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Abstract

We propose a simple two-disease epidemic model where one disease exhibits only a drug-

sensitive strain, while the other exhibits both drug-sensitive and drug-resistant strains. Treatment 

for the first disease may select for resistance in the other. We model antibiotic use as a 

mathematical game through the study of individual incentives and community welfare. The basic 

reproduction number is derived and the existence and local stability of the model equilibria are 

analyzed. When the force of infection of each disease is unaffected by the presence of the other, 

we find that there is a conflict of interest between individual and community, known as a tragedy 

of the commons, under targeted treatment towards persons infected by the single strain disease, 

but there is no conflict under mass treatment. However, we numerically show that individual and 

social incentive to use antibiotics may show disaccord under mass treatment if the restriction on 

the transmission ability of the dually infected people is removed, or drug resistant infection is 

worse than drug sensitive infection, or the uninfected state has a comparative disutility over the 

infected states.
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1 Introduction

In recent years, the problem of bacterial antibiotic resistance has led to suggestions that 

antibiotics are overprescribed [8, 27], and that decreasing the use of antibiotics could benefit 

society as a whole by minimizing the emergence of drug-resistance [36, 12]. It has been 

argued that antibiotic efficacy should be considered as a common good [7], and that 

collective action may be needed to preserve this common good against overuse. Some 

authors believe that individual incentives may drive overuse of antibiotics, leading to a 

“tragedy of the commons” [1]. The concept of the tragedy of the commons originated from 

an example on population control proposed by Lloyd [29] in 1833 and later developed by 

Hardin [18] in the 1960s. One example of this is seen in simple mathematical models of 

drug resistance, where increasing treatment of mild or early disease may benefit the 

individual, despite the fact that such an outcome may lead to an increase in drug-resistant 

bacteria and thus a decrease in the overall efficacy of antibiotic treatment [38].

An important example of how drug-resistance occurs is the use of broad spectrum antibiotics 

[20]. In this case, treatment of one infection or disease may select for resistance in other 

organisms which are present [50]. This phenomenon has been observed during the use of 

mass azithromycin to eliminate trachoma due to Chlamydia trachomatis, a leading cause of 

infectious blindness in the world [52]. The World Health Organization promotes antibiotic 

treatment for trachoma control, using mass administration of single-dose oral azithromycin 

[44, 52]. While Chlamydia trachomatis has never exhibited epidemiologically important 

drug resistance [49, 21], the emergence of macrolide-resistant pneumococcus due to mass 

administration of azythromycin has been observed [28, 47], though such resistance has 

declined after cessation of treatment [47, 19]. Fears of increased mortality have proven 

unfounded, e.g. [39, 17, 24, 25].

In this paper, based on the pattern seen for pneumococcus and Chlamydia trachomatis, we 

propose and analyze a simple model of coinfection and cotransmission of two infectious 

agents in order to determine whether antibiotic resistance is a tragedy of the commons in a 

two diseases setting. For one infectious agent, we assume that both sensitive and resistant 

strains are possible, while for the other, only drug sensitive strains are present. Both are 

modeled as simple SIS (susceptible-infectious-susceptible) processes [23]. Coinfection by 

multiple pathogens or diseases is a global challenge for public health. It has attracted 

increasing attention in the field of mathematical epidemiology since the pioneering works by 

Dietz [14], Bremermann and Thieme [5], and others. For example, a number of 

mathematical models for HIV/TB coninfection [32, 45, 2, 43], HIV/malaria coinfection [34], 

HIV/gonorrhea coinfection [35], malaria and meningitis coinfection [26], and CA-

MRSA/HA-MRSA co-colonization [11, 40] have been developed in recent years.

Our model assumes that treatment is targeted to the agent that only has sensitive strains, but 

can select for resistance in the other infectious agent (as a type of “collateral damage”). We 

will assume that the population as a whole has a particular treatment rate, which gives rise to 

an equilibrium prevalence of both infections. A single individual in the population who 

changes her or his treatment rate will then experience either more or less infection. When 

increasing infection rate for an individual causes that individual to spend less time infected, 
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that individual has an incentive to increase treatment. However, if increasing the population 

rate of treatment causes a higher population cost, a tragedy of the commons results. 

Previously we used this method to analyze the tragedy of the commons resulting from 

incentives to treat early or mild disease ([38]; see [42] for a general exposition), and in this 

paper we will apply the same method to a simple model of cotransmission.

2 The model

We recently analyzed a simple SIS model (susceptible-infective-susceptible) of drug 

resistance [38] for one disease, denoted by P. The state of a single individual may be 

completely susceptible, infected with drug-susceptible organisms only, or infected with 

drug-resistant organisms only. We consider a single individual in a large population, subject 

to constant forces of infection. Let X(i), , and  denote the probability the 

individual is susceptible, infected with the sensitive strain, or infected with the resistant 

strain, respectively. Treatment, occurring at rate , may lead to a new clinical appearance 

of drug resistance with probability δ ∈ (0, 1). Let ρP denote the recovery rate. Denoting the 

force of infection (only dependent on the number of individuals infected, and independent of 

individual choice of treatment) due to sensitive strains by λS and due to resistant strains by 

λR, a single individual follows the Markov chain

which is Model 1 in the previous paper ([38]).

