methods for details on detection of CN, MCR, and CNVR).

Although CNVRs were found on every chromosome,
the number and the total size of CNVRs per chromosome
are not correlated with chromosome length (Figure 2A
and B), which is consistent with our previous study related
to CNVRs in the porcine genome [38]. Many of the identi-
fied CNVRs are relatively small, close to the effective reso-
lution of 6 Kb. While the size of CNVRs ranges from 6 to
98 Kb, the majority (1089 out of 1408; 78%) of the CNVRs
that were identified is between 6 and 15 Kb (Figure 2C).
We did not observe any CN'VR larger than 98 Kb which is
probably due to incompleteness and assembly errors in
the current genome build resulting in gaps in the genome.
In addition, the presence of repetitive elements may pre-
clude the chaining of smaller segments of large CNVRs.
Repetitive sequences will break the contiguity of defined
CNVRs as those regions were masked in the genome prior
to the alignment. We observed a number of regions on

some chromosomes having cluster of CNVRs with com-
paratively higher CN in some populations. For example, the
0.81 Mb region between 22.24 Mb - 23.05 Mb on chromo-
some 10 (Figures 3A and B) shows higher CNs in the Sus
scrofa populations (CN range in Sus scrofa 0 to 85; CN
range in Sus-ISEA 0 to 39). Another example is the 370 Kb
region between 78.7 Mb and 79.07 Mb on chromosome 10
(Figure 3A and C) that shows a series of regions with high
CN in Sus-ISEA (CN range in Sus-ISEA 22 to 72; CN range
in Sus scrofa 12 to 46).

Overall, most of the CNVRs identified displayed CN
higher than two in all seven populations (1077 out of
1408 region) with only a small fraction (29; 211 Kb) be-
ing population specific. This could be due to the strin-
gent criteria implemented to reduce false positive CNV
calls. Sus barbatus showed the largest number of MCRs
observed as variable in CN in all the seven populations
(1358; 17.33 Mb) whereas Sus scrofa from Sumatra
showed the lowest number of MCRs observed as variable
in CN in all the seven populations (1197; 15.613 Mb)
(Additional file 1: Table S1D).

Experimental validations

We used quantitative real time-polymerase chain reac-
tion (qPCR) to validate the identified CNVRs. We ran-
domly selected ten genic CNVRs, ten non-genic CNVRs
and five diploid regions and tested these using two dis-
tinct primer sets per locus. All 25 assays were successful
and all 25 showed 100% agreement with our CNVRs
predictions, indicating a low false discovery rate for call-
ing CNVRs based on the RD analysis (Additional file 1:
Table S1E).
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Figure 1 Schematic overview of origin of Sus populations across Eurasia and Island of South East Asia used in this study.

Functional relevance of CNVRs in the genus Sus

We used the porcine gene annotation of the current gen-
ome build (Sus scrofa build10.2, Ensembl release 75 [40])
to identify genes encompassing CNVRs. To improve the
reliability of the functional annotation of CNVRs, only
genes having at least 70 percent overlap with a CNVR
were considered. The CN of the genes were set at the CN
of the overlapping CNVRs. Out of the 21,630 protein cod-
ing genes annotated in the current genome build [39], 624
genes were found to overlap with 504 CNVRs (35.8% of
total CNVRs) (Additional file 3: Table S2A).

The olfactory receptor gene family, one of the largest
gene families in the porcine genome [29,39], is highly
over-represented with 413 out of 624 genes overlapping a
CNVR (Additional file 3: Table S2B). Genes involved in
immune response, such as IFN (Alpha-8, 11, 14; Delta-2),
IFNW1, IGK (V1D-43, V2-28), IL1B and PG3I, also show
variation in CN between populations.

Only few genes exhibit a high CN in a single population
or a general high number of copies with much variation in
two or more population. For example, PSMBS shows
higher CNs in Sus-ISEA (from 21 in Sus celebensis to 10
in Sus cebifrons) but no sign of duplication in the three
population of Sus scrofa (1-2 copies). NBPF6 and NBPF11
show high CN in all populations but with large variation
in Sus-ISEA individuals (from 18 to 44 for NBPF6 with s.
d. of 11.1 and 21 to 60 for NBPF11 with s. d. of 15.7).
Likewise, SAL1 shows CNV only between Sus scrofa pop-
ulations (from 2—11 with s.d. of 3.48).

