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Abstract

Improving the performance of classifiers using pattern mining techniques has been an active topic 

of data mining research. In this work we introduce the recent temporal pattern mining framework 

for finding predictive patterns for monitoring and event detection problems in complex 

multivariate time series data. This framework first converts time series into time-interval 

sequences of temporal abstractions. It then constructs more complex temporal patterns backwards 

in time using temporal operators. We apply our framework to health care data of 13,558 diabetic 

patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing 

adverse medical conditions that are associated with diabetes.
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1. INTRODUCTION

Advances in data collection and data storage technologies led to emergence of complex 

temporal datasets, where the data instances are traces of complex behaviors characterized by 

time series of multiple variables. Designing algorithms capable of learning classification 

models from such data is one of the most challenging topics of data mining research.
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The majority of existing classification methods that work with temporal data [12, 6, 4, 24, 8, 

28] assume that each data instance (represented by a single or multiple time series) is 

associated with a single class label that affects its entire behavior. That is, they assume that 

all temporal observations are equally useful for classification.

However, the above assumption is not the best when considering monitoring and event 

detection problems. In this case, the class label denotes an event that is associated with a 

specific time point (or a time interval) in the instance, not necessarily in the entire instance. 

The goal is to learn a model that can accurately identify the occurrence of events in 

unlabeled instances (a monitoring task). Examples of such problems are the detection of 

adverse medical events (e.g. drug toxicity) in clinical data [10], detection of the equipment 

malfunction [9], fraud detection [23], environmental monitoring [16], intrusion detection [7] 

and others.

Given that class labels are associated with specific time points (or time intervals), each 

instance can be annotated with multiple labels1. Consequently, the context in which the 

classification is made is often local and affected by the most recent behavior of the 

monitored instances.

The focus of this paper is to develop a pattern mining technique that takes into account the 

local nature of decisions for monitoring and event detection problems. We propose the 

Recent Temporal Pattern (RTP) mining framework, which mines frequent temporal 

patterns backward in time, starting from patterns related to the most recent observations. 

Applying this technique, temporal patterns that extend far into the past are likely to have low 

support in the data and hence would not be considered for classification. Incorporating the 

concept of recency in temporal pattern mining is a new research direction that, to the best of 

our knowledge, has not been previously explored in the pattern mining literature.

We study our RTP mining approach by analyzing temporal data encountered in Electronic 

Health Record (EHR) systems. In EHR data, each record (data instance) consists of multiple 

time series of clinical variables collected for a specific patient, such as laboratory test results 

and medication orders. The record may also provide information about patient’s diseases 

and adverse medical events over time. Our objective is to learn classification models that 

can accurately detect adverse events and apply it to monitor future patients.

The task of temporal modeling for EHR data is challenging because the data are multivariate 

and the time series for clinical variables are irregularly sampled in time (measured 

asynchronously at different time moments). Therefore, most existing times series 

classification methods [6, 24], time series similarity measures [29, 20] and time series 

feature extraction methods [4, 13] cannot be directly applied on the raw EHR data.

This paper proposes a temporal pattern mining approach that can handle complex data such 

as EHR. The key step for this approach is defining a language that can adequately represent 

the temporal dimension of the data. Our approach relies on 1) temporal abstractions [21] to 

1In the clinical domain, a patient may be healthy at first, then develop an adverse medical condition, then be cured and so on.
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convert numeric time series variables to time-interval sequences and 2) temporal relations 

[3] to represent temporal interactions among the variables. For example, this allows us to 

define complex temporal patterns (time-interval patterns) such as “the administration of 

heparin precedes a decreasing trend in platelet counts”.

After defining patterns from temporally abstracted data, we need to design an efficient 

mining algorithm for finding patterns that are useful for event detection. Mining time-

interval data is a relatively young research field that extends sequential pattern mining [2, 

31, 18, 30] to the more complex case of time-interval pattern mining2. Most existing 

methods mine frequent patterns in an unsupervised way in order to find temporal association 

rules [22, 11, 17, 14, 26, 27, 15]. Our objective is different because we are interested in 

mining temporal patterns that are potentially important for the event detection task. To 

address this, we present an efficient algorithm for mining RTPs (see above) from time-

interval data.

We test and demonstrate the usefulness of our framework on real-world EHR data collected 

for 13,558 diabetes patients. Our task is to learn classification models that can correctly 

diagnose disorders associated with diabetes, such as cardiological, renal or neurological 

disorders. We first show that incorporating the temporal dimension is beneficial for this task. 

