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INTRODUCTION

The epithelial layers and mucus secretions of the pulmonary, genitourinary, and 

gastrointestinal (GI) systems all provide a complex mechanical barrier and an inherent 

defense against pathogens that constantly threaten the human body. Evidence suggests that 

these systems do not work independently, but form what is referred to as the mucosal 

immunologic system, an integrated network of tissue, cells, and signaling molecules.1 Of the 

3 systems, the lining of the GI tract provides the largest interface with the external 

environment (200–300 m2). Although it was long believed to exist solely for food digestion 

and nutrient absorption, it is now known that the responsibilities of the intestinal system are 

diverse and critical to host defense. This amazing organ has evolved an elaborate defense 

system to protect the human body from continuous threats of numerous disease-causing 

agents and commensal bacteria present at an impressive number (1 × 1014 CFU).2 At no 

time in life is this function more important than shortly after birth. The infant’s abrupt 

introduction to life outside the uterus and exposure to antigens forces the GI tract to adapt 

quickly and commence its crucial duties. But the neonate’s adaptive immune system is 

naive, and the developmental immunologic immaturity leaves the newborn in a state of 

vulnerability and at increased risk for serious infection. Components of the intestinal innate 

immune system do not rely on memory and can act with a preformed, nonspecific response.

Feeding exclusively with human milk is recommended for the first 6 months of life3 and 

provides unique components and nutrients, leading to optimal nutrition, growth, and 

development of the newborn infant.4 The benefits of human breast milk and its association 

with healthier babies have been intermittently noted over the past few thousand years.5 In 

1934, Grulee and colleagues6 showed that formula-fed infants had higher morbidity and 

mortality when compared with breastfed infants. More recently, breast milk has been 

associated with a decreased incidence of necrotizing enterocolitis (NEC),7 gastroenteritis,8 
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severe respiratory illness,9 otitis media,10–14 and urinary tract infections.15 The unique and 

dynamic composition of human milk not only supplies optimal nutrients but also contributes 

an abundance of bioactive factors,16 which support and enhance the deficient immunologic 

system of the newborn.

In this article, selected factors in breast milk and how they either act alone to provide innate 

protection or augment GI innate immune function are reviewed. First, a broad and brief 

overview of innate immunity within the intestinal system is provided. Then, individual 

constituents present in human breast milk and the variety of mechanisms by which they 

exert their effects and afford protection to the newborn infant are discussed.

THE INNATE IMMUNE SYSTEM OF THE GI TRACT

The complex immune system of the intestine can be divided into 2 broad categories: innate 

and adaptive immunity. Although the innate arm, as its name implies, is present from birth 

and capable of immediate protection at the local level, the adaptive immune system of the 

gut is initially naive and needs time to generate an appropriate response and memory. 

Although much of our focus is on the components of innate immunity in the gut, it is 

important to remember that this system does not work in isolation. The information it 

gathers communicates with the adaptive immune system, allowing the 2 to work in concert 

to provide optimal protection for the host. The innate defense system of the intestine can be 

broken down into 3 main components: the secreted mucus layer within the gut lumen, a 

single intestinal epithelial cell (IEC) layer, and the underlying lamina propria.

Mucus Layer

Large, highly glycosylated proteins called mucins are secreted by specialized goblet 

cells,17,18 also known as mucin-secreting cells, and are the primary component of mucus. 

The mucus layer, which is present throughout the GI tract, provides protection, lubrication, 

and compartmentalization, minimizing contact between the epithelium and commensal 

bacteria. Mucins secreted by salivary glands coat food and assist with esophageal transit.19 

The mucus layer in the stomach plays a role in protecting the epithelium from the harsh 

acidic environment.19 The gel-forming mucin, MUC2, is the most predominant mucin in 

both the small and large intestine.20 There is 1 unattached layer of mucin in the small 

intestine, which acts as a physical and chemical barrier, preventing pathogenic bacteria from 

contacting the intestinal epithelia.21 The colon has 2 distinct mucus layers, with the outer 

layer containing many bacteria and the inner layer being resistant to bacterial penetration.22 