We now extend this model to include a second disease, denoted by C. Motivated by the 

example of Chlamydia, we again assume a simple SIS process for the second disease, and 

assume no drug resistance is possible for this second disease. Nevertheless, treating 

individuals with this disease may select for drug resistance in the first disease (since this first 

disease might be present). We now denote the recovery rate for the second disease by ρC, 

and the force of infection by λC. Let X(i) denote the probability that a single individual in a 

large population is infected with no infectious agent,  the probability the individual is 

infected by the drug-sensitive strain of the first agent (and not infected with the second 

agent),  the probability the individual is infected by the drug-resistant strain of the first 

agent (and not infected with the second agent),  the probability the individual is infected 
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by the second agent (and not infected with either strain of the first agent),  the 

probability the individual is infected by the drug-sensitive strain of the first agent and also 

by the second agent, and finally  the probability the individual is infected by the drug-

resistant strain of the first agent and also by the second agent. The treatment rate for 

individuals infected by the second infectious agent only is ; the treatment rate for 

individuals infected simultaneously by both agents is denoted . Here, a susceptible 

individual who contacts a dually infected person could become infected only with the first, 

the second or both agents as a result of the single contact; we thus have infection rates of 

λSC→S, λSC→C and λSC→SC (or λRC→R, λRC→C and λRC→RC), correspondingly. Then, we 

have

(2.1)
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We omit human migration, birth, natural and disease-induced death; the total probability 

satisfies . For any given set of forces of infection, 

these linear equations can be solved for the equilibrium values of the probabilities of being 

in each state. We denote the equilibrium by .

As indicated above, we wish to consider a particular individual who chooses treatment rates 

 or , faced by a unanimous choice θP, θC or θPC made by all other individuals. 

The following system of equations describing the corresponding community-level 

transmission dynamics:

(2.2)

where X, YS, YR, YC, YSC, and YRC are the proportion of each disease state in the whole 

population; X + YS + YR + YC + YSC + YRC = 1. A state transition diagram for the disease 

transmission is shown in Figure 1. We assume that the forces of infection are proportional to 

the prevalence fractions and the force of infection of one agent is not affected by the 

presence of the other:

(A1) λS = βSYS, λR = βRYR where βR < βS; λC = βCYC;

(A2) λSC→SC = β11YSC, λSC→S = β10YSC, λSC→C = β01YSC,
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;

(A3) β11 + β10 = βS and β11 + β01 = βC,  and .

Here βS, βR, and βC are transmission coefficients of the drug-sensitive strain of the first 

agent, drug-resistant strain of the first agent, and the second agent, respectively. Note that an 

individual in a large population is subject to constant exogenous forces of infection 

(unaffected by the decision of that single individual), while the forces of infection at the 

population level are determined by the overall disease prevalence in the community. In 

many cases the emergence of drug resistance is indeed associated with a fitness cost [31], 

i.e., βR < βS, but a fitness cost of resistance may not be universally exhibited (e.g. [13]). 

Also, we do not assume that both infections in dually infected people are simply transmitted 

independently. Cotransmission from dually infected people is assumed possible, as a single 

infectious contact could contain a sufficient dose of both infectious agents. It is assumed that 

all model parameters are positive, with the exception of treatment rates , θP, θC, 

θPC and parts of transmission coefficients β11, β10, β01,  which can be zero.

In general, we let DP and DC be an average health state disutility of infection or colonization 

by the first or second agent, respectively; we assume no difference in disutility between drug 

susceptible and drug resistant strains. Rather, individuals who are infected with a drug 

resistant strain are at a disadvantage because we assume treatment will be less effective 

(leading to longer mean durations of infection). We also assume no interaction between the 

agents, so that the disutility of being infected by both agents is the sum of the separate 

disutilities. Thus, for a single individual we wish to minimize

where  and  represent the probabilities 

being infected by the first or second agent, respectively, and 

 is the stable equilibrium of the individual equations. 

Analogously, for a community we can define its average disutility as

where JP = ȲS + ȲR + ȲSC + ȲRC and JC = ȲC + ȲSC + ȲRC represent the fractions being 

infected by the first or second agent, respectively, and Ē = (X̄, ȲS, ȲR, ȲC, ȲSC, ȲRC) is the 

stable steady state of the community equations.

We will examine these equations under two treatment strategies: (a) mass treatment, and (b) 

treatment targeted towards persons infected by disease C. In the first case, we assume θP = 

θC = θPC = θ, so that all individuals are equally likely to be treated, regardless of their 

infection status, as would be the case during mass administration of azithromycin to 

eliminate trachoma. In the second case, we assume θP = 0 and θC = θPC = θ. Here, targeting 

infectives with the second agent may select for drug resistance in the first agent. Similarly, 
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we assume , and  and , respectively, for an 

individual under the two treatment strategies.

The disutility to each individual is determined not only by that individual’s choice of 

treatment, but also by all other individuals’ average choice. We followed standard methods 

([42, 38]) to calculate the disutility of an individual, and determined whether individual 

incentives always parallel to community outcomes. To analyze individual incentives for 

treatment, we first determined the equilibrium dynamics of infection. We then examined a 

single individual whose forces of infection (for each agent that is circulating) are determined 

by the overall treatment rate in the entire population, and determined the expected amount of 

time that would be spent infected in each disease if this individual chose a different 

treatment rate rather than the population as a whole.

3 Main results

In this section, we derive the basic reproduction number for the population-level model, and 

then study the existence and local stability of feasible equilibria. The possibility of the 

occurrence of a tragedy of the commons under mass treatment or targeted treatment is 

analytically investigated.