In addition, we show the following advantages of our framework:

1. RTP mining focuses the search on temporal patterns that are potentially more 

useful for classification.

2. The number of frequent RTPs is much smaller than the number of frequent 

temporal patterns. This can facilitate the process of reviewing and validating the 

mined patterns by human experts.

3. Our mining algorithm is much more efficient than other temporal pattern mining 

approaches and it can scale up much better to large datasets.

2. PROBLEM DEFINITION

Let  be a training dataset such that xi ∈ X is a multivariate temporal 

instance up to some time ti and yi ∈ Y is a class label associated with xi at time ti. The 

objective is to learn a function f: X → Y that can label unlabeled instances. This general 

setting is applicable to different monitoring and event detection problems, such as the ones 

described in [23, 7, 9, 16].

In this work, we test our method on data from electronic health records (EHR), hence we 

will use the EHR application as example throughout the paper. For this task, every data 

instance xi is a record for a specific patient up to time ti and the class label yi denotes 

whether or not this patient is diagnosed with an adverse medical condition (e.g., renal 

failure) at ti. Figure 1 shows a graphical illustration of an EHR instance with 3 clinical 

2Sequential pattern mining is a special case of time-interval pattern mining, in which all intervals are instantaneous (with zero 
durations).
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temporal variables. The objective is to learn a classifier that can predict well the studied 

medical condition and apply it to monitor future patients.

Learning the classifier directly from EHR data is very difficult because the instances consist 

of multiple irregularly sampled time series of different length. Therefore, we want to apply a 

space transformation ψ: X → X′ that maps each instance xi to a fixed-size feature vector , 

while preserving the predictive temporal characteristics of xi as much as possible.

One approach to define ψ is to represent the data using a predefined set of features and their 

values (a static transformation) as in [10]. Examples of such features are “most recent 

platelet measurement”, “most recent platelet trend”, “maximum hemoglobin measurement”, 

etc. Our approach is different and we learn transformation ψ from the data using temporal 

pattern mining (a dynamic transformation). This is done by applying the following steps:

1. Convert the numeric time series variables into time interval sequences using 

temporal abstraction.

2. Mine recent temporal patterns from the time interval data.

3. Transform each instance xi into a binary indictor vector  using the patterns 

obtained in step 2.

After applying transformation ψ, we can use a standard machine learning method (e.g. 

support vector machines, decision tree, or logistic regression) on  to learn 

function f.

In the following, we explain in details each of these steps.

3. TEMPORAL ABSTRACTION PATTERNS

3.1 Temporal Abstraction

The goal of temporal abstraction [21] is to transform the numeric time series variables to a 

high-level qualitative form. More specifically, each clinical variable (e.g., series of white 

blood cell counts) is transformed into an interval-based representation 〈v1[s1, e1], …, vn[sn, 

en]〉, where vi ∈ Σ is an abstraction that holds from time si to time ei and Σ is the 

abstraction alphabet that represents a finite set of permitted abstractions.

For the EHR data, we segment all laboratory variables based on their values into the 

following abstract states: Very Low (VL), low (L), Normal (N), High (H) and Very High 

(VH), i.e., Σ = {VL, L, N, H, VH}. We use the 10th, 25th, 75th and 90th percentiles of the lab 

values to define these 5 states: a value below the 10th percentile is very low (VL), a value 

between the 10th and 25th percentiles is low (L), and so on.

3.2 Multivariate State Sequences

Let a state be an abstraction for a specific variable. We denote a state S by a pair (F, V), 

where F is a temporal variable and V ∈ Σ is an abstraction value. Let a state interval be a 

state that holds during an interval. We denote a state interval E by a 4-tuple (F, V, s, e), 
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where F is a temporal variable, V ∈ Σ is an abstraction value, and s and e are the start time 

and end time (respectively) of the state interval (E.s ≤ E.e)3. For example, assuming the time 

granularity is days, (glucose, H, 5, 10) represents high glucose values from day 5 to day 10.

After abstracting all time series variables, we represent every instance xi in the database D as 

a Multivariate State Sequence (MSS) Zi. Let Zi.end denote the end time of the instance.

For notational convenience, we represent an MSS Zi as a series of state intervals that are 

sorted according to their start times4:

Note that we do not require Ej.e to be less than Ej+1.s because the state intervals are obtained 

from different temporal variables and their intervals may overlap.