Attached to the apical side of enterocytes in the small intestine is a separate, thin layer of 

mucus, made up of transmembrane mucins. This layer is commonly referred to as the glyco-

calyx; it affords protection to the IECs by means of a physical barrier and plays a role in 

cellular signaling.23 An abnormal mucus layer may lead to both acute and chronic intestinal 

diseases and has been shown to be associated with colitis in a murine model.24

Antimicrobial peptides (AMPs), a critical element in the chemical response of the innate 

immune system, are released into the mucus layer of the intestine. These small peptides (20–

40 amino acids long) are secreted by the Paneth cell, a pyramidal columnar exocrine cell 

located at the base of the crypts of Lieberkühn, and can respond to a threat within a matter of 
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hours. The continual release of AMPs by Paneth cells maintains the relatively sterile 

environment of the intestinal crypt, where the intestinal epithelial stem cells reside. When 

stimulated by inflammatory mediators, AMPs are also secreted into the lumen to help with 

mucosal defense.23 They have microbicidal activity against a wide range of pathogens, 

including many gram-negative and gram-positive bacteria, fungi, protozoa, and viruses.18 

Paneth cell dysfunction has been shown to lead to decreased clearance of pathogenic 

Escherichia coli.25 Several AMPs are present in the neonate’s intestine. Some of the most 

important and abundant are α-defensin, β-defensin, lysozyme, and LL-37 (a member of the 

cathelicidin family).

IECs

The intestinal epithelial layer is made up of 4 different types of cells: absorptive enterocytes, 

hormone-secreting enteroendocrine cells, mucus-secreting goblet cells, and antimicrobial-

secreting Paneth cells. These cells mature from a common pluripotent stem cell located in 

the base of the crypts. This single layer of highly polarized IECs sits below the mucus layer, 

creating a physical barrier that is anchored by junctional proteins. They are also responsible 

for sampling intraluminal contents, which instigates transcellular signaling and transcription 

of genes, resulting in a defense response via the release of cytokines and chemokines and 

subsequent attraction of leukocytes. This function is mediated by multiple pattern 

recognition receptors (PRRs), critical for the identification of foreign elements such as 

peptidoglycan, lipo-proteins, viral DNA, and commensal microflora. The remarkable ability 

of these receptors to distinguish between harmful and helpful bacteria with subsequent 

appropriate signaling is critical to intestinal homeostasis.26 Toll-like receptors (TLRs) are 

the predominant type of PRR found on the apical side of IECs. Another group of PRRs that 

cooperate with TLRs are the intracellular NOD-like receptors (NLRs). NOD1 is expressed 

by IECs, and NOD2 is found in monocytes, dendritic cells, and Paneth cells.23

Tight junctions (TJs) regulate paracellular permeability and maintain separation of tissue 

compartments by sealing the intercellular space27,28 and are an essential component of the 

epithelial barrier. A breakdown in the functioning of TJs and, subsequently, the intestinal 

immune barrier has been implicated in the pathogenesis of idiopathic inflammatory bowel 

disease,29,30 infectious enteritis, and NEC.31 Three types of proteins make up TJs: 

occludins, claudins, and junctional adhesion molecules. Although not much is known about 

the occludin proteins, it is known that the family of claudin proteins control the size, 

strength, and specificity of the ions that can pass through the epithelium.23 In addition to 

TJs, adherens junctions are present on the lateral side of the epithelial cells and facilitate 

intercellular signaling.

