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Summary

Compound identification is a critical process in metabolomics. The widely used approach for 

compound identification in gas chromatography-mass spectrometry (GC-MS) based metabolomics 

is the spectrum matching, in which the mass spectral similarity between an experimental mass 

spectrum and each mass spectrum in a reference library is calculated. While various similarity 

measures have been developed to improve the overall accuracy of compound identification, little 

attention has been paid to reducing the false discovery rate. We, therefore, develop an approach 

for controlling false identification rate using the distribution of the difference between the first and 

the second highest spectral similarity scores. We further propose a model-based approach to 

achieving a desired true positive rate. The developed method is applied to the NIST mass spectral 

library and its performance is compared with the conventional approach that uses only the 

maximum spectral similarity score. The results show that the developed method achieves a 

significantly higher F1 score and positive predictive value than those of the conventional 

approach.
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1. Introduction

The mass spectrum, as a molecular fingerprint, is widely used for compound identification 

in gas chromatography-mass spectrometry (GC-MS) by matching to mass spectra recorded 

in a reference library. The success of the mass spectrum matching-based identification 

highly depends on the mass spectral similarity measure and the reference library. Most 

efforts have so far been focused on the development of a better spectral similarity measure 
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to improve the accuracy of compound identification (e.g., Stein and Scott (1994); Kim et al. 

(2012b); Wagner et al. (2013)).

Stein and Scott (1994) compared among several similarity measures in compound 

identification and further suggested two modified measures, weighted cosine correlation and 

composite measure, that served as the stimulus for a series of follow-up works. In the 

follow-up works, some researchers developed more advanced measures using wavelet and 

Fourier transformations, optimal weight factors, partial and semi-partial correlations, ratio 

analysis, and retention indices (Koo et al. (2011); Kim et al. (2012a,b); Gu et al. (2013); 

Wei et al. (2014)). Using recently developed measures, Koo et al. (2013) performed the 

comparative analysis with the latest NIST spectral library and showed that the mixture semi-

partial correlation outperforms other existing measures, but it is computationally most 

expensive.

On the other hand, little attention has been paid to how to control the false identification rate 

after spectral matching. Two decades ago, Stein (1994) proposed a method of obtaining 

probabilistic indicator of correct identification using a Bayes’ theorem. This method requires 

the pre-analysis of a reference library with training data to estimate the prior information. In 

a similar structural hierarchy to Stein (1994), Jeong et al. (2011) later proposed an empirical 

Bayes model to estimate posterior probabilities for compound identification using 

competition score. Characterization of the distributions of competition scores and similarity 

scores are required before applying their method to data. Recently, Matsuda et al. (2013) 

introduced a method to estimate the statistical significance of compound identification using 

BLAST. To use this method, mass spectra should be converted into protein-like alphabetical 

sequences and then the PAM-like score matrix should be estimated using a converted 

reference library. However, many complicated preprocessing steps, such as analysis of a 

reference library, high-dimensional parameter estimation, and conversion of mass spectra, 

are needed to obtain the significance of compound identification when using these existing 

methods and the result of these methods could be varied by user-defined input parameters, 

such as rank of similarity, number of mixture components, and range of signal intensity. 

Therefore, there is a need for a simple user-friendly method that requires no preprocessing 

with less user-defined parameters.

Indeed, due to the complicated tasks required to use, the aforementioned methods have not 

been widely used. Instead, a maximum spectral similarity score has been commonly used to 

deal with mismatched compounds. The only task required in this simple approach is for 

users to empirically set up a threshold of the spectral similarity score (usually, ≥ 0.6 or 0.7). 

Then the compound identification is considered as a correct identification if the maximum 

similarity score of a query mass spectrum fulfills this threshold. Otherwise, a match to the 

query spectrum is considered as a false identification. However, the range of the maximum 

similarity score of the false identification is generally not distinguished from that of the 

correct identification (e.g., see the y-axis of Figure 2(a)), which prevents from achieving 

either a higher true positive identification rate or a lower false identification rate.