EXAMPLE 1. Figure 2 shows an MSS Zi with two temporal variables: creatinine (C) and 

glucose (G). Assuming the time granularity is days, this MSS represents 24 days of the 

patient’s record (Zi.end = 24). For instance, we can see that the creatinine values are 

normal from day 2 until day 14, then become high from day 15 until day 24. We represent Zi 

as: 〈E1 = (G, H, 1, 5), E2 = (C, N, 2, 14), E3 = (G, N, 6, 9), E4 = (G, H, 10, 13), E5 =(C, H, 

15, 24), E6 =(G, VH, 16, 23)〉.

3.3 Temporal Relations

The temporal relation between two instantaneous events (time points) can be easily 

described using three relations: before, at the same time and after. However, when the 

events have time durations (state intervals), the relations become more complex. Allen [3] 

described the temporal relation between two state intervals using 13 possible relations 

(Figure 3). But it suffices to use the following 7 relations: before, meets, overlaps, is-

finished-by, contains, starts and equals because the other relations are simply their inverses. 

Allen’s relations have been introduced in artificial intelligence for temporal reasoning and 

have been used later in the fairly young research of time interval data mining [22, 11, 17, 26, 

15].

As we can see, most of these relations require equality of one or two of the intervals’ end 

points. That is, there is only a slight difference between overlaps, is-finished-by, contains, 

starts and equals relations. When the time information in the data is noisy, which is the case 

for EHR data, using Allen’s relations may cause the problem of pattern fragmentation5 [14].

Therefore, we opt to use only two temporal relations: before (b) and co-occurs (c), which 

we define as follows:

Given two state intervals Ei and Ej:

3If E.s = E.e, state interval E corresponds to a time point.
4If two state intervals have the same start time, we sort them by their end time. If they also have the same end time, we sort them by 
lexical order (see [11]).
5Having many different temporal patterns that describe a very similar situation in the data.
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• Ei is before Ej, denoted as b(Ei, Ej), if Ei.e < Ej.s (same as Allen’s before).

• Ei co-occurs with Ej, denoted as c(Ei, Ej), if Ei.s ≤ Ej.s ≤ Ei.e. That is, Ei starts 

before Ej and there is a nonempty time period where both Ei and Ej occur. Note that 

this relation covers the following Allen’s relations: meets, overlaps, is-finished-by, 

contains, starts and equals.

3.4 Temporal Patterns

In order to obtain temporal descriptions of the data, basic states are combined using 

temporal relations to form temporal patterns (time interval patterns). In the previous section, 

we defined the relation between two states to be either before (b) or co-occurs (c). In order 

to define relations between k states, we use Höppner’s representation of temporal patterns 

[11].

DEFINITION 1. (Temporal Pattern) A temporal pattern is defined as P = (〈S1, …, Sk〉, R) where 

Si is the ith state of the pattern and R is an upper triangular matrix that defines the temporal 

relations between each state and all of its following states: i ∈ {1, …, k−1} ∧ j ∈ {i+1, …, 

k}: Ri,j ∈ {b, c} specifies the relation between Si and Sj.

The size of a temporal pattern P is the number of states it contains. If P contains k states, we 

say that P is a k-pattern. Hence, a single state is a 1-pattern (a singleton). We also denote the 

space of all temporal patterns of arbitrary size by TP.

Figure 4 shows a graphical representation of a 4-pattern 〈S1 = (C, H), S2 = (G, N), S3 = (B, 

H), S4 = (G, H)〉, where the states are abstractions of temporal variables creatinine (C), 

glucose (G) and BUN (Blood Urea Nitrogen) (B). The half matrix on the right represents the 

temporal relations between every state and the states that follow it. For example, the first 

state S1 co-occurs with the third state S3: R1,3 = c.

DEFINITION 2. Given an MSS Z = 〈 E1, E2, …, El 〉 and a temporal pattern P = (〈S1, …, Sk〉, R), 

we say that Z contains P, denoted as P ∈ Z, if there is an injective mapping π from the 

states of P to the state intervals of Z such that:

The definition says that checking whether an MSS contains a k-pattern requires: 1) matching 

all k states of the pattern and 2) checking that all k(k − 1)/2 temporal relations are satisfied. 

As an example, the MSS in Figure 2 contains the temporal pattern P = (〈 (C, N), (G, N) 〉, 

R1,2 = c) (normal creatinine co-occurs with normal glucose). To improve readability, we 

usually write 2-patterns of the form (〈S1, S2〉, R1,2) simply as S1 R1,2 S2. That is, we can 

write P =(C, N) c (G, N).
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4. MINING RECENT TEMPORAL PATTERNS

4.1 Recent Temporal Patterns

In the event detection setting, each training temporal instance xi (e.g. an electronic health 

record) is associated with class label yi at time ti (e.g. whether or not a medical condition is 

detected). Consequently, recent measurements of the variables of xi (close to ti) are usually 

more predictive than distant measurements, as was shown in [25] for clinical data. In the 

following, we present the definitions of recent state intervals and recent temporal patterns.