Lamina Propria

A comprehensive review of the innate and adaptive immune functions occurring within the 

lamina propria is beyond the scope of this article. Further, the gut-associated lymphoid 

tissue include Peyer patches, isolated lymphoid follicles, and M cells, which are not 

discussed in this review. Intraepithelial T-cell lymphocytes have also recently been 

recognized as an important innate immune cell, which is critical for host-microbial 

homeostasis and protects the gut from injury.32 The lamina propria contains many innate 
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immune cells; the functions of these cells are being elucidated in ongoing animal and human 

studies. Among these cells are macrophages and dendritic cells; their roles include antigen 

uptake and transport, induction of T-cell differentiation, stimulation of immunoglobulin 

production (IgA), and tissue repair.33 Macrophages and dendritic cells are also important for 

maintaining tolerance to the commensal microbiota.33 In addition to different populations of 

T-cell and B-cell lymphocytes present in the lamina propria, innate lymphoid cell 

populations have recently been described, including natural killer cells, which are purported 

to play important roles in producing proinflammatory and regulatory cytokines.34

There certainly are other components of the innate immune system, which are not discussed 

here but are important. One simple example is the acidic and bacteriocidal environment of 

the stomach, which not only aids in digestion but also decreases the number of viable 

pathogens reaching the distal intestine. The disruption of this milieu can lead to disease. 

Multiple studies have revealed an association between the use of histamine 2 blockers, 

which inhibit gastric acid secretion, and both NEC and late-onset sepsis.35–38

INNATE IMMUNITY AND HUMAN BREAST MILK

Human infants are born with certain developmental immune deficiencies.39 Phagocyte 

function and responses are immature and inadequate. Antibody production is limited and 

delayed, and serum IgA levels are far lower than adult levels. Both the classic and 

alternative pathways of the complement cascade have decreased performance. In addition to 

nutritive components, the ingestion of human breast milk delivers numerous antipathogenic 

and antiinflammatory bioactive factors40 that provide passive protection to the neonate and 

stimulate maturation of host intestinal defenses. This factor is particularly relevant for 

premature infants, whose immune defenses are more immature than term neonates. The milk 

of mothers who give birth prematurely contains higher amounts of phagocytes and secretory 

immunoglobulin A (sIgA).41–43 Breast milk is capable of directly modulating the 

development of the immune system,44 as breastfed infants have been shown to have a 

reduced incidence of allergic disease45 and autoimmune diseases such as Crohn disease46 

and insulin-dependent diabetes mellitus.47 These collective properties make breast milk the 

gold standard for providing protective nutrients to the newborn.48

The Intestinal Microbial Environment

Colonization of the infant gut with more than 400 species of commensal bacteria lays the 

foundation for a healthy microbiome, which contributes to immune homeostasis, setting up a 

symbiotic relationship between colonizing bacteria and the underlying epithelial cells and 

lamina propria.49,50 Barrier function, mucin and IgA secretion, inflammation, and 

homeostatic processes such as proliferation and apoptosis are influenced by these helpful 

bacteria.51–56 Their effects on the intestinal immune system are believed to be largely 

mediated through TLRs present on IECs, which are able to distinguish between commensal 

bacteria and harmful pathogens.57 Normal colonization begins at the time of birth with a 

vaginal delivery, when the infant is exposed to maternal vaginal and colonic bacteria. This 

process is followed by an exclusive diet of human milk, which contains factors that promote 

the growth of commensal bacteria. Distinct differences have been shown in the intestinal 

flora of breastfed and bottle-fed infants.58
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Oligosaccharides are nondigestable sugars found in breast milk and are believed to be 

responsible for promoting the growth of protective bacteria in the colon. They make up 

approximately 1% of the milk and 10% of the caloric content,59 although the amount present 

varies diurnally and with duration of lactation and the infant’s gestational age.60 The 

presence of a nonnutritional substance at such high concentrations led to the hypothesis that 

glycans, including oligosaccharides, play a role in protection against disease. Because they 

are indigestible, oligosaccharides pass through the small intestine and enter the colon. Here, 

they produce short-chain fatty acids through fermentation, creating a favorable environment 

for the growth of probiotic bacterial species such as bifidobacteria and lactobacilli. This 

factor leads to a stable ecosystem in the intestine and augmentation of intestinal host 

defenses. The stimulation of sIgA-producing plasma cells in the intestine by these 

commensal bacteria is 1 such example of this symbiotic relationship.61 Furthermore, glycans 

can inhibit binding of pathogens to the intestinal cell wall by acting as ligands, attaching to 