The porcine-specific immune-defense related genes
NPG3 and PMAP23, together with the other immune re-
lated genes USP17L2, CDK20, POMC, were found to be
variable in CN with in general high variation in Sus scrofa
populations. In addition, other previously identified CNV-
genes in pigs involved in metabolism (AMYIA, AMY?2,
AMY2A, AMY2B) and detoxification (UGT2B10, UGT1A3,
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Figure 2 Distribution, proportion, and frequency of CNVRs in the pig genome. A: Distribution of CNVRs on the different chromosomes of the porcine
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Figure 3 Heatmap of CNVRs. A: Heatmap of CNVRs on chromosome 10. Each column represents one CNVRs and each row represents a population.
B: Heatmap of a 0.81 Mb region on chromosome 10 (SSC10: 2224 Mb - 23.05 Mb; 24 CNVRs). Each column represents one CNVR (chromosome; CNVRs
starting position; size of the CNVR) and each row represents one population (upper panel) or single individual (lower panel). Abbreviations: Sbar (Sus
barbatus), Sceb (Sus cebifrons), Scel (Sus celebensis), Sver (Sus verrucosus), Sumatra (Sus scrofa population from Sumatra), China (Sus scrofa from China),
Europe (Sus scrofa from Europe). C: Heatmap of a ~370 Kb region on chromosome 10 (SSC10: 78.7 Mb - 7907 Mb; 13 CNVRs of different sizes. Each column
represents one CNVRs (chromosome; CNVRs starting position; size of the CNVR) and each row represents one population (upper panel) or single individual
(lower panel). Abbreviations: Sbar (Sus barbatus), Sceb (Sus cebifrons), Scel (Sus celebensis), Sver (Sus verrucosus), Sumatra (Sus scrofa population
from Sumatra), China (Sus scrofa from China), Europe (Sus scrofa from Europe).

CYPA1Il, CYPA22, CYP4F3 and CYP4X1) are found to be
variable in CN in this study as well.

A gene ontology (GO) enrichment analysis on all 624
genes overlapping CNVRs revealed that most of these
genes are involved in biological processes regulating sen-
sory perception of smell (p <0.001), signal transduction
(p<0.001), neurological process (p<0.001) and meta-
bolic process (p < 0.001) (Additional file 3: Table S2C).

Cluster Analysis

To investigate whether the observed CNVRs were congru-
ent with the known phylogeny of the species, we per-
formed a cluster analysis based on the CN at each CNV
locus. The resulting tree is highly congruent to the phylo-
genomic analyses based on SNPs [31] (Figure 4A). How-
ever, some inconsistencies are observed in the resolution

of branching order within Sus-ISEA, which is not surpris-
ing as recurring hybridization was common in the evolu-
tionary history of Sus-ISEA [31].

Rate of accumulation of CNVRs (relative to rate of
accumulation of SNP)

It is generally thought that species incompatibility (e.g.
through Islands of divergence) and/or lack of (intra-)
species recognition are more likely to be established by
fast evolving genomic regions. Thus a comparison be-
tween the rate of accumulation of CNV to other types of
genetic variation, such as SNPs, could provide insight
into the role of CNVs in population differentiation and
speciation. To this end, a comparison between the rate
of accumulation of SNPs and CNVs in each lineage was
performed. To do so we first identified 1,115,908 SNPs
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Figure 4 Cluster and phylogenetic tree analysis. A: Cluster analysis. The phylogenetic tree on the left side is obtained from Frantz et al. [31] and
the cluster tree on the right side is obtained by cluster analysis using the actual CN of CNVRs from different populations. The branch length does
not correspond to the evolutionary distance. B: NJ-Phylogenetic tree obtained by using the pairwise difference based on SNPs (Abb. see Table 1).
C: NJ-Phylogenetic tree obtained by using the pairwise CNDs of all possible pairs for CNVRs overlapping ORs (Abb. see Table 1).