3.1 The basic reproduction number

We consider the community equations (2.2) in which the forces of infection are not 

exogenous, but determined by the disease prevalence. It is clear that E0 = (1, 0, 0, 0, 0, 0) is 

the unique disease free equilibrium of system (2.2). Following the method and notations of 

van den Driessche and Watmough [51], we find

and

The basic reproduction number ℛ0 of model (2.2) is defined as the spectral radius of the 

next generation matrix F · V−1, i.e.,  where
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For i = 1, …, 5, ℛi0 is the reproduction number corresponding to epidemiological classes 

YS, YR, YC, YSC, and YRC, respectively. In case of mass treatment or targeted treatment, we 

know ℛ40 < min{ℛ10, ℛ30}, ℛ50 < min{ℛ20, ℛ30}, and hence . Moreover, 

E0 is locally asymptotically stable if ℛ0 < 1 and unstable if otherwise.

3.2 The equilibria

For an individual subject to constant exogenous forces of infection (unaffected by the 

treatment strategy that person chooses), the coefficient matrix of its individual equations 

(2.1), denoted by A = (aij)6×6, is (or can be reduced to) a constant irreducible matrix (or 

submatrix) with nonnegative off-diagonal entries and zero column sums. It follows from 

Corollary 4.3.2 in Smith [48] or Lemma 1 in Cosner et al. [10] that (2.1) has a unique 

nonnegative equilibrium  which is globally stable in 

the hyperplane

Direct computations find that the community model equations (2.2) can have up to four 

types of steady states as follows. The detailed derivation and stability analysis appear in 

Appendix A.

Theorem 3.1—Let ℜ(z) be the real part of a complex number z. For system (2.2) under 

mass treatment or targeted treatment, we have

i. The no-disease or disease free equilibrium E0 = (1, 0, 0, 0, 0, 0) always exists and 

it is stable if ℛ0 < 1 and unstable otherwise.

ii. One-strain equilibrium:

a.
 exists if and only if ℛ10 > 1 and θP = 0 

(targeted treatment). E1 is stable if and only if ℛ10 > max{1, ℛ20, ℛ50} and 

ℛ30 < 1.

b.
 exists if and only if ℛ20 > 1. E2 is stable if 

and only if ℛ20 > max{1, ℛ10, ℛ40} and ℛ30 < 1.

c.
 exists if and only if ℛ30 > 1. Targeted 

treatment: E3 is stable if and only if ℛ30 > 1, ℛ20 < 1,  and . 

Mass treatment: E3 is stable if and only if ℛ10 < 1, ℛ20 < 1, and ℛ30 > 1. 

Here  denote the roots of λ2 + M1λ + M0 = 0 with
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iii. Two-strain equilibrium:

a.
 exists if and only if ℛ10 > ℛ20, 

ℛ10 > 1, and θP > 0. E12 is stable if and only if ℛ30 < 1. Here

b.

exists if and only ℛ10 > 1, ℛ30 > 1 and θP = θC = θPC = 0 (no treatment). 

E13 is stable if and only if βS > βR. Here X13 ∈ [1/(ℛ10ℛ30), min{1/ℛ10, 

1/ℛ30}) is the smaller root to

if β11 > 0 and equals 1/(ℛ10ℛ30) if β11 = 0.

c.

exists if and only if ℛ20 > 1 and ℛ30 > 1. Mass treatment: E23 is stable if 

and only if ℛ10 < ℛ20. Targeted treatment: E23 is stable if and only if 

 and . Here X23 ∈ [1/(ℛ20ℛ30), min{1/ℛ20, 1/ℛ30}) is the 

smaller root to

if  and equals 1/(ℛ20ℛ30) if . Here  are solutions to λ2 + 

H1λ + H0 = 0 with
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iv. Coexistence equilibrium of the form Ẽ = (X̃, ỸS, ỸR, ỸC, ỸSC, ỸRC) in which all the 

components are positive. Ẽ exists only if ℛ10 > 1, ℛ30 > 1, ℛ10 > ℛ20 and θC > 0.

Remark 3.2—Note that if ℛ10 < 1 and ℛ30 > 1 then M1 > 0 and M0 > 0. Thus E3 is stable 

if ℛ30 > 1, ℛ20 < 1 and ℛ10 < 1. In particular, when θ = 0, E3 is stable if and only if ℛ30 > 

1, ℛ20 < 1 and ℛ10 < 1. However, for a non-zero targeted treatment rate θ, E3 can remain 

stable even if ℛ10 > 1. For example, given βS = 1.1, βR = 0.5, βC = 3, ρP = 1, ρC = 0.5, θ = 1, 

β11 = 0.5, we have ℛ30 = 2 > 1, ℛ20 = 0.5 < 1, ℛ10 = 1.1 > 1, but M1 = 3.65 and M0 = 

1.675. In addition, if β11 = 0 then M0 > 0 implies M1 > 0.

Remark 3.3—Under targeted treatment, E23 is stable if ℛ10 < ℛ20. However, it is possible 

that E23 remains stable even if ℛ10 > ℛ20. For example, given βS = 2, βR = 1.5, βC = 3, ρP = 

1, ρC = 1, θ = 1, β11 = 0, , we have ℛ10 = 2 > ℛ20 = 1.5 > 1 and ℛ30 = 1.5 > 1, but H1 

= 11/3 and H0 = 1/9. In addition, if  then H0 > 0 implies H1 > 0.