various bacteria, toxins, and viruses.62

sIgA

In the human adult, large amounts of sIgA are produced daily by plasma cells in the gut and 

transported into the intestinal lumen. This abundant antibody coats both harmful and 

commensal microorganisms, preventing colonization and penetration of the mucosal barrier, 

and it may even be able to inactivate certain viruses.63 In the full-term newborn gut, plasma 

cells responsible for producing sIgA are absent for about 10 days after birth, and it takes up 

to 30 days postpartum for the neonatal intestine to produce levels of sIgA that are sufficient 

for protection.64 To compensate for this deficiency, maternal milk contains large amounts of 

sIgA, which accounts for 90% of total immunoglobulins in milk. More than 50 years ago, it 

was discovered that there was up to 12 g/L of sIgA in human colostrum and 1 g/L in mature 

milk.65 When secreted by the infant’s gut, sIgA can be considered a part of the innate 

immune system, but when sIgA is ingested in mother’s milk, it works through a unique 

system of immunity whereby the infant acquires protection from enteric pathogens to which 

the mother is exposed. First, within the mother’s intestine, a novel enteric pathogen is 

presented to the dendritic cell. Next, activated T lymphocytes stimulate B lymphocytes, 

inducing the production of IgA by plasma cells at the basolateral side of the mammary 

epithelial cell. IgA is then transported across the epithelial cell attached to the 

polyimmunoglobulin receptor. On the apical side, the complex is cleaved, and dimeric sIgA 

is secreted into the milk, conferring immunity to the nursing infant.66

Selected Bioactive Proteins in Breast Milk with Antipathogenic Activity

Lactoferrin—This multifunctional, iron-binding glycoprotein possesses many anti-

infective properties that act as part of the innate immune system and is present in mature 

human breast milk at concentrations of 1 to 3 g/L and in colostrum at 7 g/L.67 It also occurs 

naturally in most exocrine fluids such as tears, saliva, bile, and pancreatic secretions. A 

recent study performed in very low birth weight infants showed that administration of 

bovine lactoferrin (LF), which is nearly homologous with human LF, either alone or in 

combination with LGG, can reduce the incidence of late-onset sepsis caused by bacteria and 

invasive fungal infections.68,69 Antiviral properties have also been shown against a wide 
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range of viruses, including human immunodeficiency virus, cytomegalovirus, herpes 

simplex virus, hepatitis B and C, adenovirus, and rotavirus.70

Many modes of action have been discovered by which LF acts to provide protection to the 

neonate, including its high affinity for iron, which may limit the amount of iron available to 

bacteria and other microorganisms. When LF is exposed to pepsin in the stomach, a potent 

antimicrobial agent is produced called lactoferricin, which is capable of killing a wide range 

of pathogens and, in particular, disrupts the cell membrane of gram-negative bacteria.71 

Another factor contained in breast milk, lysozyme, acts together with LF in the stomach to 

kill gram-negative bacteria.72 Intact LF is passed into the small intestine and can bind to 

multiple receptors, including TLRs and CD14, blocking the adherence of pathogens to the 

intestinal epithelium.73 Other beneficial actions of LF in the intestine include initiation of 

apoptosis in infected IECs,74 promotion of growth of commensal bacteria,75 stimulation of 

proliferation and differentiation of IECs,76 and a reduction in inflammatory cytokine 

production through inhibition of nuclear factor κB activation in monocytes.48,77 LF 

continues to be at the forefront in the fight against systemic infections and NEC in 

premature infants. There are multiple ongoing clinical trials studies looking at the effects of 

either bovine LF or human recombinant LF.

Lysozyme—This antibacterial enzyme is present in breast milk at relatively high 

concentrations. It can act alone to degrade bacteria by cleaving β,1-4 glycoside linkages in 

their cells walls.78 As mentioned earlier, the activity of lysozyme can be increased through 

its relationship with LF. This expansion of its capabilities is accomplished when LF disrupts 

the outer membrane of gram-negative bacteria, such as Salmonella typhimurium and E coli. 