in the genomic regions that were found to be diploid
(2 copies) in all 14 individuals of 7 populations. We com-
puted a rate of SNP accumulation, between each pair of
individuals by dividing the number of observed difference
with the total sites that could be confidentially called. Pair-
wise CNDs were obtained for all possible pairs of the 14
individuals. The CNDs were transformed into binary
values with CND > 2 as 1 and CND < 2 as 0. For each pair,
the rate of pairwise difference was then calculated by
dividing the total differences with the total CNVRs count
(1408). The estimated CND rate is expected to be very
conservative in comparison with the estimated rate of
SNPs, due to our binary scale, which does not take into
account the possible multiple changes in CN. For ex-
ample, going from two to ten copies requires at least three
duplication events but is considered as a single step in the
current analysis. We observed that the rate of pairwise
CND is approximately 2.5 times higher than the SNP rate
(Additional file 4: Table S3A and S3B, respectively). The
observed higher CND rate compared to the SNP rate could
be the result of over-representation of ORs in the list of
genes overlapping with CNVRs. To investigate this, the rate
of pairwise CNDs of CNVRs overlapping with ORs and
without ORs were calculated separately (Additional file 4:
Table S3C and S3D). In both comparisons, i.e. CNVRs
overlapping with and without ORs, the rate of pairwise
CNDs was observed to be higher than for SNPs. The ele-
vated CND rate therefore does not seem to be caused solely
by expansion of the OR gene family.

Phylogenetic analysis

The observed elevated evolutionary rate of CND may sug-
gest that some of the CNVRs could be involved in speci-
ation since fast evolving regions potentially play a role in
the transition from pre- to postzygotic isolation. We there-
fore constructed neighbor joining (NJ) phylogenetic trees
from SNPs and CNVRs pairwise distance matrices using
PHYLIP [41]. We repeated the analysis using CNVRs over-
lapping with OR (CNVR-OR), CNVRs overlapping with
genes other than ORs (CNVR-nonOR) and all CNVRs
(CNVR-ALL). Trees obtained from SNPs (Figure 4B) and
CNVR-OR (Figure 4C) resulted in nearly identical
topologies. The SNP-tree topology is identical to previous
phylogenomicanalysis (Figure 4A) [31] whereas the CNVR-
OR-tree topology deviates slightly form the SNP-tree in
the mixed relationship of the Asian Sus Scrofa. By contrast,
phylogenetic trees obtained from CND of CNVR-nonOR
(Additional file 5: Figure S2A) and CNVR-ALL (Additional

file 5: Figure S2B) resulted in different topologies com-
pared to SNP-based phylogenies where especially the
CNVR-nonOR-tree topology is highly deviating from the
SNP-tree. To test if population taxon sampling plays a role
in the phylogenetic results, we repeated the analysis with
all pairwise combinations of the four Sus barbatus individ-
uals and obtained identical phylogenetic tree topologies for
all different partitions (data not shown).

To further evaluate the discrepancies between the dif-
ferent partitions we performed a more parametric phylo-
genetic approach, Bayesian phylogenetic analysis, using
the MKV model [42] as implemented in MrBayes v2.2
[43], and an extending encoding of the CNs. We first
ran the MKV model without any topology constrains
and found that the monophyly of the Sus-ISEA and Sus
scrofa clades, as identified by the SNP data and in previ-
ous analyses [31], was highly supported (posterior prob-
ability PP >0.9) for both CNVR-OR and CNVR-ALL,
but not for CNVR-nonOR which supported a Sus cebi-
fons and Sus scrofa (China) relationship. To address the
strength of support for these discrepancies we tested dif-
ferent constrained models that fit the history of inter-
specific admixture [31]. We first computed the support
(marginal likelihood; see methods) for a null model in
which the monophyly of Sus-ISEA and Sus scrofa clades
were constrained, a scenario consistent with the SNP
tree. Thereafter 4 different models were tested that are
described in Figure 5 A-D. In Model-1, we constrained
Sus verrucosus and Sus scrofa Sumatra to be monophy-
letic (Figure 5A), representing known admixture among
these species [31]. In Model-2, we constrained Sus celeben-
sis and Sus scrofa Sumatra to be monophyletic (Figure 5B)
representing possible human translocations of Sus celeben-
sis to Sumatra and neighboring islands. In Model-3, Sus
barbatus and Sus scrofa Sumatra were constrained to be
monophyletic (Figure 5C), representing known admix-
ture between these two species/populations. In Model-
4, Sus cebifrons and Sus scrofa China were constrained
to be monophyletic (Figure 5D), representing possible
migration from MSEA to the Philippines [31]. The mar-
ginal likelihood analysis strongly supports the mono-
phyly of the two major clade of Sus-ISEA and Sus scrofa
for CNVR-OR and CNVR-ALL but not for CNVR-
nonOR where this monophyly provides a much poorer
fit. For CNVR-nonOR the difference in marginal likeli-
hood (delta-InL) to the null model was 7.46 (Table 2),
which strongly supports the non-monophyly of the two
major clades.



