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Summary

Individualized treatment rules recommend treatments based on individual patient characteristics in 

order to maximize clinical benefit. When the clinical outcome of interest is survival time, 

estimation is often complicated by censoring. We develop nonparametric methods for estimating 

an optimal individualized treatment rule in the presence of censored data. To adjust for censoring, 

we propose a doubly robust estimator which requires correct specification of either the censoring 

model or survival model, but not both; the method is shown to be Fisher consistent when either 

model is correct. Furthermore, we establish the convergence rate of the expected survival under 

the estimated optimal individualized treatment rule to the expected survival under the optimal 

individualized treatment rule. We illustrate the proposed methods using simulation study and data 

from a Phase III clinical trial on non-small cell lung cancer.
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1. Introduction

Clinicians routinely tailor treatment to the individual characteristics of each patient. 

Individualized treatment rules formalize this practice by mapping patient characteristics to a 

recommended treatment. There is a large body work on estimation of optimal individualized 

treatment rules, using data from clinical trials or observational studies (Murphy, 2003; 

Robins, 2004; Zhao et al., 2009, 2011; Qian & Murphy, 2011; Zhang et al., 2012b). 

Regression-based approaches model the regression of outcome on patient covariates and 

treatment and infer the optimal individualized treatment rule from the modeled regression. 

The performance of regression-based methods depends critically on the predictive 

performance of the estimated regression model. In addition, because regression-based 

approaches require the modeling of treatment-covariate interactions, the number of terms 

can be large with high-dimensional covariates. An alternative class of procedures, known as 

classification-based methods, maximize an estimator of the marginal mean outcome over a 

pre-specified class of individualized treatment rules. These methods typically rely on fewer 

modeling assumptions about the conditional distribution of the outcome given covariates 

and treatment and so are potentially more robust to model misspecification; furthermore, 

they avoid inversion of a predictive model, which can be computationally expensive in some 

settings. Zhao et al. (2012) and Zhang et al. (2012a) showed that maximization of the 

estimated marginal mean outcome is equivalent to minimizing a weighted misclassification 

error with weights that are proportional to the observed clinical outcomes. Classification-

based approaches have been shown to work well in settings without censoring (Zhao et al., 

2012; Zhang et al., 2012a; Kang et al., 2014; Zhao et al., 2014). However, heretofore both 

regression-based and classification-based methods were restricted to use with non-censored 

data.

When the primary outcome of interest is survival time, the observations are commonly 

subject to right censoring because of subject dropout or administrative censoring. One 

approach is to fit a parametric or semiparametric survival model, including patient 

covariates and treatments to infer the optimal decision rule from the fitted survival model. 

Goldberg & Kosorok (2012) model the completely observed survival time and adjust for 

censoring by inverse probability of censoring weighting. These methods are intended to 

form high-quality predictions but may not be consistent for the optimal treatment rule (Qian 

& Murphy, 2011). Furthermore, parametric or semiparametric models can be sensitive to 

model misspecification and inverse-weighting may suffer from numerical instability when 

the censoring rate is high.

We extend the outcome weighted learning approach of Zhao et al. (2012) to accommodate 

censored data. The extension involves maximizing an estimator of the mean survival time 

under right censoring. The method avoids inversion of a predictive model by recasting the 

estimated mean survival time as a weighted misclassification rate where the weights involve 
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both the observed outcome and inverse probability of censoring weights. We also introduce 

a doubly robust version of outcome weighted learning to account for potential bias 

introduced by a misspecified censoring model. The method is doubly robust in the sense that 

the obtained individualized treatment rule is consistent for the optimal rule when the model 

for either survival or censoring times is correct, but not necessarily both. We use a convex 

relaxation idea from support vector machines (Cortes & Vapnik, 1995) to construct a 

computationally efficient algorithm.

2. Methodology

2·1. Value function and optimal treatment rule

Let T̃ denote survival time, X = (X1,…, Xd)T ∈  denote subject covariates, and A ∈ {−1, 1} 

denote the binary treatment assigned. Define τ to be the end of the study; because there is no 

information about survival beyond τ we use T = min(τ, T̃) as the outcome of interest. When 

we are interested in survival time on the log scale, we can use log(T) as the outcome. We 

assume that data are collected in a randomized trial so that treatment A is randomly assigned 

with a randomization probability that is completely determined by X. Thus, there are no 

unmeasured confounders (Rubin, 1974, 1978; Splawa-Neyman et al., 1990). Furthermore, 

we assume that π(a; X) = pr(A = a |X) is strictly bounded away from zero with probability 1 

for each a. A treatment rule, say , is a function from  into the space of treatments {−1, 