DEFINITION 3. Given an MSS Z = 〈 E1, E2, …, El 〉 and a maximum gap parameter g, we say 

that Ej ∈ Z is a recent state interval in Z, denoted as rg(Ej, Z), if any of the following two 

conditions are satisfied:

• ∄Ek ∈ Z: Ek.F = Ej.F ∧ k > j

• Z.end − Ej.e ≤ g

The first condition is satisfied if Ej is the most recent state interval in its variable (Ej.F) and 

the second condition is satisfied if Ej is less than g time units away from the end of the MSS 

(Z.end). Note that if g = ∞, any Ej ∈ Z is considered to be recent.

DEFINITION 4. (RTP) Given an MSS Z = 〈E1, E2, …, El〉 and a maximum gap parameter g, we 

say that temporal pattern P = (〈S1, …, Sk〉, R) is a Recent Temporal Pattern (RTP) in Z, 

denoted as Rg(P, Z), if all the following conditions are satisfied:

1. P ∈ Z with a mapping π from the states of P to the state intervals of Z

2. Sk matches a recent state interval in Z: rg(Eπ(k), Z)

3. ∀i ∈ {1, …, k − 1}, Si and Si+1 match state intervals not more than g away from 

each other: Eπ(i+1).s−Eπ(i).e ≤ g

The definition says that in order for temporal pattern P to be an RTP in MSS Z, 1) P should 

be contained in Z (Definition 2), 2) the last state of P should map to a recent state interval in 

Z (Definition 3), and 3) any pair of consecutive states in P should map to state intervals that 

are “close to each other”. This forces the pattern to be close to the end of Z and to have a 

limited temporal extension in the past. Note that g is a parameter that specifies the 

restrictiveness of the RTP definition. If g = ∞, any pattern P ∈ Z would be considered to be 

an RTP in Z. When an RTP contains k states, we call it a k-RTP.

EXAMPLE 2. Let Zi be the MSS in Figure 2 and let the maximum gap parameter be g = 5 days. 

Temporal pattern P1 = (C, N) b (G, VH) is an RTP in Zi because P1 ∈ Zi, (G, VH, 16, 23) is 

a recent state interval in Zi, and (C, N, 2, 14) is “close to” (G, VH, 16, 23) (16−14 ≤ g). On 

the other hand, P2 = (G, H) b (G, N) is not an RTP in Zi because (G, N, 6, 9) is not a recent 

state interval.

DEFINITION 5. (Suffix) Given temporal patterns P = (〈S1, …, Sk1〉, R) and 

 with k1 ≤ k2, we say that P is a suffix subpattern of P′, denoted as 

Suffix(P, P ′), if:
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If P is a suffix subpattern of P′, we say that P′ is a backward-extension superpattern of P.

PROPOSITION 1. Given an MSS Z and temporal patterns P and P′, Rg(P′, Z) ∧ Suffix(P, P′) ⇒ 

Rg(P, Z)

The proof directly follows from Definition 4.

EXAMPLE 3. Assume that P = (〈S1, S2, S3〉, R1,2, R1,3, R2,3) is an RTP in Z. Proposition 1 says 

that its suffix subpattern (〈S2, S3〉, R2,3) must also be an RTP in Z. However, this does not 

imply that (〈S1, S2〉, R1,2) must be an RTP (the second condition of Definition 4 may be 

violated) nor that (〈S1, S3〉, R1,3) must be an RTP (the third condition of Definition 4 may be 

violated).

DEFINITION 6. (Frequent RTP) Given a dataset D of MSS, a maximum gap parameter g and a 

minimum support threshold σ, we define the support of an RTP P as RTP-supg(P, D) = | 

{Zi : Zi ∈ D ∧ Rg(P, Zi)} |. We say that P is a frequent RTP in D given σ if RTP-supg(P, D) 

≥ σ.

Note that Proposition 1 implies the following property of RTP-sup, which we will use in our 

algorithm for mining frequent RTPs.