The objective of this study is to develop a simple but powerful approach to dealing with 

false compound identifications. To this end, we use the difference of the first and the second 
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highest spectral similarity scores. Our approach was motivated by the isomers that have very 

similar mass spectra to each other. In this work, it has been confirmed that isomers are 

indeed a major bottleneck for achieving a higher accuracy of compound identification, and 

we have further observed that more than 55% of the false identifications were cases that the 

true compounds have the second highest rank of spectral similarity, not the first highest 

rank. Based on these observations, we develop a method for assessing the significance of 

compound identification using the similarity difference between the first and the second 

highest scores. Besides, a model-based method of finding the cut-off value is developed 

using a Beta distribution to achieve a desirable true positive rate.

The rest of the paper is organized as follows. Section 2 describes the effect of isomers on 

compound identification and compares the maximum similarity scores with the difference of 

the first and the second highest similarity scores. In particular, it can be seen that the 

similarity difference has a potential ability to distinguish the distribution of the correct 

identification with that of the incorrect identification. In Section 3, the two methods, the 

maximum similarity method and the similarity difference method, are introduced along with 

the description of the mass spectral library used. In addition, a method of finding the cut-off 

value to achieve a desirable true positive rate is developed. In Section 4, the two methods 

are applied to the NIST mass spectral libraries and compared their performance in terms of 

compound identification. Conclusions are presented in Section 5.

2. Motivation

The isomers are compounds with the same molecular weight (and formula) but different 

chemical structures. Figure 1 depicts the empirical distribution and the histogram of the 

pairwise similarity scores within a set of isomers estimated using the weighted cosine 

correlation and the NIST WebBook mass spectral library as described in Kim et al. (2012b). 

The distribution is left-skewed and more than 17% (= 545/3126) of the isomer sets have the 

pairwise similarity scores ≥ 0.9, indicating that the mass spectral matching-based compound 

identification cannot differentiate the isomers from each other.

We further investigated the effect of molecular weights (MWs) on compound identification. 

To do this, we ranked all the reference compounds in descending order of their spectral 

similarity scores for each query compound, and the MWs of the first and the second ranked 

reference compounds were further considered. We then recalculated the conditional 

accuracies (i) when these MWs are identical and (ii) when these MWs are different, 

respectively. As can be seen in Table 1, the conditional accuracy when these MWs are not 

equal becomes much higher (95.7%) than the overall accuracy (84.2%). Most of the 

incorrect matches occur when these MWs are equal. This fact inspired us to consider the 

difference between the first and the second highest similarity scores for high accuracy 

compound identification.

Figure 2 displays the plot of the maximum similarity score and the difference between the 

first and the second highest similarity scores. Figure 2(a) shows that the range of the 

incorrect maximum similarity scores is almost the same as that of the correct one, while the 

range of the incorrect similarity difference is less than or equal to 0.2. This means that the 
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false discovery rate (FDR) can be zero if the similarity difference is used with the cut-off 

value of 0.2 or larger, while the FDR can never achieve a value of zero in the maximum 

similarity method. Figure 2(b) shows the empirical distribution of each of the maximum 

similarity (right-hand side) and the similarity difference (left-hand side). We can see that 

there is a clear separation between the distributions of the correct (blue solid line) and the 

incorrect (red solid line) similarity differences, but it is almost indistinguishable for the 

distributions of the correct (blue dotted line) and the incorrect (red dotted line) maximum 

similarity scores. Motivated by the information presented in Figures 1 and 2, we developed 

an approach to controlling the false identification discovery based on the spectral similarity 

difference between the top ranked compounds, which is described in the next section.

3. Methods

3.1 NIST WebBook mass spectral library and replicate spectral library

We considered the mass spectra extracted from the NIST Chemistry WebBook (NIST 

library) as a reference library and the repetitive library as query data. The NIST Chemistry 

WebBook service (http://webbook.nist.gov/chemistry/) provides users with chemical and 

physical information for chemical compounds including mass spectra generated by electron 

ionization mass spectrometry. The mass spectra of 23721 compounds were extracted from 

the NIST Chemistry WebBook as of November 28, 2011. The replicate spectral library was 

obtained from the NIST 08 Mass Spectral Library (NIST08/2008), which contains 28307 

mass spectra for 18569 compounds. The NIST Chemistry WebBook is considered as a 

reference library and the replicate spectral library is considered as query data. Compounds in 

the reference library and the query data with the same Chemical Abstracts Service (CAS) 

registry number are considered as the same compound. Since we assume that the reference 

library has the mass spectra for all query compounds, compounds that were not present in 

the reference library were removed from the query data. After the removal, 12850 

compounds with 21516 mass spectra were left in the query data. The fragment ion m/z 

values were ranged from 1 to 892 with a bin size of 1.