1}; under , a patient with covariates X = x is assigned treatment (x). The value of a 

regime , denoted V( ), is the expected outcome under . Let E denote expectation with 

respect to the distribution of (T, A, X) in the observed data, and  denote expectation under 

the restriction that A = (X), then it can be shown (Qian and Murphy, 2011) that

(1)

where I(·) is an indicator function. A treatment rule, say , is said to be optimal if V ( ) ≥ 

V( ) for all rules . To characterize , write the last term in (1) as E {[I{ (X) = 1}E(T | 

A = 1, X) + I{ (X) = −1}E(T | A = −1, X)]} which implies

(2)

Thus, (x) is the maximizer of E(T|X = x, A = a) with respect to a.

2·2. Outcome weighted learning with censored data

Censoring due to patient dropout is commonly seen in studies of survival time. Let C denote 

the potential censoring time, which could exceed τ, and assume that C and T are 

independent given (A, X). We observe data comprising n independent identically distributed 

subjects, {Yi = Ti ∧ Ci, Δi = I(Ti ≤ Ci), Xi, Ai}, i = 1, …, n, where Δ = I(T ≤ C) denotes the 

censoring indicator. Our goal is to estimate the optimal treatment rule  using the censored 

data.
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Maximizing V ( ) is equivalent to minimizing E [TI{A ≠ (X)}/π(A; X)] according to (1). 

This is a weighted classification problem, where misclassification corresponds to A ≠ (X), 

and the weights are T/π(A; X). This point of view motivated the development of outcome 

weighted learning for noncensored outcomes (Zhao et al., 2012). We generalize this 

approach to censored outcomes. Hereafter, we assume that event times and censoring times 

are continuous. Let  be the conditional treatment specific 

survival function for the censoring time given covariates x. Recall that T = min(T̃, τ). Then,

where we have used the conditional independence of T and C given X, A. Therefore,

(3)

To obtain an estimator of  one could attempt to maximize an empirical estimate of the 

right-hand-side of (3). This is equivalent to minimizing

(4)

where ŜC is a consistent estimator for . However, direct optimization is intractable 

because of the discontinuous indicator functions; instead, we minimize a convex relaxation 

of (4). Because the objective function can be viewed as a weighted misclassification rate, we 

base our relaxation on support vector machines (Cortes & Vapnik, 1995). We replace I{A ≠ 

(x)} with a convex surrogate ϕ{Af(x)}, where (x) = sign{f(x)} and ϕ(t) = max(1 − t, 0) 

denotes the hinge loss. Details for estimating  are at the end of this section.

In the above formulation, a misspecified model for C given (A, X) can lead to biased 

estimation. Thus, we also propose a doubly robust estimator which protects against such 

misspecification. Let  denote a working model for the conditional mean 

residual life-time given (A, X) derived from a working survival model for ST̃ (t | A, X), and 

let  denote a working model for SC(t | A, X). Then, using the construction given 

in Section 2.3.2 of van der Laan & Robins (2003), we define the augmented value function,

where NC(t) = (1 − Δ)I(Y ≤ t). In addition to the inverse probability of censoring weighting, 

there is an augmentation term in the weights for I{A = (X)}. The following lemma shows 
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that Vm( ) is equivalent to V( ) when either working model is correct; the proof is 

deferred to the Supplementary Material.

Lemma 1—If either  or , 

then Vm( ) = V( ).

Define

(5)

Lemma 1 shows that if either working model is correct then 

. Thus, we can apply the weighted 

classification approach to estimate the optimal treatment rule using weights 

.

To distinguish the two learning approaches, we call the first approach inverse censoring 

weighted outcome weighted learning and the second approach doubly robust outcome 

weighted learning. Estimation is implemented as follows:

Step 1. Fit a model for T̃ given (A, X) to construct estimate ŜT̃ (T | A, X) of ST̃ (T |, A, X). 

Estimate ET̃ (T | T > t, A, X) for t ∈ [0, τ) by

Step 2. Fit a model for C given (A, X) to form estimate ŜC(t | A, X) of SC(t | A, X).

Step 3. Calculate Wi = ΔiYi/ŜC(Yi | Ai, Xi) for the first approach and Wi = R(Yi, Δi, ŜC, 

ÊT̃) for the second approach. If negative weights occur with the doubly robust methods 

we can subtract mini Wi from all the weights.