Lysozyme can then enter the bacteria and destroy it.72

Caseins—This family of highly glycosylated proteins makes up about 40% of the protein 

present in human milk and has immunologic activity in the newborn. β-casein is the 

predominant casein found in human milk. A synthetic peptide of β-casein has been shown to 

stimulate the expression of MUC2 genes and increase the numbers of goblet cells and 

Paneth cells in the small intestine of a rat pup model.79 As discussed earlier, MUC2 is the 

most prevalent mucin in the mucus layer of the small intestine and provides protection 

through multiple mechanisms. κ-Casein is a minor casein subunit in breast milk.80 It can act 

as a receptor analogue, preventing the attachment of bacteria to mucosal epithelium81 and 

inhibit binding of Helicobacter pylori to human gastric mucosa in vitro.82

Cytokines and Chemokines Found in Human Milk

The gut of the newborn lacks the ability to respond appropriately to foreign pathogens and, 

more specifically, the capacity to produce a contained inflammatory response. There is a 

tendency toward excessive inflammatory signaling, as shown in immature IECs when 

exposed to inflammatory stimuli such as interleukin 1β (IL-1β), tumor necrosis factor α, and 

lipopolysaccharide, with an increased release of IL-8,48,83 a chemokine known to stimulate 

neutrophil recruitment.84 Cytokines are responsible for mediating, regulating, and 

modulating immune responses. Human breast milk contains a significant amount of this 

diverse group of signaling molecules, which help control the inflammatory response. For 
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example, the antiinflammatory cytokine, IL-10, is present in breast milk85 and believed to be 

critical for intestinal homeostasis and protection of the host. IL-10–deficient mice develop 

chronic enterocolitis,86 and human infants with defects in the genes encoding IL-10 receptor 

subunit proteins have severe early-onset colitis.87 With regard to NEC, IL-10 knockout mice 

have increased intestinal inflammation and increased apoptosis of IECs when exposed to 

hypoxia and formula feeding,88 and the feeding of maternal milk in a rat model led to a 

reduction in the severity of NEC and increased intestinal IL-10.89 Claud and colleagues83 

found that IL-10 and transforming growth factor β (TGF-β) both decreased IL-8 secretion by 

fetal human enterocytes in vitro.

The TGF-β family of immunoregulatory cytokines have been shown to be involved in 

wound healing, the inhibition of inflammation by decreasing the production of 

proinflammatory cytokines, and the regulation of lymphocytes, natural killer cells, dendritic 

cells, macrophages, and granulocytes.90 Neonates have decreased expression of TGF-β,91 

but maternal milk supplies sufficient levels of the much-needed cytokine.92 Exogenous 

supplementation can have a significant impact on the developing mucosal immune system, 

through its effects on oral tolerance and regulatory T cells. Infants breastfed by mothers with 

increased levels of TGF-β in breast milk have a decreased risk of wheezing and atopic 

dermatitis in childhood.93,94 In direct relation to the innate immune system, TGF-β can also 

initiate local production of IgA in the gut, providing additional protection.95

Development and Repair of the GI Epithelium

With exposure to multiple factors in amniotic fluid and human breast milk, growth and 

differentiation of the intestinal epithelium peak shortly after birth. Epidermal growth factor 

(EGF) is a peptide that augments IEC proliferation and differentiation96 and is secreted by 

multiple cells throughout the GI system into the intestinal lumen. EGF is supplied by 

amniotic fluid throughout pregnancy, whereas the infant in the postnatal period relies on the 

significant concentrations of EGF found in human milk and colostrum. Milk from mothers 

who have delivered an extremely premature infant contains 50% to 80% more EGF when 

compared with milk from mothers with full-term infants,97 leading to speculation that EGF 

may be one of the reasons why human milk is protective against NEC.98 Enteral 

administration of EGF resulted in a 50% reduction of NEC in a rat model.99 More 

specifically, EGF has been associated with increased goblet cell density and MUC2 

production in the ileum, and normalization in the expression of the intestinal epithelial TJ 

proteins, occluding and claudin, resulting in improved intestinal barrier function.98,100 