Remark 3.4—By comparing the existence and stability condition of equilibria, we find that 

there exists at most one stable equilibrium under mass treatment, or under targeted treatment 

if ℛ10 < 1 or ℛ10 < ℛ20. In particular, when the coexistence equilibrium exists under mass 

treatment, it is the only possibly stable equilibrium.

Moreover, numerical calculations suggest that there exists exactly one stable equilibrium for 

any parameter setting and the coexistence equilibrium is stable whenever it exists.

3.3 The tragedy of the commons

Given a set of parameter values, we first solve for the stationary solutions of (2.2) and 

substitute the stable solution into the exogenous forces of infection of the individual model 

(2.1), and then find the proportion in each infected state. From these proportions, we can 

then compute the disutility of an individual. An individual has an incentive to increase 

antibiotic treatment if the individual disutility J(i) is decreasing in terms of θ(i), i.e., more 

treatment produces less disutility. A community benefits from treatment if the community 

disutility J is decreasing in θ. Locally, a tragedy of the commons occurs when the goal of the 

individual conflicts with that of the community. Mathematically, this means that for a fixed 

parameter set, we have

Let 

and . Recall that under 

mass treatment, we assume all infected people are treated at the same rate (θP = θPC = θC = θ 

and ), while under targeted treatment, that individuals with C are treated, 

whether or not they exhibit the other infection (θP = 0, θPC = θC = θ and 

). The proof of the following is postponed to Appendix B.
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Theorem 3.5—Modeling a single individual according to (2.1) implies

under mass treatment, and

under mass treatment or targeted treatment, respectively.

The community model (2.2) implies that

under mass treatment, and

under mass treatment or targeted treatment, respectively.

In addition, under targeted treatment, there exist some parameter sets such that  (or JP) 

is increasing in θ(i) (or θ).

Thus, under mass treatment, both  and J = DPJP + DCJC are 

decreasing in θ(i) and θ, respectively, for any DP > 0 and DC > 0. This indicates that 

increasing mass treatment increases the utility of both the individual and community, and 

there is no tragedy of the commons in two diseases setting under mass treatment.

However, J = DPJP + DCJC can increase in θ for some DP > 0 and DC > 0 (e.g. DP ≫ DC) 

under targeted treatment. For this reason, the incentives for the individual and community do 

not always coincide, and a tragedy of the commons may occur provided that only infectives 

with the second agent receive treatment.

Theorem 3.6—For system (2.2) under targeted treatment, assume that there always exists 

a globally stable equilibrium. If ℛ10 > 1, ℛ10 > ℛ20 and ℛ30 > 1 at θ = 0, then JP < 1 − 

1/ℛ10 for θ ∈ (0, βC − ρC), and JP = 1 − 1/ℛ10 for θ ∈ {0} ∪ [βC − ρC, ∞).

Proof: No treatment (θ = 0): E13 is the unique stable equilibrium and JP = 1 − 1/ℛ10.
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Small treatment (0 < θ < βC − ρC): one of E3, E23 and Ẽ is stable. If E3 is stable, then JP = 0; 

else if E23 is stable, then JP = 1 − (X23 + 1/ℛ20 − X23) = 1 − 1/ℛ20 < 1 − 1/ℛ10; else if Ẽ is 

stable then, JP < 1 − 1/ℛ10 due to (ρP − βS(X̃ + ỸC))(ỸS + ỸSC) = −θỸSC < 0.

High values for the treatment rate (θ ≥ βC − ρC): disease C disappears. E1 is stable and JP = 

1 − 1/ℛ10.

Remark 3.7—Under targeted treatment, we define Q(θ) = θȲSC/(ȲS + ȲSC) as the 

treatment rate for the sensitive strain of disease P at a stable equilibrium Ē (θ). Assume that 

there always exists a globally stable equilibrium, it follows from the proof of Theorem 3.6 

that

which implies that maxθ≥0 Q(θ) = minθ≥0 JP, namely, the fraction of population being 

infected with the first agent is minimized (or maximized) whenever the treatment rate for the 

first infectious agent reaches its maximum (or minimum).

However, if there is no cotransmission from YRC, i.e., , then  is decreasing in θ(i), 

which implies that J(i) is decreasing in θ(i) for any DP > 0 and DC > 0 (see Appendix B). In 

addition, if disease C has higher disutility than disease P, i.e., DC ≥ DP, then J(i) is 

constantly decreasing in θ(i). We omit the straightforward but tedious proof.

4 Numerical simulations

The above analysis shows that a tragedy of the commons does not exist under mass 

treatment. However, as defined above, a tragedy of the commons can appear for the case of 

targeted treatment. In this case, individuals who choose treatment rates which are larger than 

those adopted by the community achieve lower disutility, even though the entire community 

will experience more disease if everyone increases their treatment rates in the same way. But 

in this case—targeted treatment—the treatment rates apply only to dual infection; as the 

treatment rate increases, eventually the second disease is completely eliminated, and with it, 

all opportunity to treat the first infection. In a sense, this is not a classical tragedy of the 

commons, because it is removable after a change of treatment strategy from targeted 

treatment to mass treatment. However, the same two-disease model can exhibit a conflict of 

interest between individual and society under mass treatment if (i) assumption (A3) is not 

required, namely, the force of infection of dually infected hosts is different from singly 

infected hosts, or (ii) drug sensitive and drug resistant strains of the first disease have 

different disutility, or (iii) the uninfected has significant disutility.