Step 4. Use the algorithm outlined below to obtain f̂(x) by minimizing

(6)

Step 5. The decision rule is (x) = sign{f̂(x)}.

We have added a regularization term λn||f||2 to avoid overfitting in Step 4. Here, ||f|| is a norm 

defined on the space that f belongs to, and λn is a tuning parameter that controls the severity 

of penalization. We use a linear decision function f(x) = θ0 + θT x, to illustrate the algorithm 

utilized in this step. In this case, ||f|| is the Euclidean norm of θ. Let W denote a generic 

weight constructed in Step 3 using one of the proposed methods. The optimization problem 

in Step 4 can be written as  subject to ξ ≥ 0 and Ai(θT Xi + θ0) ≥ (1− 

ξi). By introducing Lagrange multipliers, we obtain the Lagrangian
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By taking derivatives with respect to θ, θ0 and ξi, we have 

and αi = γWi − μi. It follows that the dual problem is

(7)

subject to 0 ≤ αi ≤ γWi and . The dual problem can be solved using quadratic 

programming. Estimates θ̂ = Σα̂
i0α̂iAiXi and θ̂0 follow from the Karush–Kuhn–Tucker 

conditions. When a linear decision rule is not sufficient, the procedure can be generalized 

using nonlinear kernel functions. For every positive definite kernel k :  ×  → ℝ, there is a 

unique reproducing kernel Hilbert space , which is the completion of the linear span of all 

functions {k(·, x), x ∈ }. The norm in , denoted by ||·||k, is induced by the inner product, 

, for  and . A 

general nonlinear function f(x) can be used instead of a linear function. By the representer 

theorem (Kimeldorf & Wahba, 1971), the minimizer must admit a representation of the form 

. In addition, to solve the optimization problem, we only need to 

compute the kernel matrix, where the inner product  in the dual objective function (7) 

is replaced by k(Xi, Xj). Quadratic programming can still be applied to obtain α̂
i (i = 1,…, n). 

The resulting decision rule is (X) = sign{Σα̂i0α̂
ik(Xi, X) + θ̂0}.

2·3. Working models for estimating SC(t | A, X) and ET̃ (T | T > t, A, X)

In our simulated experiments we used the Cox proportional hazards model for the requisite 

survival functions (Cox, 1972). Let ZT and ZC denote regressors constructed from X and A 

used in the Cox proportional hazards models for T and C respectively. Let λCi(t) and λTi(t) 

denote the hazard functions of censoring and failure times for subject i respectively. Under 

the Cox model,  and , where λC0(t) and 

λT0(t) are baseline hazard functions for censoring and failure times, respectively. The 

estimator for βC, say βĈ, maximizes the partial likelihood

We use the Breslow estimator
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for the cumulative baseline hazard function ΛC0(t). An estimator of ΛC(t|Ai, Xi), the 

cumulative hazard function of censoring time for subject i, is . An 

estimator for SC(t|Ai, Xi) is . Estimates βT̂ and Λ̂
T̃0(t) 

are obtained similarly. Details for estimating ET̃(T|T > t, A, X) are in the Supplementary 

Material.

3. Theoretical Results

Let f(x) be the decision function with the decision rule given by (x) = sign{f(x)}, and write 

V (f) to denote the value function V ( ). We define the pseudo value as

Therefore, Lemma 1 can be restated as , where 

 is the true conditional survival function of C given (A, X), and 

is the true conditional mean residual lifetime given (A, X). Define convex surrogate loss 

function

(8)

where ϕ(t) = max(1 − t, 0). Define  to be the set of all measurable functions from  into ℝ. 

Our first result states that the decision function obtained by minimizing the expectation of 

this surrogate loss over  maximizes VR for any SC and ET̃. Furthermore, we quantify the 

differences using the hinge loss versus zero-one loss. The proofs are essentially the same as 

Theorems 3.1 and 3.2 in Zhao et al. (2012) and are thus omitted.

Lemma 2—If f̃ minimizes E{Lϕ(f, SC, ET̃)) over  with any models for SC and ET̃, then

a. VR(f̃, SC, ET̃) =  VR(f, SC, ET̃), that is, f̃ yields the maximum value of VR;

b. for any f ∈ ,

that is, the value lost due to using a suboptimal decision function f is bounded by 

the expected surrogate loss.
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Our main result establishes the convergence rates for value of the estimated decision rule f̂. 