4.2 The Mining Algorithm

In this section, we present the algorithm for mining frequent RTPs. We chose to utilize the 

class information and mine frequent RTPs from each class label separately using local 

minimum supports as opposed to mining frequent RTPs from the entire data using a single 

global minimum support. The approach is reasonable when pattern mining is applied in the 

supervised setting because 1) for unbalanced data, mining frequent patterns using a global 

minimum support threshold may result in missing many important patterns in the rare 

classes and 2) mining patterns that are frequent in one of the classes (hence potentially 

predictive for that class) is more efficient than mining patterns that are globally frequent.

The algorithm takes as input Dy: the MSS from class y, g: the maximum gap parameter and 

σy: the local minimum support threshold for class y. It outputs all temporal patterns that 

satisfy:

The mining algorithm performs a level-wise search. It first scans the database to find all 

frequent 1-RTPs (recent states). Then it extends the patterns backward in time to find more 
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complex temporal patterns. For each level k, the algorithm performs the following two 

phases to obtain the frequent (k+1)-RTPs:

1. The candidate generation phase: Generate candidate (k+1)-patterns by extending 

frequent k-RTPs backward in time.

2. The counting phase: Obtain the frequent (k+1)-RTPs by removing the candidates 

with RTP-sup less than σy.

This process repeats until no more frequent RTPs can be found.

In the following, we describe in details the candidate generation algorithm. Then we 

proposed techniques to improve the efficiency of candidate generation and counting.

4.2.1 Backward Candidate Generation—We generate a candidate (k+1)-pattern by 

appending a new state (1-pattern) to the beginning of a frequent k-RTP. Let us assume that 

we are backward extending pattern P =(〈S1, …, Sk〉, R) with state Snew to generate 

candidates of the form . First of all, we set ,  for i ∈ 

{1, …, k} and  for i ∈ {1, …, k − 1} ∧ j ∈ {i + 1, …, k}. This way, we know 

that every candidate P′ of this form is a backward-extension superpattern of P: Suffix(P, P′).

In order to fully define a candidate, we still need to specify the temporal relations between 

the new state  and states , i.e., we should define  for i ∈ {2, …, k + 1}. 

Since we have two possible temporal relations (before and co-occurs), there are 2k possible 

ways to specify the missing relations, resulting in 2k different candidates. Let L denote all 

possible states and let Fk denote all frequent k-RTPs, generating the (k+1)-candidates 

naively in this fashion results in 2k × |L| × |Fk| different candidates.

This large number of candidates makes the mining algorithm computationally very 

expensive and limits its scalability. Below, we describe the concept of incoherent patterns 

and introduce a method that generates fewer candidates without missing any real pattern 

from the mining results.

4.2.2 Improving the Efficiency of Candidate Generation—DEFINITION 7. A temporal 

pattern P is incoherent if there does not exist any valid MSS that contains P.

Clearly, we do not have to generate and count incoherent candidates because we know that 

they will have zero support in the data. We introduce the following two lemmas to avoid 

generating incoherent candidates when specifying the relations  in 

candidates of the form .

LEMMA 1.  is incoherent if  and 

.
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Two state intervals from the same temporal variable cannot co-occur because temporal 

abstraction segments each variable into non-overlapping state intervals.

LEMMA 2.  is incoherent if 

.

PROOF. Let us assume that there exists an MSS Z = 〈E1, …, El〉 where P′ ∈ Z. Let π be the 

mapping from the states of P′ to the state intervals of Z. The definition of temporal patterns 

and the fact that state intervals in Z are ordered by their start values implies that the 

matching state intervals 〈Eπ(1), …, Eπ(k+1)〉 are also ordered by their start times: Eπ(1).s ≤ … 

≤ Eπ(k+1).s. Hence, Eπ(j).s ≤ Eπ(i).s since j < i. We also know that Eπ(1).e < Eπ(j).s because 

. Therefore, Eπ(1).e < Eπ(i).s. However, since , then Eπ(1).e ≥ Eπ(i).s, which is a 

contradiction. Therefore, there is no MSS that contains P′.

EXAMPLE 4. Assume we want to extend P = (〈S1 = (C, H), S2 = (G, N), S3 = (B, H), S4 = (G, 

H)〉, R) in Figure 4 with state Snew = (G, H) to generate candidates of the form 

. The relation 

between  and  is allowed to be either before or co-occurs:  or . However, 

according to Lemma 1,  because both  and  belong to the same temporal 

variable (G), which in turn implies that  and  according to Lemma 2. By 

removing incoherent patterns, we reduce the number of candidates that result from adding 

(G, H) to 4-RTP P from 24 = 16 to only 2.