In general, the relationship between antimicrobial resistance and virulence is not straight-

forward (e.g. [6]). While in some cases, a clear fitness cost of resistance is believed to apply, 

it cannot be assumed that drug resistant strains are less virulent (e.g. [13], but see [15]). In 

some cases, drug resistance genes are present on a plasmid which also includes virulence 

factors (e.g. [33]), but in other cases evolution of drug resistance may simply alter 
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expression of virulence factors [22]. To explore this possibility in our model, we assume the 

resistant infection could have higher disutility than the sensitive infection. One disadvantage 

of the use of broad-spectrum antibiotics in general, including azithromycin, is the disruptive 

effect such treatments have on the normal microbiome, which may permit the overgrowth of 

other harmful organisms [3]. This is particularly true in the case of Clostridium difficile in 

the gastrointestinal tract for example (e.g. [37]). Could colonization (though of course not 

infection) by pneumococcus have benefits in preventing the growth of other organisms? 

While some literature supports the notion that pneumococcal colonization is not beneficial 

[46], we explore the consequences of assuming that individuals in the susceptible state for 

pneumococcus have a comparative disutility over the colonized (infectious) states. In these 

two cases, we can define the individual and community disutility as

and

respectively, where DU, DS, DR and DC are, respectively, the average disutility of the 

uninfected, the sensitive and resistant infections of the first disease, and the infections of the 

second disease. In what follows, we will give numerical examples to consolidate our 

analytical arguments.

Example 4.1

The tragedy of the commons under targeted treatment. Consider community model (2.2) 

with βS = 3, βR = 1.2, βC = 1.8, β11 = 1, , δ = 0.3, ρP = 1, ρC = 1, and θ ∈ [0, 1]. β10, 

β01,  can be determined accordingly by (A3). Figures 2a shows the probability of an 

individual being infected by agent P and Figure 2b represents the individual disutility under 

targeted treatment with DP = 1 and DC = 0.05. Here an individual gets better if s/he departs 

from the community strategy and treats more, but things are worse if everyone does that. For 

the same parameter values, the tragedy of the commons under targeted treatment remains 

even if there is no cotransmission, i.e., . However, the tragedy of the commons 

disappears when the ratio DP: DC decreases below a certain threshold value.

Example 4.2

The tragedy of the commons under mass treatment without (A3). The values of parameters 

are βS = 2.1, βR = 2, βC = 1.2, β11 = 0.6, β10 = 1.4, β01 = 0.6, , δ = 

0.5, ρP = 1, ρC = 0.4, and θ ∈ [0, 1]. Figures 3a shows the probability of an individual being 

infected by agent P and Figure 3b represents the individual disutility under mass treatment 

with DP = 1 and DC = 0.25. Here disease C is assumed to differentially suppresse the 

resistant strain of disease P, namely, the transmission of the resistant strain of disease P 

from YRC is much lower than the transmission of the sensitive strain of disease P from 
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. Note that the formulae for  and  are the same as 

the case of mass treatment with assumption (A3) (see Theorem 3.5). As θ > 0.43, the 

sensitive strain of disease P goes extinct in the community which leads to . Thus 

 and it is independent of personal choice of treatment when θ > 0.43. In 

this scenario, a higher treatment rate for the sensitive strain of the first infectious agent, Q(θ) 

= θ, could cause a larger proportion of people being infected with the first agent, JP.

Example 4.3

The tragedy of the commons under mass treatment with DS ≠ DR or DU > 0. Choose the 

same parameter as in Example 4.1 except that βR = 1.5, δ = 0.1, and the average disutility of 

infection/noninfection are different. Figures 4a and 4b represent the individual disutility 

under mass treatment with DU = 0, DS = 1 < DR = 2 and DC = 0.05, and DU = 0.7, DS = DR 

= 1 and DC = 0.05, respectively. In both cases there is a conflict of interest between 

individual and society: good for individual but bad for community.

It is worth noting that under certain circumstance individual incentives may favor under-

treatment while increasing treatment will benefit community. Again choose the same 

parameter as in Example 4.1 except the average disutility of infection/noninfection. Figures 

5a and 5b represent the individual disutility under mass treatment with DU = 0, DS = 1 < DR 

= 2.5 and DC = 0.05, and DU = 1.2, DS = DR = 1 and DC = 0.5, respectively. In both cases an 

increasing in treatment rate could be bad for individual but good for community.

5 Discussion

Rational antibiotic policy must consider the possibility that individual incentives to use 

antibiotics may drive overtreatment. Such overtreatment may lead to increasing drug 

resistance in other organisms, yielding a tragedy of the commons [1]. In a previous paper 

[38], we studied two single disease models of drug resistance: a simple SIS model and a 

two-stage (mild and severe) model, and found that a conflict of interest between individual 

and society does not occur for the former but is possible for the later under certain 

circumstances—individual incentives can favor overtreatment of mild infection leading to a 

worse outcome for society. However, mass administration of azithromycin during trachoma 

control provides a possible example of second mechanism for a conflict of interest between 

individual and society: treatment of one disease can lead to drug resistance in another 

organism.