As described in Section 2, we use weights that depend on the estimated survival functions, 

and hinge loss as a surrogate loss function. To bound the difference between the true and the 

empirical expectation of the surrogate, which involves random quantities, that is, estimates 

for survival and censoring times, we use the following assumptions:

Assumption 1: Both ÊT̃(T|A = a, X = x) and ŜC(t|A = a, X = x) converge in probability to 

 and  uniformly in t ∈ (0, τ] for every (x, a). Moreover, for some 

constant γ > 0,

(9)

Assumption 2: For some η > 0,  with probability 1.

Assumption 1 implies that ÊT̃(T|A, X) and ŜC(t|A, X) converge to fixed functions, even if the 

imposed working models are wrong. Moreover, it imposes an assumption on the variance of 

the survival function estimators. The constant γ depends on the working models used for 

estimating SC and ET̃. If we assume parametric or semiparametric models, including the Cox 

proportional hazards model and transformation models, then γ = 1/2 in (9). Assumption 2 

ensures that some subjects do not fail at the end of the study and thus have observation time 

τ.

In addition, we restrict the choice of reproducing kernel Hilbert space to the space associated 

with Gaussian radial basis function kernels, , x, x′ ∈ , where 

σn > 0 is the kernel bandwidth parameter varying with n controlling the spread of the kernel. 

We can determine the complexity of  in terms of capacity bounds with respect to the 

empirical L2-norm, defined as , f, g ∈  for 

functional class . For any ε > 0, the covering number of  with respect to L2(Pn), N{ , ε, 

L2(Pn)}, is the smallest number of L2(Pn) ε-balls needed to cover , where an L2(Pn) ε-ball 

around a function g ∈  is the set {f ∈ :||f − g||L2(Pn) < ε}. It has been shown in Theorem 

2.1 of Steinwart & Scovel (2007) that for any ε > 0,

(10)

where ,  is the closed unit ball of , p and δ are any numbers 

satisfying 0 < p ≤ 2 and δ > 0, cp,δ,d is a constant depending only on p, δ and d, and the 

supremum is taken over finitely discrete probability measures Pn.

Let . According to Lemma 2, fm also maximizes 

, and 

 for any 
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function f. Hence, the convergence rate of the value using the estimated rule under the hinge 

loss will dominate the rate under the 0–1 loss. Define the approximation error function

The following theorem bounds the excess value optimal treatment rule relative to the doubly 

robust estimator of the optimal treatment rule. Its proof can be found in the Appendix.

Theorem 1—Assume Assumptions 1 and 2 hold and that λn → 0 and λnnmin(2γ,1) → ∞ as 

n → ∞. If we estimate f ̂ within a reproducing kernel Hilbert space  associated with 

Gaussian radial basis function kernels, then with probability greater than 1 − 2e−b,

(11)

where Mp is a constant depending on p and K is a sufficiently large positive constant.

In this theorem, f*(x) = E(T|A = 1, X = x) − E(T|A = −1, X = x) gives the optimal treatment 

rule. On the right-hand-side of (11), the first term reflects the estimation bias from the 

working models for T and C. The second term is the approximation error due to using the 

space. The last term is the stochastic variability of estimating  and . The rest of the 

terms contain the empirical loss function for estimation of the optimal treatment rule. In 

particular, the convergence rate γ depends on the estimating procedure applied to the two 

working models.

A corollary is that when either the model for survival time or the model for censoring time is 

correctly specified, with probability greater than 1 − 2e−b, we have

Remark 1—With the hinge loss, it has been shown that if the reproducing kernel Hilbert 

space is rich enough, the optimizer within the reproducing kernel Hilbert space approaches 

the optimal treatment decision rule as the sample size goes to ∞ for appropriately chosen 

tuning parameters. The Gaussian kernel is one such kernel, which can induce a reproducing 

kernel Hilbert space that is flexible enough to approximate the optimal decision rule. While 
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the approximation error term usually goes to zero as λn → 0, the other term controlling the 

stochastic error will increase. The optimal bandwidth λn can be obtained by setting the 

orders of a(λn) and  equal to each other. The 

approximation error function a(λn) is usually related to the data-generating distribution, 

especially the behavior close to the decision boundary, which is the true optimal decision 

rule if either working model is correct. Intuitively, we should be able to learn the treatment 

rule more rapidly for well-separated optimal treatment classes, that is, distributions that have 

low density near the boundary.

