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Abstract

Due to the increasingly data-intensive clinical environment, physicians now have unprecedented 

access to detailed clinical information from a multitude of sources. However, applying this 

information to guide medical decisions for a specific patient case remains challenging. One issue 

is related to presenting information to the practitioner: displaying a large (irrelevant) amount of 

information often leads to information overload. Next generation interfaces for the electronic 

health record (EHR) should not only make patient data easily searchable and accessible, but also 

synthesize fragments of evidence documented in the entire record to understand the etiology of a 

disease and its clinical manifestation in individual patients. In this paper, we describe our efforts 

towards creating a context-based EHR, which employs biomedical ontologies and (graphical) 

disease models as sources of domain knowledge to identify relevant parts of the record to display. 

We hypothesize that knowledge (e.g., variables, relationships) from these sources can be used to 

standardize, annotate, and contextualize information from the patient record, improving access to 

relevant parts of the record and informing medical decision-making. To achieve this goal, we 

describe a framework that aggregates and extracts findings and attributes from free-text clinical 

reports; maps findings to concepts in available knowledge sources; and generates a tailored 

presentation of the record based on the information needs of the user. We have implemented this 

framework in a system called AdaptEHR, demonstrating its capabilities to present and synthesize 

information from neuro-oncology patients. This work highlights the challenges and potential 

applications of leveraging disease models to improve the access, integration, and interpretation of 

clinical patient data.
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I. Introduction

Electronic health records (EHRs) provide a centralized location for aggregating patient data 

acquired from different sources and at multiple biological scales, with the aim of making 

this data readily accessible to healthcare professionals. While an intent of digitizing health 

records has been to lower the cost of healthcare, reduce the number of preventable medical 

errors, and improve the accuracy of diagnosing and treating patients [1], the sheer amount of 

data collected poses new challenges. Physicians often need to strike a balance between 

managing a large number of patient cases and spending sufficient time to thoroughly review 

a patient’s medical history. A study showed that the volume of work associated with primary 

care visits has increased, resulting in a shorter amount of time available to address individual 

tasks such as diagnosing patients, prescribing medications, ordering procedures, and 

providing counseling or physical therapy [2]. Today, a comprehensive review of the 

patient’s health record would require a clinician to examine documents, medical images, and 

charts while mentally noting issues related to the current clinical context – all while 

disregarding unrelated information contained within the presented electronic record. Given 

their time constraints, clinicians are limited in their abilities to process all of this data 

simultaneously [3]. As such, much of their time is spent skimming parts of the patient record 

until useful information is found [4]. This problem is compounded by the addition of new 

information derived from genomic analyses, which provide additional evidence that needs to 

be understood and interpreted in the context of the entire patient record.

This paper addresses the challenge of integrating fragments of information captured in 

clinical reports, laboratory tests, and ordered procedures. In current EHR implementations, 

results and interpretations are often scattered across different parts of the user interface, 

requiring a user to navigate through multiple screens to find relevant information. For 

example, if a neuro-oncologist wishes to determine if her patient is eligible for a clinical 

trial, she would need to review multiple documents such as oncology reports (family/

treatment history), oncology consults (Karnofsky performance status), radiology reports 

(evidence of tumor progression), pathology reports (grade, histological type), and laboratory 

results (e.g., serum creatinine levels). As EHRs become the primary repository for all 

clinical data generated, adapting the presentation of this data to different users becomes 

more important [5]. Unique views of patient data can be created to meet the information 

needs of each user. A concise presentation that integrates relevant information across all 

available sources and displays only the necessary details would not only help practitioners 

reduce the time spent searching for relevant data but also assist them to utilize this data more 

effectively to inform personalized care and medical decision-making.

We present an application called AdaptEHR (Adaptive Electronic Health Record), which is 

built upon a context-based framework, integrating data from different sources in the patient 

record and subsequently tailoring the presentation based on the contents of the patient’s 
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clinical reports and the information needs of the user. This paper reviews past developments 

on integrating and displaying multimedia patient records. Next, a context-based framework 

is presented that utilizes two sources of knowledge: biomedical ontologies and graphical 

disease models. Lastly, AdaptEHR is presented and discussed in the context of neuro-

oncology.