In this paper, we extend previous game theory models of antibiotic policy to a setting of two 

infectious diseases which are cocirculating. In this model, treatment of one disease selects 

for resistance in the other, mimicking the behavior of induced resistance in pneumococcus 

caused by treatment of chlamydia. Mass antibiotic distributions for trachoma elimination are 

known to select for macrolide resistance in pneumococcus [47], although the prevalence of 

such resistance has been seen to rapidly decline after cessation of mass distribution [19]. Our 

model was designed to reflect specific features of chlamydia and pneumoccus in this setting, 

but we did not restrict the analysis to parameters reflecting the biology of pneumococcus 

and chlamydia. In this specific setting, for a base case scenario, we assumed that the two 
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infections do not interact competitively (the presence of one organism does not reduce 

transmission of the other). In our model, treatment induces drug resistance in one organism 

(pneumococcus) but not in the other. We examined two scenarios: mass treatment, in which 

individual treatment is not based on knowledge of chlamydial infection status, and targeted 

treatment, in which individuals without chlamydia are not treated. The occurrence of a 

tragedy of the commons resulting from individual incentives to be treated is strongly 

influenced by the choice of mass versus targeted treatment, as well as by the health state 

utility of the various epidemiological states of individuals.

More specifically, we find that the model can imply conflicting individual and social 

incentives to use antibiotics. Such discord arises for a given population rate of treatment 

when individuals who diverge from it do better (or worse), while if all individuals make the 

same choice, all do worse (or better). Moreover, for a given parameter set, such discord may 

arise for some treatment values but not others. Also, individual incentives can favor 

underuse as well as overuse. We identified four different examples of discord between the 

individual and the community in our model.

First, suppose that infection or colonization by drug resistant pneumococcus is worse than 

infection or colonization by drug sensitive pneumococcus (the health state utility is lower for 

drug resistant infection or colonization). For specific parameter values, it is possible that 

individuals who choose rates higher than the population lower their health state utility 

because of the acquisition of drug resistance during treatment. Yet if the entire population 

chooses this new, higher treatment rate, the overall prevalence of infection is lower and the 

population benefits.

However, this example is far from the only way that individual incentives can lead to 

socially undesirable outcomes. Suppose now that the uninfected state has a lower utility than 

the infected states, because pneumococcal colonization is protecting the individual against 

infection by a third organism (whose presence is not explicitly modeled). Numerical 

scenarios reveal that for low treatment rates, the individual and community incentives can 

favor increased treatment, due to the benefits of curing chlamydia. But for higher treatment 

rates, individuals who choose higher rates than the community begin to experience worse 

outcomes, because the assumed disadvantage of curing pneumococcal colonization 

outweighs the benefits of clearing chlamydial infection. It is possible for individual 

incentives to favor lower treatment rates despite the fact that the population as a whole could 

continue to benefit from higher treatment, leading to another example of individual 

incentives leading to underuse of antibiotics.

These examples aside, in our model, a true tragedy of the commons can arise in which 

individual incentives can drive overuse of antibiotics. In our base case scenario, we assumed 

that for pneumococcus, drug susceptible and drug resistant infection (or colonization) have 

the same health state utility, and that it is better to be uninfected or uncolonized. While 

pneumococcus and chlamydia themselves are unlikely to interact competitively—each is 

unlikely to reduce the transmission of the other—infectious agents of course can be in 

competition, and we considered the following example in which the drug resistant strain of 

pneumococcus is less fit in the presence of chlamydia than the drug sensitive strain of 
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pneumococcus. In other words, a fitness cost of drug resistance in pneumococcus is 

manifested by reduced ability to spread in the presence of chlamydia. Under these 

assumptions, under mass treatment, a tragedy of the commons may arise. Population level 

treatment rates can be found for which individuals do better if they exceed the population 

treatment rate. If the entire population, however, chooses a higher rate of treatment, the 

resulting reduction in chlamydia leads to an overcompensating degree of drug resistant 

pneumococcus, because (in this hypothetical scenario) chlamydia is no longer inhibiting 

drug resistant pneumococcus to the same degree. We found that for mass treatment, such a 

tragedy of the commons is impossible if the two organisms do not interact competitively.

If we depart from the assumption of mass treatment and allow targeted treatment, individual 

incentives can again drive socially disadvantageous treatment rates, but for a different 

reason. Under this assumption, individuals are only treated if they show signs of chlamydia 

(unlike in a mass administration campaign). Pneumococcus is only treated for individuals 

who are coinfected with chlamydia, so that the effective rate of pneumococcal treatment 

becomes smaller as the prevalence of chlamydia drops. Even when we assume identical 

health utility of drug sensitive and drug resistant pneumococcal colonization and infection, 

that either is worse than being uncolonized or uninfected, and that chlamydia and 

pneumococcus do not interact competitively, a kind of tragedy of the commons arises. Here, 

individual incentives favor increased treatment, but if the population as a whole chooses a 

larger rate of treatment, the declining prevalence of chlamydia reduces opportunities to treat 

pneumococcus. Individual incentives drive overuse, but this mathematical tragedy of the 

commons is unrelated to drug resistance and can be avoided by a different choice of 

antibiotic policy.

Our model does not reflect all features of trachoma mass drug administration in practice. 

Specifically, we did not include cocirculation of multiple pneumococcal strains, the role of 

strain-specific immunity in pneumococcus [9], the presence of pneumococcal vaccination, 

or the timing of mass drug administration. We only included a single organism for which 

resistance can be induced, and we have ignored age structure, demography, latency, multiple 

chlamydial strains, chlamydial cross immunity, and network effects. We also observe that 

the mathematical analysis of the current model has not revealed explicit criteria for the 

existence, uniqueness, and stability of the coexistence equilibrium. Numerical simulations 

suggest that under the base scenario there always exists exactly one (globally) stable 

equilibrium and the coexistence equilibrium is (globally) stable whenever it exists. Finally, 

the relationship between antibiotic use and drug resistance may be more complex than 

simple selection models would imply [30]. We cannot conclude that a tragedy of the 

commons is impossible in a more general setting.