This behavior can be characterized in terms of the size of the set of points that are close to 

boundary f*(x) = 0 (Tsybakov, 2004; Steinwart & Scovel, 2007). There exist a constant c1 

such that , when using a Gaussian kernel with its kernel band-width σn 

varying with λn as  and . Here, q > 0 is the noise 

exponent that characterizes the distribution close to the boundary (Steinwart & Scovel, 

2007), and a larger q indicates a better separation between two treatment classes. More 

details on q are provided in the Appendix. An optimal choice of λn that balances bias and 

variance is λn = max{n−2(q+1)/{(4+p)q+2+(2−p)(2+δ)}, n−2(q+1)γ/(2q+1)}. The achieved 

convergence rate of the value due to the estimated rule versus the optimal value is thus 

max[n−2q/{(4+p)q+2+(2−p)(2+δ)}, n−2qγ/(2q+1)].

The rate consists of two parts: the first part reflects the rate of convergence in estimating the 

optimal decision rule, which is consistent with the results without censoring (Zhao et al., 

2012); the second part is related to survival function estimation. When q is sufficiently large 

and δ and p are close to zero, the convergence rate is close to n−γ, where γ is determined by 

the survival function estimator. A Cox model for the survival function estimates leads to γ = 

1/2. Other working models can also be applied, such as transformation models (Zeng & Lin, 

2007), nonparametric methods based on kernel type estimators (Dabrowska, 1989), or 

machine learning techniques (Zhu & Kosorok, 2012). However, the rate n−γ can be slower 

than Op(n−1/2) for certain estimators.

Remark 2—Although the theoretical results are derived only for doubly robust estimators, 

inverse censoring weighted estimators enjoy the property stated in Theorem 1, as it is a 

special case obtained by setting the augmentation term to zero. However, the first term on 

the right-hand-side of (11) will change unless the censoring model is correctly specified.

4. Simulation Studies

4·1. Preliminaries

We aim to maximize the value function in terms of the survival time on the log scale. We 

compare the inverse censoring weighted and the doubly robust methods for selecting 

optimal individualized treatment with Cox regression and Q-learning adjusted with 

censoring weights (Goldberg & Kosorok, 2012). For Cox regression, we fit a proportional 

hazards model with treatment-by-covariate interactions, and identify the optimal 

individualized treatment based on the predicted outcomes. To apply Q-learning, we fit Q(X, 

A) = Φ(X, A)θ, where Φ(X, A) = (1, X, A, XA), to the log of the failure time. We also apply a 
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regularized version of Q-learning, called L2 Q-learning, where an L2 penalty is used for 

regularization. The estimator is obtained as

where λn is a tuning parameter to be selected using cross-validation, and ŜC(Y|A, X) is the 

estimated conditional survival function of C given (A, X) that can be obtained using Cox 

regression. The estimated optimal decision rule is (x) = argmaxa∈{−1,1}Φ(x, a)θ̂.

4·2. Simulation study

Ten independent covariates, X1, …, X10, were generated from the uniform distribution on [0, 

1]. Treatments were generated from {−1, 1} with equal probabilities 0·5. Four different 

scenarios are presented, corresponding to different combinations of correct or incorrect 

survival time and censoring time models. Specifically, we generated T̃ or C from the 

accelerated failure time or Cox models in different scenarios, while we always used a 

proportional hazards model as a working model for both T̃ and C given (A, X). Regarding 

the specification of the model basis, we include treatment covariate interaction terms in the 

survival function modeling since we are interested in whether certain characteristics 

moderate treatment effects. Conversely, we do not model the censoring time with interaction 

terms unless we have full knowledge of the data, because it is not typical to posit a complex 

model for the censoring mechanism in practice. Details for calculating the doubly robust 

weights using Cox working models are given in the Supplementary Material.

For each scenario, a test data set of size 10,000 is generated to evaluate the estimated rules. 

The decision rules are estimated from training data using the proposed methods as described 

in Section 2 and the competitors. The sample sizes for the training data sets were taken to 

equal to 100, 200 and 400, and the simulations were repeated 1000 runs for each sample 

size. A linear basis is applied for model fitting in Q-learning. Linear kernels were used for 

both the implementation of inverse censoring weighted and doubly robust outcome weighted 

learning. We also explored the use of Gaussian kernels, and found that the performances 

were comparable to the linear kernel. The learning procedure was implemented using a 

Library for Support Vector Machines developed in Chang & Lin (2011). The tuning 

parameter λn in (6) was chosen using 5-fold cross validation over a pre-specified grid, with 

the criterion being the empirical pseudo value function. Specifically, for each tuning 

parameter, we partitioned the training data into 5 parts, each of which serves as the 

validation set once while the other 4 parts of the data are utilized for estimation. We sum up 

the empirical pseudo values calculated across the validation sets from the corresponding 

trained decision rules, and choose the optimal tuning parameter as the one maximizing the 

summed value.