Paudel et al. BMC Genomics (2015) 16:330

Page 9 of 14

Other Species

Sus verrucosus

<
<

Sus scrofa (Sumatra)

Other Species

Sus barbatus

Sus scrofa (Sumatra)

and Sus verrucosus.

Figure 5 Simple schematic diagram of tested constrained models. A: Constrained model 1 where other species consists of Sus scrofa (Europe and
China) and Sus barbatus, Sus cebifrons and Sus celebensis. B: Constrained model 2 where other species consists of Sus scrofa (Europe and China) and Sus
barbatus, Sus cebifrons and Sus verrucosus. C: Constrained model 3 where other species consists of Sus scrofa (Europe and China) and Sus cebifrons, Sus
celebensis and Sus verrucosus. D: Constrained model 4 where other species consists of Sus scrofa (Sumatra and Europe) and Sus barbatus, Sus celebensis
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Sus scrofa and Sus-ISEA specific CNVRs

In order to identify CNVRs specific to the two
monophyletic clusters, Sus-ISEA and Sus scrofa [31],
we ascertained CNVRs (s.d. > 0.7) in each of these
clusters separately. We found 782 and 1089 CNVRs
in Sus scrofa and Sus-ISEA, respectively (Additional
file 6: Table S4A and S4D). A total of 687 CNVRs
were found to overlap between the two groups
(ascertained as CNVRs in both group) together with
98 and 407 CNVRs uniquely ascertained in Sus
scrofa and Sus-ISEA group, respectively (Additional
file 6: Table S4B and S4E). We observed 243 genes
in the 687 CNVRs whereas uniquely ascertained
CNVRs in Sus scrofa and Sus-ISEA contained 47 and

178 genes, respectively (Additional file 6: Table S4C
and S4F). Most of the genes unique to each cluster
were found to be OR genes. Notable, the majority of
the OR genes that were observed to vary in Sus-ISEA
were found to be fixed with high CN in Sus scrofa
populations. To test if taxon sampling introduces a
bias in these group specific analyses (because of four
populations in Sus-ISEA and three in Sus scrofa), we
re-sampled every possible combination of three in
the Sus-ISEA cluster. This sampling correction did
not affect any of the results described above (e.g.
there was always a higher number of CNVRs in Sus-
ISEA than Sus scrofa; number of CNVRs in Sus-ISEA
group varied from 917 to 1026).

Table 2 Marginal likelihood scores for each partition of CNVR for different models tested

CNVR-ALL* CNVR-OR* CNVR-nonOR*
Non-constrained 774 761 6.13
Constrained (monophyly Sus scrofa and Sus-ISEA, respectively) 0 0 746
Constrained (Sus scrofa (Sumatra) and Sus barbatus) 47.72 16.12 216
Constrained (Sus scrofa (Sumatra) and Sus celebensis) 4511 20.65 11.89
Constrained (Sus scrofa (Sumatra) and Sus verrucosus) 31.18 15.52 14.72
Constrained (Sus scrofa (China) and Sus cebifrons) 3271 19.72 0
(

*delta-InL i.e. (best marginal likelihood score) — (marginal likelihood score of the model).
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Discussion

Evolution of CNVRs in the genus Sus and their possible
role in the on-going Sus speciation process

The comparison between the seven populations of
genus Sus (two of them (Sus cebifrons and Sus verruco-
sus) are listed as threatened species [34]) allowed us to
elucidate general and species-specific features of CNVs.
It is known that compared to SNPs, CNVRs cover a lar-
ger part of the genome (in terms of nucleotides) and po-
tentially have larger effects by, for example, changing
gene structure, gene dosage and alternating gene regula-
tion [44,45]. In this study, we detected 1408 CNVRs in
these five closely related species of the genus Sus. The
functional enrichment analysis of the CNVRs suggested
that genes involved in sensory perception of smell, signal
transduction, neurological process, and metabolic process
are over-represented in CNVRs. The most abundant gene
family in the porcine genome, the OR gene family, was
observed as highly over-represented in the CNVRs. This
over-representation of OR genes in the CNVRs could have
strong functional consequences since pigs strongly rely on
their sense of smell for finding food, predators, and most
importantly potential mates.