Recent recommendations to improve antibiotic stewardship include efforts to avoid overuse 

of broad spectrum antibiotics (e.g. [4]), in part because of a belief that broad spectrum 

antibiotic use promotes drug resistance [41]. Simple game theory models as we present here 

can be our first step in understanding the forces which shape the epidemiology of drug 

resistance. If antibiotic use exceeds the socially optimal level, it is important to understand 

whether such excessive antibiotic use really benefits the individuals who use them. Overuse 

of antibiotics based on a mistaken belief that they are helpful does not reflect a true conflict 
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of interest between the individual and society, but a true conflict of interest does arise if 

individuals have genuine health incentives to use antibiotics at a level exceeding the socially 

optimal value. This work suggests that a tragedy of the commons does not arise in simple 

models of trachoma control through the use of mass treatment. More realistic models of the 

population biology of drug resistant strains may provide examples of the tragedy of the 

commons due to treatment of unrelated organisms.
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Appendix

A. Proof of Theorem 3.1

The calculation of boundary equilibria for the community equations (2.2) is straightforward 

and simple except that of E13 and E23 which can be found in Gao et al. [16]. So we will only 
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focus on the stability analysis. By substituting X = 1 − (YS + YR + YC + YSC + YRC) into the 

last five equations of (2.2), we obtain a qualitatively equivalent 5-dimensional ODEs 

system, denoted by (2.2)′, with respect to YS, YR, YC, YSC, and YRC. We represent the 

equilibria corresponding to the reduced system by , and Ẽ′, 

where the first component of E0, E1, E2, E3, E12, E13, E23, and Ẽ is removed, respectively. 

The Jacobian matrix of (2.2)′ at an equilibrium  and 

that of (2.2) at the corresponding equilibrium E ∈ {E0, E1, E2, E3, E12, E13, E23, Ẽ} have the 

same set of nonzero eigenvalues.

Local stability of E0

The Jacobian matrix of (2.2)′ at  is  and the set of its eigenvalues is

The no-disease equilibrium E0 is stable if ℛ0 < 1 and unstable otherwise.

Local stability of E1

The Jacobian matrix of system (2.2)′ at  is  and the set of its eigenvalues is

under targeted treatment. Recall that  (or E1) exists if and only if ℛ10 > 1 and θP = 0 

which means that  (or E1) does not exist under mass treatment.

Targeted treatment: since ℛ10 > 1 and ℛ10 > ℛ40, the first and fourth eigenvalues of 

are negative. E1 is stable if and only if ℛ10 > max{1, ℛ20, ℛ50} and ℛ30 < 1.

Local stability of E2

The Jacobian matrix of system (2.2)′ at  is  and the set of its eigenvalues is

under either targeted treatment or mass treatment.

Since ℛ20 > 1 and ℛ20 > ℛ50, the second and last eigenvalues of  are negative. E2 is 

stable if and only if ℛ20 > max{1, ℛ10, ℛ40} and ℛ30 < 1.
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Local stability of E3

The Jacobian matrix of system (2.2)′ at  is J(E3) and the set of its eigenvalues is

under targeted treatment, where  and  denote the roots of λ2 + M1λ + M0 = 0, or

under mass treatment.

Targeted treatment: E3 is stable if and only if ℛ30 > 1, ℛ20 < 1,  and .

Mass treatment: E3 is stable if and only if ℛ10 < 1, ℛ20 < 1, and ℛ30 > 1.

Local stability of E12

Recall that E12 exists if and only if ℛ10 > ℛ20, ℛ10 > 1, and θP > 0 (mass treatment). The 

Jacobian matrix of system (2.2)′ at  is  and the set of its eigenvalues is

where  and  are solutions to

respectively. Here
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which imply that E12 is stable if and only if ℛ30 < 1.

Local stability of E13

Recall that E13 exists if and only if ℛ10 > 1, ℛ30 > 1 and θ = 0 (no treatment). The Jacobian 

matrix of system (2.2)′ at  is  and the set of its eigenvalues is

It follows from X13 < min{ρP/βS, ρC/βC} and βS > βR that E13 is stable when it exists.

Local stability of E23

Recall that E23 exists if and only if ℛ20 > 1 and ℛ30 > 1. The Jacobian matrix of system 

(2.2)′ at  is  and the set of its eigenvalues is

under mass treatment or

under targeted treatment where  are solutions to λ2 + H1λ + H0 = 0.

Mass treatment: E23 is stable if and only if ℛ10 < ℛ20.

Targeted treatment: E23 is stable if and only if .

Existence of Ẽ

It follows from (2.2) that the equilibrium Ẽ satisfies

under mass treatment or
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under targeted treatment. Hence, in both cases, a necessary condition for the existence of Ẽ 

is that: ℛ10 > 1, ℛ30 > 1, ℛ10 > ℛ20 and θ > 0. For a simple case:  under mass 

treatment, we can solve the equilibrium equations by substitution and rigorously prove that 

there exists at most one positive equilibrium. In addition, ρC + θ − βC is an eigenvalue of the 

Jacobian J(Ẽ′) (or J(Ẽ)).