3.2 Weighted cosine correlation

The cosine correlation (Stein and Scott (1994)) was used to obtain the mass spectral 

similarity score between two mass spectra. Suppose  and  are the mass 

spectra and then their pairwise mass spectral similarity score is calculated by

(1)

where , and  is the total number of mass-to-charge ratio 

(m/z).

The fragment ion peaks with large m/z values in a GC-MS spectrum usually have small peak 

intensities, but carry the most important characteristics for compound identification. To 

increase the contribution of large fragment ions to compound identification, peak intensity 

are often weighted as
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(2)

where w1 and w2 are weight factors for peak intensity and m/z value, respectively. Then the 

weighed cosine correlation can be calculated by

(3)

where  and , where zi is 

the m/z value of the ith intensity, i = 1, 2, …, n. In this study, we used w = (w1, w2) = (0.53, 

1.3) (Kim et al. (2012b)).

3.3 Discovery of false identification

Two methods for discovery of false identification are employed in this study. The first 

method is the conventional approach based on the maximum similarity score, and the second 

method is the newly developed approach using the difference between the first and the 

second highest similarity scores.

Suppose there are m query mass spectra (X1, X2, …, Xi, …, Xm) and n reference mass spectra 

(Y1, Y2, …, Yj, …, Yn). After matching to the reference mass spectra, each query mass 

spectrum has the first and the second highest similarity scores, , 

where  and  are the first and the second highest similarity scores of the ith query mass 

spectrum Xi, respectively, and . Without loss of generality, we assume that the first t 

query mass spectra are correctly matched to the reference mass spectra, (X1, …, Xt), and the 

rest of the query mass spectra are mismatched, (Xt+1, …, Xm), where t ≤ m. Furthermore, 

suppose R query mass spectra are declared as discovery using a false identification 

discovery method and, of these R query mass spectra, V and S query mass spectra are 

incorrect and correct, respectively, where R = V + S. Then the true positive rate (TPR; also 

known as (aka) sensitivity or power), the false positive rate (FPR), the positive predictive 

value (PPV; aka true discovery rate), and the F1 score are defined by

(4)

In fact, 1 − PPV is the false discovery rate and PPV can be interpreted as accuracy after 

decision. Table 2 summarized these decisions in a conventional form. Note that we consider 

TPR, FPR, PPV, and F1 as one when their denominator is equal to zero.

3.3.1 The maximum similarity method—The conventional approach to false 

identification is simply based on the maximum similarity score. That is, if the highest 

pairwise mass spectral similarity score is larger than a user-defined cut-off value (ρ), the 

matched compound is considered as a true identification by

(5)
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As a general practice, 0.6 or 0.7 is used as a cut-off value.

3.3.2 The similarity difference method—This approach uses the difference of the mass 

spectral similarity scores between the top two matches. Namely, the total number of 

discovery after decision is defined by

(6)

where γ is a user-defined cut-off value.

3.4 Finding a cut-off value of the similarity difference method to control the true positive 
rate

In order to achieve an anticipated true positive rate, we further developed a method to find a 

cut-off value of the proposed similarity difference method. To do this, we infer the 

distribution of the similarity difference of the true positives (i.e., correctly matched 

compounds). However, in practice, it is difficult to estimate the true distribution of the true 

positives and, although it is possible, it cannot guarantee that the data used for estimation 

represent the true positives only due to the presence of false positives inside. Fortunately, 

the similarity difference method has an interesting property to estimate the distribution of 

the similarity difference of the true positives more accurately. Namely, as mentioned in 

Section 2, we can clearly see that there are only correctly matched compounds when the 

similarity difference becomes greater than 0.2, representing only the true positives.

Suppose a user-defined cut-off value to find the set of true positives is δ (e.g., δ = 0.2 in this 

study) and there are m query mass spectra composed of t correctly matched mass spectra, 

(X1, …, Xt), and m − t mismatched compounds, (Xt+1, …, Xm), where t ≤ m. Then the desired 

set of true positives is , where di is the difference 

between the first and the second highest similarity scores of the ith query mass spectrum Xi. 