The process of (on-going) speciation is thought to be
triggered by a combination of many different mechanisms
which include processes such as, gradual adaptation to
different environment, evolution of divergent mate recog-
nition and other molecular mechanism which are thought
to be influenced by fast evolving regions in the genome.
These fast evolving regions potentially accumulate diver-
gence faster, which eventually result in creating reproduct-
ive barriers between populations. CNVRs can be a major
mechanism driving gene and genome evolution by dupli-
cation and deletion of segments of the genome and as a
result, create novel gene functions, disrupt gene functions,
or affect regulatory mechanisms in the genome. The com-
parison between the rate of accumulation of CNVRs and
the rate of accumulation of SNPs suggests that the CNVRs
are evolving approximately 2.5 fold faster than SNPs,
which is in line with a recent study in apes [46] where a
14 fold differences was observed between CNVRs and
SNPs. Thus, these fast evolving CNVRs, especially those
overlapping with functional regions in the genome might
be a major driver of the on-going speciation in pigs.

The recent study on speciation of the genus Sus has
shown that these taxa have undergone multiple rounds of
small-scale inter-specific hybridization (i.e. admixture)
during the glacial periods of the Pleistocene (2.5-0.01
Mya) [31]. Despite the multiple events of interspecific
hybridization and being geographically very close to Sus-
ISEA populations, the Sumatran Sus scrofa population
(found to be coexisting with Sus barbatus on Sumatra)
was found to be less admixed with Sus-ISEA than Sus
scrofa. This implies the existence of mechanisms that
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prevented these species from massive homogenizing dur-
ing the numerous glacial periods of the Pleistocene. Fur-
thermore, the phylogenetic tree analysis based on pairwise
CND of CNVR-OR and pairwise difference in SNPs sug-
gests that CNVR-OR largely recapitulates the accepted
phylogeny of the genus Sus [31], whereas the phylogenetic
trees obtained by using pairwise CND of CNVR-nonOR,
show inconsistencies with the phylogenetic history of the
genus Sus and instead follows expected patterns of ran-
dom drift and/or admixture [31] (Additional file 5: Figure
S2A and B). The strength of support for these inconsisten-
cies were assessed by testing the support of different
constrained models that fit the history of inter-specific
admixture reported in a previous study [31] using a novel
Bayesian phylogenetic analysis approach. The Bayesian
phylogenetic analysis on the CN partitions significantly
supported the recapitulations of topology of the genus Sus
by CNVR-OR whereas for CNVR-nonOR the inconsistent
topology representing admixture/random drift of genus
Sus was strongly supported. Thus, CNVRs with OR show
resistance to admixture and random drift effects between
the analyzed species. This observation in combination
with the observed higher rate of evolution suggests that
these OR genes could play a major role in the on-going
speciation process of Sus, facilitating rapid adaptation to
different environments and divergence in mate recogni-
tion. Furthermore, pigs are known to depend highly on
their sense of smell for foraging and mate recognition, and
have one of the largest functional OR repertoires observed
in mammals, which additionally makes it plausible that
ORs are important in speciation of pigs.

Besides OR genes, genes involved in immune response,
defense to pathogens and detoxification such as interferons
(IFN), NPG3, PMAP23 and cytochrome P450 (CYP), are
usually also fast evolving due to their importance for the
organism to respond rapidly to changes in the environment
and food-borne pathogens [26,35,36,38,46,47]. Thus, to-
gether with ORs, the observed variation in CN of these
genes suggests an ongoing process of evolution of these
gene families and their importance for adaptation in a
rapidly changing environment.

Despite the similar divergence time [31], the total
CNVRs in the Sus-ISEA group (1089; 407 specific to Sus-
ISEA) was found to be higher than that in Sus scrofa (782;
96 specific to Sus scrofa). In addition, for the 407 Sus-
ISEA specific CNVRs, Sus scrofa shows universal high and
fixed CN between three diverse Sus scrofa populations
and most of the genes overlapping with group specific
CNVRs are found to be ORs (178 genes; 146 ORs). This
fixation might have happened soon after the split of the
ancestral Sus scrofa population from the other Sus species
from ISEA around 4 Mya.