In the following, we consider four generative models.

Case 1: The true models are Cox models for both T̃ and C. The survival time T is the 

minimum of τ = 1.5 and T̃, where T̃ is generated with hazard rate function

Zhao et al. Page 11

Biometrika. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and λT̃0(t) = 2t. The censoring time C is generated with hazard rate function

where λC0(t) = 2t. The censoring percentage is around 56%. The optimal decision boundary 

is linear with (X) = −sign(0·6 − 0·4X1 − 0·2X2 − 0·4X3). We use the Cox regression model 

with covariates (X1, X2, X3, A, X1A, X2A, X3A) to model survival and censoring times 

respectively. Therefore, both models are correctly specified.

Case 2: The true model for T̃ is a Cox model, and the true model for C is an accelerated 

failure time model. The survival time T is the minimum of τ = 2 and T̃, where

We let censoring time C be generated from an accelerated failure time model with

where ε is generated from N(0, 1). The censoring percentage is around 34%. The optimal 

decision boundary is (X) = −sign(0·5 − 0·1X1 − 0·6X2). We use the Cox model as the 

working model for both T̃ and C given (A, X). Specifically, we use (X1, X2, A, X1A, X2A) as 

covariates to model survival time, and (X1, X2, X3) to model censoring time. Therefore, the 

working model is correctly specified for T but incorrect for C.

Case 3: The true model for T̃ is an accelerated failure time model, and the true model for C 

is a Cox model. The survival time T is the minimum of τ = 2 and T̃, which is generated with

The censoring time C is generated from the Cox proportional hazards model, where

and λC0(t) = 2t. The censoring percentage is around 45%. The optimal decision boundary is 

linear with (X) = sign(0·6 − 0·4X1 − 0·1X2 − 0·4X3). We use the Cox model for both T̃ and 

C given (A, X). Specifically, we use (X, A, XA) to model survival time, and (X1, X2, X3, A, 
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X1A, X2A, X3A) to model censoring time. Therefore, the working model is correctly 

specified for C but incorrect for T.

Case 4: The true models are accelerated failure time models for both T and C. The survival 

time T is the minimum of τ = 2.5 and T̃, where

The censoring time C is generated from an accelerated failure time model with

and ε is generated from N(0, 1). The censoring percentage is around 31%. The optimal 

decision boundary is linear with (X) = sign(0·5 − 0·1X1 − 0·6X2 + 0·1X3). We use (X, A, 

XA) to model survival time, and X to model censoring time. Therefore, both working models 

are incorrectly specified.

Since we know the true data generating mechanism under every scenario, for each of 1000 

replicates, we calculate the values based on the logarithm of the survival time using the 

constructed rule from different methods. Figure 1 shows these values when n = 100, where 

larger values indicate longer survival. Additional results using other sample sizes are 

provided in the Supplementary Material.

In general, inverse censoring weighted and doubly robust outcome weighted learning have 

satisfactory performances. Inverse censoring weighted outcome weighted learning performs 

better when the censoring model is correctly specified, see Fig. 1(a) and 1(c). Indeed, doubly 

robust outcome weighted learning requires estimating both censoring and survival 

probabilities, which yield a higher variability compared with that of the inverse censoring 

weighted outcome weighted learning. The strength of doubly robust approach can be seen 

when the censoring model is mis-specified but the survival model is correct, since it can 

correct the bias from using only inverse censoring weighting, see Fig. 1(b). When the 

survival data are truly generated from the Cox model, Cox regression with correct basis 

results in the best performances, see Fig. 1(a) and 1(b). However, the strength is lost when 

the survival time is generated from an accelerated failure time model. Although Q-learning 

is improved by L2-regularization, possibly by reducing overfitting, Q-learning based 

methods can have suboptimal performances even when the censoring model is correctly 

specified but survival time is generated from a Cox model, see Fig. 1(a). This is due to 

model misspecification when inverse censoring weighted Q-learning models the logarithm 

of the survival time.

We also consider a nonlinear example of possible model misspecification in the 

Supplementary Material. The number of covariates is increased to 30, and T̃ and C are 

generated from Cox models with complex effects. When the censoring or survival model is 

correctly specified, we use the true sets of covariates for model fitting. If the model is 
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incorrect for survival time or censoring time, we use a linear basis. In addition to a linear 

kernel, we apply both methods with a Gaussian kernel. We can see that the gain from using 

a Gaussian kernel is pronounced, since it may better approximate the nonlinear treatment 

decision rules.