II. Background

The way a patient’s health record is presented can affect a clinician’s ability to understand 

and interpret the information. Poor integration between the various data types (e.g., images, 

text, numerical data) and the inclusion of excess information can hamper physicians in 

noticing important findings. Determining the optimal way to organize and present the patient 

record has been a widely researched area with many efforts focused on providing a summary 

of the patient’s information using compact and intuitive graphical representations. Initial 

work focused on the addition of images, audio, and charts to text-based displays [6, 7]. 

Powsner presented a method for summarizing the patient record using a series of graphs on a 

single page [8]. While the summary effectively depicted trends in the data, it lacked 

interactivity and only supported numerical data that could be graphed. Plaisant et al. 

developed an interface for plotting events, images, and values on a timeline [9]; more 

recently, the timeline representation has been augmented to allow users to align, rank, and 

filter data based on meaningful events in the record [10]. Finally, Bui et al. developed an 

interactive TimeLine visualization that filters data elements by medical problem. The 

novelty of their work is its ability to integrate multiple parts of the patient record based on a 

medical problem and display only portions of the record that are related to that problem 

[11]. AdaptEHR can be considered an evolution of TimeLine. It is similar to TimeLine in 

the way it organizes the health record around problems and findings and utilizes timelines to 

present events in the patient record. However, while TimeLine requires manually-coded 

rules to determine how data is displayed, AdaptEHR attempts to automatically infer these 

rules and relationships through the use of knowledge from biomedical ontologies and 

probabilistic graphical models.

One early example of an application that utilizes domain knowledge to generate tailored 

views of medical data is described in [12]. It incorporates an ontology called the Medical 

Entities Dictionary (MED) [12], which represents common terms from four hospital systems 

(laboratory, electrocardiography, health records coding, and pharmacy). For a given concept 

(e.g., heart), the system utilizes MED to retrieve other related data from the health record 

(e.g., references to heart diseases, cardiac enzyme tests, chest x-ray). In contrast, rather than 

relying on a knowledge source, the NeuroAnalyzer system utilizes a machine learning 

approach to automatically cluster clinical reports around specific topics (e.g., documents 

related to the brain) [13]. A recent survey of current commercially and in-house developed 

EHRs provide a variety of functions to support data integration and decision support [14]. 

Many systems provide a summary view of a patient’s record, but users can only select a 

single tab or link at a time to view available data types (e.g., chart review, lab results, 

clinical notes). While systems have incorporated methods for data standardization using 

controlled vocabularies, functionality to utilize ontologies to annotate patient data is not 

currently available. Finally, links to scientific literature are also being provided through 
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tailored recommendations using systems such as InfoButtons [15], but such an approach 

only provides a link to the resource and does not attempt to provide an interpretation of how 

findings from the study can be personalized for a specific individual’s case.

III. Sources of Domain Knowledge

A disconnect exists between the acquisition of knowledge (i.e., the testing and validation of 

a clinical hypothesis) and the application of this knowledge (i.e., evidence-based medical 

practice). Incorporating knowledge sources into the EHR to provide context would be a step 

towards bridging this gap. For example, physicians can leverage evidence from experimental 

studies to identify imaging-based biomarkers that predict treatment efficacy and improved 

outcomes. In addition, linkages among clinical observables, physiological processes, 

signaling pathways, and cellular/genetic factors may be established and used to generate 

explanations for specific patient presentations. AdaptEHR leverages two types of knowledge 

sources:

A. Biomedical ontologies

Ontologies capture knowledge about the medical domain by representing relevant concepts 

and their relationships in a structured, reusable, machine-understandable format. We 

incorporate ontologies to address three aims:

1. Data integration. The vocabulary that is used to describe findings is highly 

variable and dependent on the physician. While such flexibility allows a rich set of 

terms to be used to communicate findings, it poses a challenge when 

disambiguating whether multiple utterances of a finding reference the same 

instance. Ontologies provide a means for mapping synonymous terms to unique 

concepts.