THEOREM 1. There are at most k + 1 coherent candidates that result from backward extending a 

single k-RTP with a new state.

PROOF. We know that every candidate  corresponds to a specific 

assignment of  for i ∈ {2, …k + 1}. When we assign the temporal relations, 

once a relation becomes before, all the following relations have to be before as well 

according to Lemma 2. We can see that the relations can be co-occurs in the beginning of 

the pattern, but once we see a before relation at point q ∈ {2, …, k + 1} in the pattern, all 

subsequent relations (i>q) should be before as well:

Therefore, the total number of coherent candidates cannot be more than k + 1, which is the 

total number of different combinations of consecutive co-occurs relations followed by 

consecutive before relations.

In some cases, the number of coherent candidates is less than k + 1. Assume that there are 

some states in P′ that belong to the same variable as state . Let  be the first such state (j 
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≤ k + 1). According to Lemma 1, . In this case, the number of coherent candidates is 

j−1 < k+1.

Algorithm 1 illustrates how to extend a k-RTP P with a new state Snew to generate coherent 

candidates (without violating Lemmas 1 and 2).

ALGORITHM 1

Extend backward a k-RTP P with a state Snew.

COROLLARY 1. Let L denote all possible states and let Fk denote all frequent k-RTPs. The 

number of coherent (k+1)-candidates is always less or equal to (k + 1) × |L| × |Fk|.

4.2.3 Improving the Efficiency of Counting—Even after eliminating incoherent 

patterns, the mining algorithm is still computationally expensive because for every 

candidate, we need to scan the entire database in the counting phase to determine its RTP-

sup. The question we try to answer in this section is whether we can omit portions of the 

database that are guaranteed not to contain the candidate we want to count. The proposed 

solution is inspired by [32] that introduced the vertical format for itemset mining and later 

applied it for sequential pattern mining [31].

Let us associate every frequent RTP P with a list of identifiers for all MSS that have P as an 

RTP (Definition 4):

Clearly, RTP-supg(P, Dy) = |P.RTP-list|.

Let us also associate every state S with a list of identifiers for all MSS that contain S 

(Definition 2):
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Now, when we generate candidate P′ by backward extending RTP P with state S, we define 

the potential list (p-RTP-list) of P′ as follows:

PROPOSITION 2. Let P′ be a backward-extension of RTP P with state S: P′.RTP-list ⊆ P′.p-RTP-

list

PROOF. Assume Zi is an MSS such that Rg(P′, Zi). By definition, i ∈ P′.RTP-list. We know 

that Rg(P′, Zi) ⇒ P′ ∈ Zi ⇒ S ∈ Zi ⇒ i ∈ S.list. Also, we know that Suffix(P, P ′) (Definition 

5) ⇒ Rg(P, Zi) (Proposition 1) ⇒ i ∈ P.RTP-list. Therefore, i∈P.RTP-list ∩ S.list = P′.p-

RTP-list

Putting it all together, we compute the RTP-lists in the counting phase (based on the true 

matches) and the p-RTP-lists in the candidate generation phase. The key idea is that when 

we count candidate P′, we only need to check the instances in its p-RTP-list because 

according to Proposition 2: i ∉ P′.p-RTP-list ⇒ i ∉ P′.RTP-list ⇒ P′ is not an RTP in Zi. 

This offers a lot of computational savings because the p-RTP-lists get smaller as the size of 

the patterns increases, making the counting phase much faster.

Algorithm 2 outlines the candidate generation. Line 4 generates coherent candidates using 

Algorithm 1. Line 6 computes the p-RTP-list for each candidate. Note that the cost of the 

intersection is linear because the lists are always sorted according to the order of the 

instances in the database. Line 7 applies an additional pruning to remove candidates that are 

guaranteed not to be frequent according to the following implication of Proposition 2:
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ALGORITHM 2

A high-level description of candidate generation.

4.3 Learning the Classifier

In this section, we summarize our approach for learning classification models for event 

detection problems. Given a training dataset , where xi is a multivariate time 

series instance up to time ti and yi is a class label at ti, apply the following steps:

1. Convert every instance xi to an MSS Zi using temporal abstraction.

2. Mine the frequent RTPs from the MSS of each class label separately and combine 

the class-specific RTPs to obtain the final result Ω.

3. Convert every MSS Zi into a binary vector  of size equal to |Ω|, where 

corresponds to a specific pattern Pj ∈ Ω and its value is 1 if Rg(Pj, Zi); and 0 

otherwise.