We suggest that CNVR-ORs, might have provided the
means to rapid adaption to different environments during
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the diversification of the genus in the Pliocene [31]. Fur-
ther, the CNVR-ORs might have acted as barriers against
gene flow during the multiple round of hybridization that
took place later in the Pleistocene. To what extent these
regions might have played a role in differentiating of Sus
scrofa from the rest of the suids is another interesting
topic which requires a more extensive taxon sampling of
highly diverged suids from other parts of the world.

Conclusions

We identified 1408 CNVRs across the genus Sus.
These CNVRs encompass 624 genes and were found to
evolve ~2.5 times faster than SNPs. The majority of
these copy number variable genes are ORs known to
play a prominent role in food foraging and mate recog-
nition in Sus. Phylogenetic analyses, including novel
Bayesian analysis, based on CNVRs that overlap ORs
retain the well-accepted topology of the genus Sus
whereas CNVRs overlapping genes other than ORs
show evidence for random drift and/or admixture. We
hypothesize that inter-specific variation in copy num-
ber of ORs provided the means for rapid adaptation to
different environments during the diversification of the
genus Sus in the Pliocene. Furthermore, these regions
might have acted as barriers preventing massive gene
flow between these species during the multiple
hybridization events that took place later in the Pleisto-
cene suggesting a possible prominent role of ORs in the
ongoing Sus speciation.

Methods

Samples and data generation

In total 16 different individuals from 5 different species
were sequenced using the Illumina platform (Illumina
GAII or HiSeq, Illumina, San Diego, CA, USA). The
sequences are 100 bases pair-end reads from 400-
500 bp insert-libraries with coverage per animal ran-
ging between 7 — 18x. The sampled pigs comprised of
European wild boar (2- Dutch, Sus scrofa), Chinese
wild boar (2- South Chinese, Sus scrofa), Sumatran
wild boar (2- Sumatra, Sus scrofa), Sus barbatus (4 in-
dividuals), Sus cebifrons (2 individuals), Sus celebensis
(2-individuals) and Sus verrucosus (2 individuals)
(Table 1; Additional file 1: Table S1A). Blood samples
were obtained from veterinarians according to national
legislation and tissue samples were obtained from
animals culled within wildlife management programs.
DNA from blood or tissue was extracted using the
DNeasy blood and tissue kits (Qiagen, Venlo, NL,
USA). Quality and quantity were measured with the
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, USA).
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Sequence alignment and copy number estimation

The CN of regions in the genomes of all individuals was
detected by a RD method [35,38,48], where the number
of copies is inferred from sequence depth of whole gen-
ome sequence data. To calculate the average read depth
from those libraries, reads were first aligned to the
repeat masked reference genome (Sus scrofa build 10.2)
using mrsFAST v2.3.0.2 (“Micro-read (substitutions
only) fast alignment and search tool” [49]) with an edit
distance of at most 7 given that the mean divergence be-
tween the seven species is maximum 2% [39,31]. Repeat
masked information was obtained from NCBI (refer-
ence genome and repeat masked reference genome:
ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/ver-
tebrates_mammals/Sus_scrofa/Sscrofal(0.2/Primary_As-
sembly/assembled_chromosomes/FASTA/) and merged
with the repeat masked information used in Groenen
et al. [39]. Because the RD methods do not take paired-
end information into consideration, all the paired-end
sequences were treated as single-end sequences. Two
individuals from each species were merged and treated
as one to increase the confidence and sensitivity to infer
CN (see results). Calculation of read depth across the
whole genome was done with the help of SAMtools
v0.1.18 (r982:295) [50]. Average read depth for each 1
Kb non-overlapping bins of repeat masked genome was
calculated. To be considered for further analysis, a bin
needs to have at least 300 bases of unmasked region.

The RD method uses read depth information of
diploid regions as the reference to infer CN. Since
no prior information regarding diploid regions in the
porcine genome was available, we initially used 1:1
orthologous genic regions between human, cow and
pig and assumed these to be diploid in pig to identify
CN of each 1Kb bin present in the genome. Because
coding regions are known to have a higher GC
content than the genome average [51,52] this pro-
cedure may introduce a GC biased read depth.
Hence, to reduce possible GC bias introduced by the
1:1 orthologous regions, all diploid regions predicted
from 1:1 orthologous regions in the first stage were
subsequently used to recalculate the average diploid
read depth of the porcine genome as described pre-
viously [38].