2. Information retrieval. An ontology also supports query expansion, which 

augments the original query with synonymous or related terms to improve recall of 

items that are relevant but may not be literal matches to the original query [30]. For 

example, if a physician wishes to identify all findings related to the temporal lobe 

of the brain, an ontology can be used to identify other related structures that are 

part of the temporal lobe such as the hippocampus, collateral eminence, and 

amygdala.

3. Data annotation. Finally, ontologies contain information that can be used to 

annotate clinical data. For example, a mention of EGFRvIII extracted from a 

pathology report can be mapped to the standardized term “EGFRvIII peptide” and 

annotated with a semantic type derived from the Unified Medical Language System 

(i.e., amino acid, peptide, or protein), a definition from the National Cancer 

Institute Thesaurus (NCIt) (i.e., a synthetic peptide sequence… caused by the 

deletion of exons 2–7), and associated with a parent concept (i.e., vaccine antigen).

While ontologies attempt to provide sufficient coverage within a defined domain, to date no 

single ontology provides sufficient coverage for standardizing and annotating the entire 

patient record. Given our application domain, we have selected ontologies that provide 

broad coverage in the areas of anatomical location (Foundational Model of Anatomy), image 
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characteristics (RadLex), clinical terms (Systematized Nomenclature of Medicine-Clinical 

Terms), cancer-related findings (NCIt), and medications (RxNorm). Phrases extracted from 

clinical reports are mapped to ontologies using tools such as the National Center for 

Biomedical Ontology’s BioPortal annotator web service, which encodes results in 

eXtensible Markup Language (XML) [16].

B. Graphical disease model

While biomedical ontologies provide breadth in coverage, a model that captures detailed 

characteristics of a disease is necessary. The purpose of such a model would be to: 1) 

enumerate all of the common types of findings, tests, and procedures that are reported for a 

given disease; 2) provide (causal) explanation of how represented elements relate to one 

another; and 3) permit computational analysis of the influence among variables based on 

encoded probabilities. Graphical models—Bayesian belief networks (BBNs), in particular—

are powerful because they combine both graph and probability theories to encode qualitative 

and quantitative knowledge [17]. Intuitive to interpret, a BBN’s graph structure also encodes 

conditional independence relationships among variables. The probabilities not only specify 

the degree of dependence among variables but also enable a class of efficient algorithms to 

perform reasoning on the model [18]. We have previously reported efforts toward building a 

Bayesian network consisting of clinical and imaging features to predict the outcome of brain 

tumor patients and osteoarthritis using a BBN [19, 20]. We briefly examine three properties 

of the BBN that are used to provide context:

• Variables. BBNs contain two types of variables: target and evidence variables. 

Target variables represent outcomes that are of particular interest to the user (e.g., 

survival, Karnofsky score). Evidence variables represent various observations or 

intermediate stages that have an effect on the target variable. They can be identified 

from a variety of data types (e.g., oncology reports, imaging, pathology) and 

biological scales (e.g., genetic, cellular, organ). Each variable is associated with a 

set of discrete states. For example, our model includes a variable for necrosis, 

which contains two states: present or absent. Variables are also derived from 

findings reported in clinical reports. We can also add variables to the BBN 

corresponding to previously unseen findings found in clinical reports or literature.

• Relationships. The structure of the model specifies how variables relate to one 

another. In a BBN, relationships are represented as a directed edge connecting two 

variables. The graph structure conveys how information flows across variables in 

the network. The Markov assumption states that a variable is independent of its 

ancestors given knowledge about its parents; this property leads to a rule called the 

Markov blanket, which identifies the set of variables that need to be specified to 

fully characterize a target variable. This property can be used to identify a set of 

findings related to the target variable of interest that should be presented together in 

the display.

• Parameters. Associated with each variable is a set of probabilities that are stored 

in a conditional probability table (CPT). The CPT characterizes the probability of a 

variable being a certain state; probabilities for a variable may change based on the 
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known states of other variables and the structure of the model. Using the CPTs, we 

can quantify how strongly a target variable is affected by another variable by 

removing the connection between the two variables and comparing the resulting 

joint probability distributions [21]. The comparison can be made using the 

Kullback-Liebler divergence [22], and the resulting value is called the strength of 

influence: a greater divergence value reflects stronger influence between the two 

variables, providing a quantitative means for identifying findings that are closely 

related. Based on the selected target variable, findings are ordered based on the 

influence measure.