4. Learn the classification model on the transformed binary representation of the 

training data .

5. EXPERIMENTAL EVALUATION

In this section, we present our experiments on large-scale electronic health record (EHR) 

data collected for diabetic patients. We test our approach on the problem of detecting 

various types of disorders that are frequently associated with diabetes.

5.1 Dataset

The diabetes dataset consists of 13,558 records of adult diabetic patients (both type I and 

type II diabetes). Each patient’s record consists of time series of 19 different lab values, 

including blood glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen, liver 

function tests, cholesterol, etc. In addition, we have access to time series of ICD-9 diagnosis 
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codes reflecting the diagnoses made for the patient over time. Overall, the database contains 

602 different ICD-9 codes. These codes were grouped by our medical expert into nine major 

categories: cardiovascular disease, renal disease, peripheral vascular disease, neurological 

disease, metabolic disease, inflammatory disease, ocular disease, cerebrovascular disease 

and hypertension. These disease categories are frequently associated with diabetes. Our 

objective is to learn models that are able to accurately diagnose these diseases. More 

specifically, at any point in time, we are interested in assigning a label for the disorder the 

patient with the diabetes suffers from. We omit the hypertension category from the analysis 

because it occurred in almost all patients, making it difficult to find negative examples.

5.2 Experimental Setup

The experiments are performed separately for each of the 8 major diagnosis categories 

(diseases). For each category, we divide the data into cases (positives) and controls 

(negatives) as follows:

• The cases are records of patients with the target disease that include clinical 

variables up to the time the disease was first diagnosed.

• The controls are selected randomly from the remaining patients (without the target 

disease) and they include clinical variables up to a randomly selected time point in 

the patient’s record.

To avoid having uninformative training data, we discard instances that contain less than 10 

lab measurements or that span less than 3 months (short instances). We choose the same 

number of controls as the number of cases for each category to make the datasets balanced. 

Table 1 shows the number of cases for each diagnosis category (the number of controls is 

the same).

To construct the features, we consider both the laboratory tests and the diagnosis codes. 

Note that the diagnosis of one or more disease categories may be predictive of the (first) 

occurrence of another disease, so it is important to include them as features. Laboratory tests 

are represented as numeric time series. We abstract them using value abstraction (see 

Section 3.1). Diagnosis categories, when used as features, are represented as intervals that 

start at the time of the diagnosis and extend until the end of the record.

5.3 Classification Performance

In this section, we test the ability of our RTP mining framework to represent and capture 

temporal patterns important for the prediction task. In particular, we compare the 

classification performance of the following feature construction methods:

1. Last_values: The features are formed from the most recent values of each clinical 

variable6.

2. TP: The features correspond to all frequent temporal patterns.

6The features are numeric for the laboratory variables (e.g., last creatinine value is 2.2) and binary for the disease categories (whether 
or not the disease was diagnosed).
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3. TP_sparse: The features correspond to the top 50 discriminative temporal patterns 

that are selected using a sparse linear model. These features are obtained by 

adjusting the cost parameter of an L1 regularized support vector machine (SVM) 

classifier until at most 50 patterns are used for classification (features 

corresponding to other patterns are zeroed out).

4. RTP: The features correspond to all frequent RTPs.

5. RTP_sparse: The features correspond to the top 50 discriminative RTPs that are 

selected using a sparse linear model (similar to 3).

The first method is atemporal and only considers the most recent values for defining the 

classification features (a static transformation). On the other hand, methods (2-5) use 

temporal patterns (built using temporal abstractions and temporal relations) as their features 

(a dynamic transformation). For TP (TP_sparse), the feature value is one if the 

corresponding temporal pattern occurs anywhere in the instance (Definition 2), and zero 

otherwise. For RTP (RTP_sparse), the feature value is one if the corresponding temporal 

pattern occurs recently in the instance (Definition 3), and zero otherwise.

For methods (2-5), we set the local minimum supports (σy) to 15% of the number of 

instances in the class. For the RTP mining methods (4-5), we set the maximum gap 

parameter (g) to 6 months. The reason for including methods 3 and 5 is to test the ability of 

TP and RTP to represent the target disease using only a limited number of temporal patterns 

(50 patterns in our case).

We judged the quality of the different feature representations in terms of their induced 

classification performance. More specifically, we use the features extracted by each method 

to build a linear SVM classifier and evaluate its performance using the classification 

accuracy and the area under the ROC curve (AUC). We did not compare against other time 

series classification methods because most methods [24, 6, 28, 4] cannot be directly applied 

on multivariate irregularly sampled time series data.