5. Application

We illustrate the proposed methods using advanced non-small-cell lung cancer data 

(Socinski et al., 2002), which is collected in a two-arm randomized trial with survival time 

as the primary endpoint. Non-small-cell lung cancer is the leading cause of cancer-related 

mortality, and approximately 30% to 40% of all new cases present with stage IV or stage 

IIIB disease. To investigate the optimal duration of therapy that maximizes survival, a 

prospective randomized phase III trial was initiated in 1998. Patients with advanced non-

small-cell lung cancer were recruited and randomized to either four cycles of carboplatin/

paclitaxel or continuous therapy with carboplatin/pactaxel until disease progression. The 

study enrolled 230 subjects; however, we restrict our analysis to the 224 subjects with 

complete information. In the analysis sample, 112 subjects were assigned to each treatment. 

The censoring rate was 32%. The baseline covariates include age ranging from 32 to 82 with 

median 63, sex with 138 male and 86 female, race with 162 white, 54 black and 8 other, 

performance status with 117 Karnofsky performance status 90% to 100% and 97 70% to 

80%, and stage with 30 Stage IIIB and 194 Stage IV.

In addition to the proposed methods, we apply Cox regression, inverse censoring weighted 

Q-learning and L2 Q-learning with a linear basis. We consider two sets of working models: 

we first use Cox regression with basis (X, A, XA) for both survival time and censoring time, 

and then use the Kaplan–Meier estimator for censoring time as an alternative. A treatment 

decision rule  is evaluated based on its empirical value adjusted for censoring. The 

empirical value is calculated by , with R̃ equal 

to

where ŜC(t | A, X) and ÊT̃ (T | T > t, A, X) are the estimated censoring probability and 

residual life conditional on patients characteristics. To avoid overfitting, we employ a cross-

validated analysis. At each run, we partition the whole data set into 5 pieces, where 4 parts 

of the data are used as training data to estimate the individualized treatment rules, and the 

remaining part is the validation set for implementing the estimated rules, with empirical 

values stored for each method respectively. The cross-validated values are obtained by 

averaging the empirical values on all 5 validation subsets. The procedure is repeated 100 

times. The averages and standard errors of these values are reported in Table 1, where larger 

values correspond to longer survival time.

Both inverse censoring weighted and doubly robust outcome weighted learning methods 

lead to higher values more frequently. We see a comparable performance between the two 
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proposed approaches, which is reasonable if the censoring distribution is correctly specified, 

although doubly robust outcome weighted learning may have a larger variance. Since the 

number of covariates is not large, the performances of inverse censoring weighted Q-

learning and L2 Q-learning are similar. They could have difficulties in identifying the 

optimal treatment rules if the model for survival time does not fit well, even if the censoring 

weight is correctly specified. Also, when we apply Cox regression to model the censoring 

time, none of the covariates has a significant effect. Thus, working models with either 

Kaplan–Meier estimators or Cox regression estimators yield similar results. We then apply 

the proposed methods to the whole data set using Cox regression working models for both T 

and C. The treatment recommendations from inverse censoring weighted outcome weighted 

learning recommends that 119 patients be assigned to continuous therapy with carboplatin/

pactaxel, while by using doubly robust outcome weighted learning, 122 out of 224 patients 

should be given the continuous therapy. By checking the empirical value, we find that both 

strategies yield close values: 5·301 for inverse censoring weighted outcome weighted 

learning and 5·567 for doubly robust outcome weighted learning. In fact, sometimes we may 

have equivalent treatment strategies if there are no differential treatment effects on a subset 

of the patients. The treatment decision rule produced by inverse censoring weighted Q-

learning and L2 Q-learning however, only leads to an empirical value of 4·756, and an 

empirical value of 4·744 by using Cox regression.

6. Discussion

As one reviewer pointed out, the proposed method is only one possible reduction of 

optimizing treatment rules to a weighted classification problem. Alternative choices have 

been proposed for continuous outcomes (Zhang et al., 2012b; Rubin & van der Lann, 2012), 

which can be generalized to the censoring data setup.

There may exist multiple treatments for comparison. One approach for extending the 

proposed framework to handle this case is to incorporate techniques developed in 

multicategory classification (Lee et al., 2004; Liu & Yuan, 2011). Another important 

extension is to settings in which there are a large number of variables. In this setting, 

penalized methods in classification by using sparse penalties could be adapted (Zhu et al., 

2004).