A subset of a neuro-oncology model is depicted in Figure 1. An important source of domain 

knowledge that is translated into the variables, relationships, and parameters of the model 

comes from the results of controlled trials and experimental studies. We are developing 

methods to incorporate results from published research studies [23]. We use keywords such 

as “immunohistochemistry AND (glioblastoma multiforme OR GBM) AND (prognosis OR 

prognostic)” to search PubMed and obtain an initial set of publications that are then filtered 

to include only clinical trial papers published in the past ten years (i.e., 2001 to 2011). 

Papers are assessed using criteria developed by the Grading of Recommendations 

Assessment, Development and Evaluation (GRADE) working group, which rate the quality 

of evidence presented in a paper by criteria such as design, quality, consistency, and 

directness [24]. Each study is manually inspected, extracting information such as: 1) study 

hypothesis and observed (outcome) variables; 2) study population characteristics; 3) 

experimental method, including specifics of assay techniques, specific platforms, 

normalization methods; 4) statistical tests; and 5) study conclusion, including hypothesized 

pathways and explanations relating the study variables and outcomes. The extracted 

information is used to augment the model with additional variables and provide annotations 

(e.g., study population, statistical method) to relationships specified in the model that can 

potentially be used to generate explanations. Presently, our model incorporates variables 

representing clinical observables, image findings, pathology, treatments, and genomic 

analysis. The model is in the form of a concept graph (the CPTs have not been computed 

yet), and we are exploring methods to estimate probabilities from structured patient data 

(using algorithms such as expectation maximization) or from values reported in literature 

using statistical meta-analysis.

IV. Context-Based Framework

The process of generating a context-based view of the patient’s health record can be 

summarized in three steps as illustrated in Figure 2: 1) aggregate the patient data from 

separate clinical sources; 2) structure the patient record to identify problems, findings, and 

attributes reported in clinical reports and map them to available knowledge sources; and 3) 

generate a tailored display based on annotations provided by the knowledge sources.

A. Aggregating patient data

The health records for 283 neuro-oncology patients with a confirmed diagnosis of 

glioblastoma multiforme, an aggressive form of brain cancer, were electronically retrieved 

from hospital information systems using a system called DataServer [25], which is a 
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distributed infrastructure for querying multiple clinical data sources and generating a 

uniform representation of their outputs. Institutional review board approval was obtained 

prior to the collection and processing of the data. Only radiology reports (with images), 

pathology, oncology notes, consultation letters, surgical notes, admission/discharge 

summaries, and laboratory results were examined. The entire dataset was used to identify 

new findings, guide variable selection, estimate values for the probabilistic disease model, 

and provide a test set for validating the system.

B. Structuring the patient record

For each patient record, we follow a methodical approach to extract problems, findings, and 

attributes from clinical narratives, mapping them to concepts in the knowledge sources. 

While a natural language processing (NLP) system [26, 27] that has been trained to extract 

biomedical concepts (e.g., disease, finding) and attributes (e.g., duration, existence, location) 

from semi-structured medical documents is used to automate some tasks, the abstraction task 

is primarily dependent on a human annotator to oversee the process.

• Identifying findings. All problems/findings and references to anatomical locations 

in each clinical report are highlighted using NLP, which results in a list of finding 

utterances presented to the user. For example, in the sentence, “There is an 

enhancing mass in the left parietal lobe,” the finding “mass” and anatomical 

location “left parietal lobe” would be automatically identified by the NLP system. 

The user would then confirm that “mass” is a finding, confirm its location (i.e., left 

parietal lobe), and specify the spatial relationship characterizing the location 

description (i.e., in).

• Characterizing attributes. In addition, for each finding, the system presents all 

linked sentences and a specific object frame that allows precise characterization of 

the finding’s attributes. Each finding is presented as a frame, and its slots represent 

its attributes. Each frame and slot is dictated by variables, states, and annotations 

represented in the disease model.