In fact, for the case of Figure 2(a), the true positive set D(0.2) is equal to {di|di ≥ 0.2, 1 ≤ i ≤ 

t}, in which all mass spectra come only from the set of the true positives. To estimate the 

distribution of the similarity difference of the true positives, we employed a beta distribution 

based on our estimation using all true positives of the similarity difference since the range of 

the weighted cosine correlation is the same as a Beta distribution, which is [0, 1].

A left truncated Beta distribution was used to infer the distribution of the similarity 

difference of the true positives due to that the set of the selected true positives is truncated at 

δ. We denote the left truncated Beta distribution at δ as

where α, β > 0 and 0 < δ < 1. Once the parameter θ of the distribution is estimated, the 

critical value at ((1 − ε) × 100)% true positive rate (power or sensitivity), q(ε), is calculated 

using the estimated distribution of the similarity difference, where 0 ≤ ε ≤ 1. The value q(ε) 

is used as the cut-off value γ for Equation 6 to achieve the true positive rate of 1 − ε. This 

procedure is summarized as follows:
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Step I. Estimate θ̂ = (α̂, β̂) for the model D ~ tBeta(θ|δ).

Step II. Calculate the critical value q(ε) with P(q(ε)) = ε using Beta(θ̂) where P(·) is the 

cumulative density function of Beta(θ̂).

Step III. Set γ as q(ε).

4. RESULTS

The developed algorithms were applied to the NIST mass spectral data. We compared the 

performance of the developed algorithms with that of the conventional approach, and 

evaluated the method of controlling the true positive rate in terms of the accuracy of 

compound identification.

4.1 Comparison analysis

The developed similarity difference method was compared with the maximum similarity 

method using the weighted cosine correlation and the NIST mass spectral library. We 

evaluated their F1 score, PPV, TPR, and FPR for the results of compound identification. A 

set of 100 cut-off values, between 0 and 0.2 for γ and between 0.6 and 0.99 for ρ, were 

chosen for comparison based on Figure 2.

Figure 3(a) shows that the maximum F1 values occur at γ = 0.0020 and ρ = 0.6945 with 

92.1% and 91.4% for the similarity difference and the maximum similarity, respectively, 

indicating that the developed method has a significantly larger F1 score. Namely, 1000 

bootstrap replications give us (91.81, 92.36) and (91.12, 91.71) as 95% confidence intervals 

for the similarity difference and the maximum similarity methods, respectively. However, as 

expected, the PPV of the similarity difference method is always higher than that of the 

maximum similarity method in Figure 3(b) and the PPV of the developed algorithm 

becomes 100% from γ = 0.1756 with the true positive numbers (S) of 3689 in Table 3. The 

maximum PPV of the conventional approach is 84.3% at ρ = 0.9191, as shown in Table 4.

Figures 3(c) and 3(d) depict that the curves of the similarity difference method are closer to 

the upper right and the upper left than these of the maximum similarity method, 

respectively, indicating that the overall performance of the developed method is much better 

than that of the conventional approach.

The NIST replicate spectral library was generated in many different laboratories to represent 

analytical conditions in practice. Nevertheless, the real query mass spectra could be much 

noisier than the NIST replicate spectral library, resulting that the true similarity matching 

scores would be underestimated. This underestimation will cause the false discovery rate to 

increase so that PPV, TPR, and F1 values will be decreased. Another concern is that the real 

experimental data could include unknown compounds that are not present in the NIST mass 

spectral library. These unknown compounds could cause the false identification rate to 

increase, resulting in higher FPR and lower TPR than those in this study. That is, the ROC 

curve in Figure 3(d) could be either closer to or down to the diagonal as the number of 

unknown compounds increase.
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4.2 Controlling the true positive rate

To examine the developed method of finding a cut-off value for the similarity difference 

method to achieve a desired true positive rate (aka power or sensitivity), we compared the 

result of the set D(δ) with that of the true positives {di, 1 ≤ i ≤ t}, which is the entire set of 

correctly matched mass spectra, as a benchmark. Three different values, 0.1, 0.2, and 0.3, 

were used for δ to obtain the set of possible true positives D(δ), and then 1000 bootstrap 

replicates were used to construct the 95% confidence bands. In order to run bootstrap, 1000 

sets of query library were first created by resampling the NIST replicate spectral library with 

replacement. Then the compound identification was performed on each of the resampled 

sets, resulting in 1000 sets of the similarity differences. Using these similarity differences, 

the parameters of the Beta distribution were estimated, obtaining the 1000 relationships 

between the desired true positive rate and the observed true positive rate.