B. Proof of Theorem 3.5

Denote the k-th equilibrium equation of the individual equations (2.1) and community 

equations (2.2) as eqk and EQk, respectively. Let 

 and 

.

Community model under mass treatment (θP = θPC = θC = θ)

The sum of EQ4, EQ5 and EQ6 gives

Since X̄ + ȲS + ȲR + ȲC + ȲSC + ȲRC = 1, we have

The sums of EQ2 and EQ5, and, EQ3 and EQ6 give

Direct calculations yield
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(5.1)

and hence

Community model under targeted treatment (θP = 0, θPC = θC = θ)

The derivation of JC for community model under targeted treatment is exactly the same as 

that for community model under mass treatment. JP is not always a decreasing function of 

community treatment rate θ. For example, given a parameter set under targeted treatment: βS 

= 3, βR = 1.2, βC = 1.8, β11 = 1, , δ = 0.3, ρP = 1, ρC = 1, we have ∂JP/∂θ ≈ 0.121952 > 

0 at θ = 0.7. For the same parameter values except that , we still have ∂JP/∂θ ≈ 

0.113367 > 0 at θ = 0.7.

Individual model under mass treatment 

The sum of eq4, eq5 and eq6 gives

Since , we have

The sums of eq2 and eq5, and, eq3 and eq6 give

Again since , we get three linear equations with 

respect to  and . Direct calculations yield
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and hence

Moreover, it follows (5.1) that  and  can be explicitly written in terms of model 

parameters and we can study an individual’s disutility in community treatment rate.

Individual model under targeted treatment 

The derivation of  for individual model under targeted treatment is exactly the same as 

that for individual model under mass treatment.

Now we give an outline of the proof to the statement:  is not necessarily decreasing in 

θ(i). First, we solve the individual equations and simplify the derivative of  with respect 

to θ(i). We find that the sign of  is the same as a polynomial in θ(i) of the form

where

Gao et al. Page 25

Math Biosci. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and . Here c0, c1, c20, c21, c30, 

c31 and c4 are the addition of some positive terms. Furthermore, we find that c20 > c21 and 

c30 > c31 which imply that  and c3 > 0. In particular, if cotransmission of R and C 

is rare, i.e., , then  and h(θ(i)) < 0 for any θ(i).

Nevertheless, it is possible that h(θ(i)) > 0 for some θ(i) when . To construct such a 

counterexample, we observe that λSC→SC, λSC→C, λRC→C, λC, ρC do not appear in  but in 

other coefficients. Let λSC→SC = λSC→C = λRC→C = λC = ρC = 0 and then h(θ(i)) takes the 

form

where

Here ĉ0, ĉ1, ĉ20, ĉ3 are polynomials. Thus,  can dominate the sign of ĥ(θ(i)) as λRC→RC → 

0. For example, given a parameter set under targeted treatment: λSC→SC = 0.0001, λSC→C = 

0.0001, λSC→S = 1, λRC→RC = 0.001, λRC→C = 0.0001, λRC→R = 1, λS = 1, λR = 1, λC = 

0.0001, ρP = 1, ρC = 0.0001, δ = 0.5, we have  at θ(i) = 1.

However, if DC ≥ DP, then we find that ∂J(i)/∂θ(i) is constantly negative and hence an 

individual always benefits from increasing his/her treatment.
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Highlights

• A two-disease epidemic model with drug-resistance is proposed.

• Treatment for one disease may select for resistance in the other.

• Antibiotic use is modeled as a mathematical game between individual and 

society.

• The tragedy of the commons for mass treatment and targeted treatment are 

discussed.

• A conflict of interest between individual and society can occur in several cases.
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Figure 1. 
Flow diagram of the model. Infection process: (a) encounter YS, YR and YC, respectively, and 

get infected; (b) encounter YSC and get infected; (c) encounter YRC and get infected. (d) 

Recovery process. (e) Treatment process.
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Figure 2. 
The tragedy of the commons under targeted treatment. a) The probability of an individual 

being infected by agent , b) the individual disutility due to both diseases – 

. The parameter values are as in the text. The horizontal axis is the 

community level of targeted treatment rate and the vertical axis is the level of targeted 

treatment rate chosen by an individual within the community.
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Figure 3. 
The tragedy of the commons under mass treatment without assumption (A3). a) The 

probability of an individual being infected by agent , b) the individual disutility due 

to both diseases – . Parameters are as in the text. The horizontal axis is 

community level of mass treatment rate and the vertical axis is the level of mass treatment 

rate chosen by an individual within the community.
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Figure 4. 
The tragedy of the commons under mass treatment with DS ≠ DR or DU > 0. a) the 

individual disutility J(i) when resistant infection has higher disutility than sensitive infection, 

b) the individual disutility J(i) when the uninfected has significant disutility. Parameters are 

as in the text. The horizontal axis is community level of mass treatment rate and the vertical 

axis is the level of mass treatment rate chosen by an individual within the community.
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Figure 5. 
Individual incentives which may favor undertreatment in case of mass treatment with DS ≠ 

DR or DU > 0. a) the individual disutility J(i) when resistant infection has higher disutility 

than sensitive infection, b) the individual disutility J(i) when the uninfected state has a lower 

utility than the infected states. Parameters are as in the text. The horizontal axis is 

community level of mass treatment rate and the vertical axis is the level of mass treatment 

rate chosen by an individual within the community.
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