• Performing co-reference resolution. For each confirmed finding, the user 

specifies if an utterance is the first mention of the finding or if it is associated with 

a previously mentioned instance of that finding. The system suggests a co-reference 

based on matching anatomical locations. Once findings have been identified and 

structured from all reports, the user is asked to correlate descriptions of findings 

across reports so that each individual finding can be represented with respect to 

time. The system presents a list of prior findings of a similar type (from previously 

structured/reviewed reports), allowing the user to create and validate links. The 

result of this process will be a set of linked, formalized representations of each 

finding represented over time.

The resulting structured output is encoded in an XML file. Thus far, 20 patient cases have 

been structured representing a total of 717 documents. The initial case took two days to 

structure approximately 200 reports due to time spent adding new variables to the model. 

Further details on the structuring tool and its ability to identify findings are reported in [28].
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C. Interpreting patient data using available knowledge

Once findings and attributes have been extracted from clinical reports and mapped to 

variables in the graphical model, the next step is to leverage the model structure and 

parameters to identify relationships and generate an integrated display. In this work, we 

explore two ways to utilize the domain knowledge:

• Integrating across data types. The traditional way that EHR user interfaces 

present patient data is to either organize them by source (e.g., radiology, pathology) 

or time (e.g., when the report was generated). In these approaches, physicians are 

often left to synthesize information found in different parts of the record. The 

context-based approach leverages the disease model to link related data from any 

sources and time periods to the same variable in the model. For example, the model 

can be used to link image findings (e.g., rim enhancement) found in the raw image 

data (e.g., segmented regions) and radiology reports (e.g., mentions of 

enhancement).

• Identifying associations between findings. Different data sources provide 

multiple perspectives of the same finding. For example, swelling of the brain 

(edema) can be characterized by imaging characteristics (e.g., appearance of mass 

effect and/or midline shift), neurological exam (e.g., whether the swelling affects 

motor skills), and prescribed medications (e.g., dexamethasone, which is used to 

combat the swelling). Once findings from the patient record are mapped to 

concepts in the disease model, path analysis techniques can be used to characterize 

how findings are related based on the model’s topology.

V. AdaptEHR Application

We have implemented a functional prototype of the context-based architecture in an 

application called AdaptEHR, which is written in Java using Swing components and is 

connected to a relational database (i.e., MySQL) that contains a structured and annotated 

representation of each patient’s record. While we present the functionality of AdaptEHR in 

the context of neuro-oncology, it can be generalized to any disease given the requisite 

knowledge sources. The interface, depicted in Figure 3, consists of the following 

components:

• Patient dashboard. The patient dashboard is comprised of multiple panes that 

summarize the contents of the patient record. The dashboard presents information 

such as past encounters, prescribed medications, findings documented in clinical 

reports, and results of laboratory tests and procedures. Clinical findings, which 

have been extracted by the NLP-assisted structuring tool, are presented along a 

timeline, which visually summarizes when each finding is mentioned in a report. 

Each observation of a finding is also color-coded based on an interpretation of 

whether the finding has improved, worsened, remained unchanged, or not present 

[29].

• Query pane. The query pane provides a set of controls that allow users to specify 

target variables (e.g., to determine whether a chemotherapy regimen is effective), 

define a temporal window (e.g., show only observations within a six month period 
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after the patient’s surgical resection), group findings by semantic group (e.g., 

findings of the nervous system), and filter by source (e.g., show only radiology 

reports) or type (e.g. display only MR images).

• Details on demand. Users can view patient data by interacting with the patient 

dashboard. Hovering over an observation brings up a tooltip with the original 

sentence(s) related to the finding. Selecting an observation opens a separate 

window (Figure 3e) that shows related patient data (e.g., slices of an imaging study 

that depicts the described finding) and other structured information (e.g., whether 

the finding is new or recurring, related blood test values).