Effective management of a chronic illness requires individualized treatment 

recommendations that are responsive to a patient’s changing health status. Dynamic 

treatment regimens formalize a dynamic treatment plan as a sequence of treatment rules, one 

per stage of clinical intervention, that map current patient information to a recommended 

treatment. Longer life expectancy and an aging population have created a surge in the rate of 

chronic illness related death. Thus, there is increasing interest in dynamic treatment 

regimens (Thall et al., 2002; Murphy, 2003; Robins, 2004; Moodie et al., 2007; Zhao et al., 

2011; Goldberg & Kosorok, 2012; Huang et al., 2014). Extension of the proposed approach 

for survival data to the dynamic setting is of great interest.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1

First, it can be established that

According to Lemma 2(a), , where 

. Hence, it suffices to derive the convergence rate of 

.

Let . Then,
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To bound (II) and (III), we consider the class of functions

where δ0 is a small constant, and  are the limits of β̂
T, β̂

C, Λ̂
C0 and 

Λ̂
T0 based on the Cox models. Then |R{Y, Δ, SC(βC, ΛC0), ET̃ (βC, ΛC0)}|/π(A, X) can be 

bounded from above by a constant, say M.

Trivial bounds for ||f̂||k and  are obtained as  and . 

For every . Thus,

We use empirical process theory to bound (I). Define the functional class

and  = {E(l) − l : E(l) = ε, l ∈ }. Let . Since E(g) = 0, g ∈ , it 

follows from Lemma S.1 in the Supplementary Material, by setting ρ = 1, that pr{Z ≥ 2E(Z) 

+ σ(Kb)1/2n−1/2 + 2KBbn−1} ≤ e−b, where . Furthermore,  following 

the arguments for proving Theorem 3.4 in Zhao et al. (2012), given that , 

where . In addition, for ,
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Since | | and | | are bounded by δ0, they lie in a hypercube of ℝ2d. Moreover, 

{ } is a class of monotone functions, so is 

{ }. The function in  is Lipschitz continuous with respect to 

all these parameters and the Lipschitz constant is less than a constant W. There exists a 

constant K, depending on d, such that the bracketing number for  satisfies N[·]{ , εW, 

L2(P)} ≤ K(δ0/ε)2d+2. According to (10), supPn log N { , ε, L2(Pn)} ≤ cnε−p, and therefore

where cp is a constant depending on p. See Proposition 5.5 in Steinwart & Scovel (2007) and 

references therein. Consequently,

Given that  is convex, if l ∈  satisfies  and E{l(X)} ≥ ε, there exists l

′ ∈  such that  and E{l′(X)} = ε. Thus, with probability at least 1 − 

e−b, every l ∈  with  satisfies El ∈ ε (Bartlett et al., 2006; Steinwart 

& Scovel, 2007). Since

with probability at least 1 − e−b,

It follows that,
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with  and . Using Mp as a new constant depending on p, we 

subsequently obtain the desired results.

Geometric noise exponent

The approximation error depends on the noise component q, called the geometric noise 

exponent (Steinwart & Scovel, 2007). Let

Hence, 2η(x) − 1 is the decision boundary for the optimal treatment decision rules when we 

use the pseudo-outcomes. We further define  = {x ∈  : 2η(x) − 1 > 0}, and  = {x ∈ 

 : 2η(x) − 1 < 0}. A distance function to the boundary between  and  is Δ(x) = d̃(x, 

) if x ∈ , Δ(x) = d̃(x, ) if x ∈  and Δ(x) = 0 otherwise, where d̃(x, ) denotes the 

distance of x to a set  with respect to the Euclidean norm. Then the distribution P is said to 

have geometric noise exponent 0 < q < ∞, if there exists a constant C > 0 such that

Δ(X) actually measures the size of the set of points that are close to the opposite class. 

Indeed, if the data are distinctly separable, that is, when |2η(x) − 1| > δ > 0, for some 

constant δ, and η is continuous, q can be very large. If either model for the survival time or 

the censoring time is correctly specified, 2η(x) − 1 is the optimal treatment decision rule, 

where sign{2η(x) − 1} = sign{f*(X)}.
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Fig. 1. 
Boxplots of values of estimated rules using different methods, representing the logarithm of 

the survival time with higher values being more preferable. Cox, Cox model; Q, inverse 

censoring weighted Q-learning; L2Q, inverse censoring weighted L2 Q-learning; ICO, 

inverse censoring weighted outcome weighted learning with linear kernel; DRO, doubly 

robust outcome weighted learning with linear kernel.
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