Figure 4 displays the relationship between the desired true positive rate (1 − ε) and the 

observed true positive rate (TPR) for each of the three δ values along with the 95% 

confidence bands. The area filled with red indicates the 95% confidence bands of 1000 

bootstrap replicates with δ, while the blue line is the result from all correctly matched mass 

spectra. The inlet represents the estimated Beta distributions of the true similarity difference 

(blue line) and of the selected subset of the similarity difference (red line). The average of 

their mean squared errors is also displayed inside the plot. We can see that the observed TPR 

for both the entire set and the selected subset is underestimated when the desired TPR is 

greater than 0.5, while that is overestimated when the desired TPR is less than 0.5. 

Furthermore, the 95% of confidence bands include the true TPR when the desired true 

positive rate is greater than 0.5. These trends are the same for all three δ values. In terms of 

the Beta distribution, all three cases have comparable MSE values even though the MSE is 

the smallest when δ = 0.1. Figure 4(d) shows the relationship among 1−ε, F1 score, PPV, 

TPR, and the cut-off value (γ) using the entire data of the similarity difference with δ = 0.2. 

The difference between the true and the estimated lines is small when 1 − ε > 0.9 and is 

large when 1 − ε ≤ 0.9. The maximum F1 score occurs when ε = 0.0202, which is 92.1% 

with PPV of 88.4% and TPR of 96.1%.

5. CONCLUSIONS

A simple but powerful approach for a better true positive identification rate using the 

difference of the first and the second highest spectral similarity scores was developed for the 

analysis of GC-MS data for compound identification. A model-based approach to achieve a 

desired true positive rate was also proposed. Compared to the conventional approach based 

on the maximum similarity score, the developed algorithms have several advantages. First, it 

is more powerful in terms of the higher PPV and can further achieve the false discovery rate 

of zero. Second, it has the ability to infer the distribution of the correctly matched 

compounds and so to achieve a desirable TPR using a statistical model-based approach.
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Figure 1. 
The empirical density function and the histogram of the pairwise similarity scores of 

isomers.
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Figure 2. 
The scatter plot and the empirical distribution of the maximum similarity score and the 

difference between the first and the second highest similarity scores. The red “x” indicates 

the incorrect identification and the blue “o” represents the correct identification in (a). The 

empirical distributions located in the left in (b) are for the similarity difference and these in 

the right are for the maximum similarity.
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Figure 3. 
Comparison of the maximum similarity and the similarity difference methods. (a) F1 score, 

(b) PPV, (c) TPR vs. PPV plot, (d) TPR vs. FPR plot (ROC curve). The symbols ‘+’ and ‘x’ 

indicate the points having the highest F1 score for each method, respectively.
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Figure 4. 
The relationship between the desired TPR (1 − ε) and the observed TPR using 1000 

bootstrap replicates when (a) δ = 0.1, (b) δ = 0.2, and (c) δ = 0.3. The scatter plots between 

(1 − ε) and PPV, F1, FPR, and the cut-off value (γ) using the entire data with δ = 0.2 are in 

(d). In (d), the dotted black line indicates the point when F1 value is the maximum.
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Table 1

Accuracy table of compound identification. Note that “Equal” and “Not Equal” represent when the molecular 

weights of compounds having the first and the second highest similarity scores are equal and when the 

molecular weights are not equal, respectively.

Equal Not Equal All

Correct 8071 10034 18105

Incorrect 2957 454 3411

Accuracy 73.19% 95.67% 84.15%
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Table 2

Contingency table of discovery of false identification.

Decision

Non-discovery Discovery

Compound Incorrect U V m − t

Identification Correct Q S t

m − R R m
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Table 3

Maximum F1 score. M1 and M2 represent the similarity difference and the maximum similarity methods, 

respectively.

M1 M2

γ (ρ) 0.0020 0.6945

F1 92.09% 91.39%

PPV 87.99% 84.16%

TPR 96.60% 99.98%

S 17490 18101

V 2388 3406
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Table 4

Maximum PPV. M1 and M2 represent the similarity difference and the maximum similarity methods, 

respectively.

M1 M2

γ (ρ) 0.1758 0.9191

PPV 100% 84.33%

S 3689 16960

V 0 3151
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