Next generation sequencing methods have been
shown biased in coverage in regions of high or low GC
[53-58]. To correct for this bias we calculated GC
intervals correction factors as described by Sudmant
et al. [35]. These factors were then used to correct
read depth of each 1 Kb bin across the genome. CN of
each 1 Kb non-overlapping bin was then estimated
based on the GC corrected read depth. Since the sam-
ples include both male and female individuals, sex
chromosomes were excluded from the analysis.
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Prediction of MCRs and defining CNVRs

All the 1 Kb bins with minimum CN of 1 were extracted
from all individuals and bins with CN >2.5 were chained
to form multi copy regions (MCRs). The same MCRs
might be assigned with different boundaries in different
individuals due to technical and/or biological reasons.
Therefore, all the MCRs from all individuals were ex-
tracted, merged, and CN of those regions for all individ-
uals were calculated and compared. Further, the MCRs
with standard deviation of CN higher than 0.7 (s.d. 20.7)
between all individuals were assigned as CNVRs [38].

Gene identification and Gene Ontology

All the annotated porcine genes from Sus scrofa build
10.2, Ensembl release 75, were extracted using BioMart
[59] and genes overlapping with the CNVRs (>70% over-
lap) were identified. Not all pig genes have associated
gene names, thus the genes without gene names were
aligned against the human Refseq mRNAs and human
reference protein sequences (blastn and blastp, respect-
ively), and the best human hit was assigned as gene
name. Human orthologs of porcine genes were then
used to perform a gene ontology analysis. BinGO v2.44
[60] a plugin of Cytoscape v2.8.3 [61] was used to iden-
tify enriched GO terms using human gene annotation as
background. A hypergeometric test was used to assess
the significance of the enriched terms and Benjamini-
Hochberg FDR correction was implemented for multiple
comparisons.

Sus scrofa specific and other suids specific CNVRs

For the group comparison, we formed two groups: one
with Sus scrofa including all three diverse populations of
Sus scrofa and another with the Sus-ISEA. CNVRs for
both groups were generated based on the similar ap-
proach described above comparing only individuals be-
longing to a group.

Cluster analysis

Hierarchical cluster analysis was performed using R
package “hclust” on the CN at each CNVR. Initially,
each species is assigned to its own cluster and then the
algorithm proceeds iteratively, at each CNVR joining the
two most similar clusters, continuing until there is just a
single cluster.

SNP calling

SNPs were called in each individual of a population sep-
arately. We extracted all the regions that were assigned
as diploid (CN 2) in all populations. We then used Sam-
tools v0.1.19 mpileup [50] to call genotype at sites and
only considered genotype calls as SNPs, if they are dif-
ferent from the reference base and covered by at least 4
reads with minimum base and mapping quality of 20.
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Estimation of pairwise distance between SNPs and CNVRs
and construction of phylogenetic tree

A rate of SNP accumulation, between all possible pair of
the 14 individuals was computed by dividing the number
of observed difference with the total sites that could be
called confidently i.e. 1,115,908 SNPs. The CNDs were
transformed into binary values with CND >2 as 1 and
CND <2 as 0. For each pair, the rate of pairwise differ-
ence was then calculated by dividing the total differences
with the total CNVRs count (1408). PHYLIP package
v3.695 [41] was used to construct neighbor joining (NJ)
phylogenetic trees from the calculated pairwise distance
matrix of SNPs and the following partitions of CNVRs:
CNVR-OR (CNVRs overlapping OR genes) CNVR-
nonOR (CNVRs overlapping non-OR genes) and CNVR-
ALL (all CNVRs with and without gene overlap).

Construction of phylogenetic trees using a Bayesian
approach

Bayesian phylogenetic analysis was performed using the
MKV model [42] as implemented in MrBayes v2.2 [43].
This model implements a maximum likelihood approach
to variable characters (ie. morphology). To use this
model with our CN data we need discrete CN values be-
tween 0 and 9. We used the following equation to trans-
form CNs of each locus for each species into 9 discrete
values.