Another protein found in human milk that is capable of contributing to the development of 

the epithelium is LF. In addition to its antibacterial activity discussed earlier, experiments in 

human intestinal cell lines have shown that LF, which peaks in colostrum, induces cell 

proliferation at high concentrations and cell differentiation at low concentrations.76

Other Active Components in Breast Milk

Leukocytes—During early lactation, human milk contains large amounts of macrophages 

(up to 80% of total cells present), and an infant may consume up to 1010 maternal 

leukocytes per day.16 Breast milk phagocytes, which are believed to be derived from 

maternal peripheral blood monocytes, possess unique functional features. One study showed 
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that after phagocytosis of breast milk components, the phagocytes were capable of 

spontaneously producing granulocyte-macrophage colony-stimulating factor and 

differentiating into dendritic cells.101 There is speculation that these cells possess many 

more functions that we do not yet know about.

Triglycerides—The fat or triglyceride found in human milk is a key constituent for infant 

nutrition and growth. It also has an additional function. When the triglyceride enters the 

stomach, it is digested by lingual and gastric lipases. This process releases free fatty acids 

and monoglycerides. These products act as a part of the innate immune system in the 

stomach and provide immediate protection to the newborn infant through their lytic effect on 

various viruses and some antibacterial and even antiprotozoal activity, specifically against 

Giardia (Table 1).39,66,102

SUMMARY

The neonatal intestine faces many changes, including adaptation from a sterile intra-uterine 

environment to one in which a diverse microbial population outnumbers human cells 10 to 

1. To maintain homeostasis, it must protect the host from potential noxious and infectious 

stimuli and tolerate the diverse commensal microbes that colonize the entire gut. 

Furthermore, the gut must also perform important digestive and absorptive functions. 

Human breast milk contains many components that aid neonatal gut function and 

development. Understanding both neonatal gut immunity and how breast milk components 

influence its development and function are areas of active investigation. Future studies in 

this field are needed to develop targeted strategies to prevent and treat neonatal gut injury 

and infection, particularly in extremely low birth weight and premature infants.
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KEY POINTS

• Newborns infants are in a susceptible immunologic state after birth, with an 

immature adaptive immune system, making them reliant on their innate immune 

system for protection.

• The gastrointestinal innate immune system is comprised of many components. 

The acidic environment in the stomach and the mucus layer of the small 

intestine provide an initial barrier. The intestinal epithelial cells create a physical 

barrier and are involved in signaling to the underlying tissue. The lamina propria 

is rich in immune cells and contributes greatly to intestinal defense.

• In addition to providing optimal nutrition to infants, human breast milk has an 

abundance of bioactive factors that act as a part of the innate immune system of 

the gastrointestinal tract. Some factors have intrinsic properties that act as part 

of the defense system, whereas others enhance the ability of the gastrointestinal 

tract to defend the host.
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Table 1

Selected components present in human breast milk that act as part of the GI innate immune system

Component in Breast Milk Action Reference

Oligosaccharides (or prebiotics) Promote growth of commensal bacteria
Directly bind pathogenic bacteria and viruses

62

Secretory IgA Coats harmful and commensal bacteria, preventing penetration of the epithelial barrier 63

LF Binds iron within gut and limits its availability to microorganisms
Produces lactoferricin when exposed to pepsin
Binds receptors, interfering with pathogen binding to the epithelial barrier
Stimulation of proliferation and differentiation of IECs
Reduces inflammatory cytokine production
Induces IEC proliferation and differentiation

48,71,73,76,77

Lysozyme Degrades bacterial cell walls 78

Casein proteins Increase numbers of goblet cells, Paneth cells, and expression of MUC2 genes
Can act as receptor analogues

79,81

IL-10 Attenuates inflammation in the gut 83

TGF-β Stimulates local production of sIgA in the gut
Regulation of multiple types of immune cells

95

EGF Increases goblet cell density and MUC2 production in ileum
Normalizes expression of TJ proteins

98,100

Free fatty acids and monoglycerides Antiviral, antibacterial, and antiprotozoal activity in stomach 39,66,102
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