As part of the iterative development process, we asked two physicians (a neuro-radiologist 

and an oncology fellow) to view a set of patient cases and identify the strengths and 

weaknesses of the AdaptEHR interface. Initially, users were presented with an 

alphabetically sorted list of all findings identified in the patient record. However, both users 

found this list difficult to navigate given a large number of findings. As a result, we 

implemented functionality to filter this list by semantic type: in Figure 3c, only findings 

related to “signs or symptoms” are shown. Findings could also be filtered by relation: a user 

specifies target variables by selecting findings listed in the patient dashboard. Using 

properties such as the Markov blanket, related findings are identified based on the topology 

of the model and presented to the user, removing all other findings from view. Figure 3d 

shows an example of filtering findings to those related to the drug dexamethasone: the 

original list of 80 findings is reduced to three by filtering irrelevant findings based on the 

model. Dates when the drug was prescribed are clearly delineated. Related findings, ranked 

by strength of influence, are also shown to visually convey effects of the drug. Both users 

found the filters intuitive and effective in presenting relevant information, but situations 

arose when users disagreed with the information presented (or noted that an important piece 

of information was missing). This issue relates to the assumptions made when creating the 

disease model. Presently, while users can view the model, they cannot modify it. In addition, 

users can revert to a non-filtered view at any time; a log of user interactions with the 

interface is being captured for future study. Finally, users found the summarization of trends 

in the patient record to be straightforward, yet both experienced some confusion when 

navigating a cluster of findings with multiple observations in a short period of time. Both 

users expressed that the details on demand view was particularly helpful.

VI. DISCUSSION

Given the diversity and amount of data being collected as part of the patient record, an 

efficient approach to retrieve and understand this information is crucial given the decrease in 

amount of time available for clinicians to perform tasks. We present a context-based 

framework for formalizing knowledge encoded in biomedical ontologies and disease models 

to support the integration and adaptation of information in the health record. While our work 

primarily utilizes ontologies and probabilistic disease models, another important source of 

domain knowledge is clinical practice guidelines. Computerized guidelines encoded in GLIF 

(guideline interchange format) could be used to generate personalized recommendations 

based on what is documented in the record.
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Additional research is needed to characterize the information needs of physicians when 

performing different tasks. [15] asked clinicians to review a set of patient records and found 

that they varied widely on the types of information identified as relevant. Development and 

incorporation of a cognitive model that considers user preferences when determining if a 

data element is relevant would be beneficial. As illustrated through our preliminary study, 

the current disease model may not fully meet the information needs of a physician 

performing a specific task. To address this issue, we will explore additional approaches such 

as incorporating published clinical guidelines and providing tools to modify the model. In 

addition, the healthcare community must address the paucity of disease models that are 

available for incorporation into clinical decision support systems. While some models such 

as HEPAR II [30] have been disseminated, most domains do not have models that are public 

and vetted. Further development is needed to create robust tools for constructing, validating, 

and sharing models with the broader community. Formal evaluations are planned to further 

assess the capabilities of the structuring and mapping tools and the usability of the 

AdaptEHR interface. While we have obtained valuable feedback from presenting 

components of this system [28, 29, 31], a formal study is being conducted to compare the 

performance of physicians when using AdaptEHR versus existing means (e.g., manually 

generated slide presentation) while reviewing a case at a tumor board conference. Evaluation 

metrics will include time spent to prepare the case, ability to answer questions posed by 

board members (e.g., precision/recall of information retrieved from the patient record), and 

overall satisfaction with the interface.
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Fig. 1. 
An example of a graphical disease model for neuro-oncology. (a) The model incorporates 

variables from different sources characterizing multiple biological scales. (b) Each 

relationship is annotated with references to scientific literature. (c) Additional contextual 

information is provided by incorporating signaling pathways that are used to generate 

explanations. (d) Each variable is associated with a table that enumerates the possible states 

and conditional probability distribution for that variable given its parents.
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Fig. 2. 
Flow of information in the context-based framework.
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Fig. 3. 
Screen capture of the AdaptEHR patient dashboard. (a) The findings list serves as the 

primary method of navigating the patient record. (b) The timeline summarizes each 

observation of a finding across time, color-coded by trends such as improving (green), 

worsening (red), unchanged (gray), and not present (black). (c) Findings are filtered using 

information encoded in knowledge sources; in this inset, only findings related to “sign or 

symptom” are shown. (d) In this inset, only findings related to dexamethasone such as 

edema (to see whether the drug has an effect on reducing swelling) and cushingoid (a 

possible side effect of the drug). (e) Selecting a particular observation brings up details on 

demand such as related imaging studies and attributes extracted from the text.
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