CN; = ((CNo— CNpin)/(CNpmax— CNpin)) * (10-1)

where, CN,, = Transformed CN,, (rounded)
CN, = Raw CN
CNpnax = Maximum observed CN for locus
CN,pin = Minimum observed CN for a locus

We used the default (infinity) hyper-prior for the
dirchelet process that model rate classes. This model im-
plies little variation among rate of transition between
CN. More complex models can be used by decreasing
the hyper-prior (increasing concentration parameter).
However, because increasing the concentration param-
eter (the number of rate categories) for the dirichelet
process greatly increases the running speed, we kept this
parameter to the default settings. For each data set
(CNVR-OR, CNVR-nonOR and CNVR-ALL) we first
ran 1,000,000 Markov Chain Monte Carlo (MCMCQC)
(25% burnin) samples to estimate posterior distributions
of the various parameters. Marginal likelihoods were
computed using the stepping-stone model [62,63] with
1,000,000 samples (25% burnin) and 50 steps. We also
estimated the marginal likelihood under different con-
strained models (see Results) to further investigate the
support for discrepancies found among data sets and
between NJ and Bayesian trees.
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gPCR Validation

Primer3 webtool http://frodo.wi.mit.edu/primer3/ was
used to design primers for qPCR validation. Amplicon
length was limited between 50 bp to 100 bp and regions
with GC percentage between 30% and 60% were in-
cluded, while avoiding runs of identical nucleotides. All
other settings were left at their default. Details of the
qPCR primers can be found in Additional file 6: Table
S4G. qPCR experiments were conducted using MESA
Blue qPCR MasterMix Plus for SYBR Assay Low ROX
from Eurogentec, this 2x reaction buffer was used in a
total reaction volume of 12.5 ul. All reactions were amp-
lified on 7500 Real Time PCR system (Applied Biosys-
tems group). The CNDs were determined by using a
standard ACt method that compares the mean Ct value
of the target CND fragments, determined from different
input concentrations, compared to the mean Ct value of
a known diploid reference.

Availability of supporting data section
European Nucleotide Archive: ERP001813.

Additional files

Additional file 1: Table S1. A: List of species and animals with their
sequence depth including information of additional 2 Sus barbatus
samples. B: List of CNVRs with all species. C: List of CNVRs with CN of
each individual separately including additional Sus barbatus samples. D:
General statistic of shared CNVRs between species. E: gPCR results for the
twenty validated CNVRs.

Additional file 2: Figure S1. Heatmap of CNVRs in all chromosomes. A)
Heatmap with combined CNVRs in all chromosomes. Each column
represents a population (combined CN) and each row represents a CNVR.
B) Heatmap with of CNVRs in all chromosomes. Each column represents
an individual separately (CN in that individual only) and each row
represents a CNVR and genes overlapping with the CNVRs are listed next
to the CNVRs (right).

Additional file 3: Table S2. A: List of genes overlapped by CNVRs. B:
List of olfactory receptor genes overlapped by CNVRs. C: Gene ontology
using BinGO package.

Additional file 4: Table S3. A: List of species and animals with their
sequence depth including information of additional 2 Sus barbatus
samples. B: List of CNVRs with all species. C: List of CNVRs with CN of
each individual separately including additional Sus barbatus samples. D:
General statistic of shared CNVRs between species. E: gPCR results for the
twenty validated CNVRs.

Additional file 5: Figure S2. Phylogenetic trees. A) Phylogenetic trees
obtained from CND of CNVR-nonOR. B) Phylogenetic trees obtained from
CND of all CNVR.

Additional file 6: Table S4. A) CNVRs in Sus scrofa lineage. B) List of
uniquely ascertained CNVRs in Sus scrofa lineage. C) List of genes in
uniquely ascertained CNVRs in Sus. D) CNVRs in Sus-ISEA lineage. E) List of
uniquely ascertained CNVRs in Sus-ISEA lineage. F) List of genes in
uniquely ascertained CNVRs in Sus-ISEA. G) List of gPCR primers.

Abbreviations

SV: Structural variation; MCR: Multi copy region; CNV: Copy number variation;
CNVR: Copy number variable region; CND: Copy number difference;

OR: Olfactory receptor; ISEA: Islands of South East Asia; MSEA: Main land
South East Asia.
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