Below, we show the classification accuracy (Table 2) and the AUC (Table 3) for each 

feature representation method on each classification task (major disease). All classification 

results are reported using averages obtained via 10-folds cross validation.

The results show that features based on temporal patterns are beneficial for the classification 

task, since they outperform features based on most recent values (see for example the 

NEURO, OCLUR and CARDI datasets). The results also show that RTP and RTP_sparse 

mostly outperform TP and TP_sparse. It is important to note that although patterns 

generated by TP subsume the ones generated by RTP (by definition, every frequent RTP is 

also a frequent TP), the induced binary features are often different. For instance, a pattern 

that is not discriminative when considered in the entire records may become more 

discriminative when considered as a recent pattern. This can be seen clearly for the RENAL 

dataset, where TP and TP_sparse perform poorly because the discriminative signal is mostly 

contained in the recent values.
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5.4 Knowledge Discovery

Figure 5 compares the number of temporal patterns that are extracted by frequent temporal 

pattern mining (TP) and by frequent RTP mining (RTP). Similar to the previous setting, we 

set the local minimum supports for both methods to 15% and we set the maximum gap 

parameter for RTP to 6 months.

The results show that the number of temporal patterns mined by RTP is at least an order of 

magnitude smaller than the number of patterns mined by TP for all datasets. This can 

facilitate the process of reviewing and validating the patterns by human experts.

Table 4 shows some of the top predictive RTPs according to their precision (confidence)7. 

The first three RTPs (P1, P2 and P3) are predicting renal (kidney) disease. These patterns 

relate the risk of renal problems with very high values of the BUN test (P1), an increase in 

creatinine levels from normal to high (P2), and high values of BUN co-occurring with high 

values of creatinine (P3). P4 shows that an increase in glucose levels from high to very high 

may indicate a metabolic disease. Finally, P5 indicates that patients who were previously 

diagnosed with cardiovascular disease and exhibit an increase in glucose levels are prone to 

develop a cerebrovascular disease. These patterns, extracted automatically from data without 

incorporating prior clinical knowledge, are in accordance with the medical diagnosis 

guidelines.

5.5 Mining Efficiency

In this section, we study the efficiency of different temporal pattern mining methods. In 

particular, we compare the running time of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending the Apriori algorithm 

[1, 2] to the time interval domain. This method applies the Apriori pruning in the 

candidate generation phase to prune any candidate k-pattern if it contains an 

infrequent (k-1)-patterns.

2. RTP_no-lists: Mine frequent RTPs backward in time as described in this paper. 

However, this method does not apply the technique we propose in Section 4.2.3 to 

speed up the counting phase. This means that it scans the entire dataset for each 

candidate in order to compute its RTP-sup.

3. TP_lists: Mine frequent temporal patterns by extending the vertical format [32, 31] 

to the time interval domain as described in [5]. This method applies the Apriori 

pruning [1] in candidate generation and use id-lists to speed up the counting.

4. RTP_lists: Our proposed method for mining frequent RTPs.

To make the comparison fair, all methods apply the techniques we propose in Section 4.2.2 

to avoid generating incoherent candidates. Note that if we do not remove incoherent 

candidates, the execution time for all methods greatly increases.

7Most of the highest precision RTPs are predicting the RENAL category because it is the easiest prediction task. So to diversify the 
patterns, we show the top 3 predictive RTPs for RENAL and the top 2 predictive RTPs for other categories.
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The experiments are conducted on a Dell PowerEdge R610 server with an Intel Xeon 

3.3GHz CPU and 96GB of RAM. Similar to the previous settings, we set the local minimum 

supports to 15% and the maximum gap parameter to 6 months (unless stated otherwise).

Figure 6 shows the execution time (in seconds) of the above methods on all major diagnosis 

datasets. We can see that our proposed RTP_lists method is much more efficient the other 

methods. For instance, on the INFLM dataset, RTP_lists is around 5 times faster than 

TP_lists, 10 times faster than RTP_no-lists and 30 times faster than TP_Apriori.

Figure 7 compares the execution time (in seconds) of the methods on the CARDI dataset for 

different minimum support thresholds. Note that the difference in the execution time 

between RTP_lists and the other methods becomes larger when the minimum support is low 

(10%).

Finally, let us examine the effect of the maximum gap parameter (g) on the efficiency of 

recent temporal pattern mining. Figure 8 shows the execution time (in seconds) of all 

methods on the CARDI dataset for different values of g (the execution time of TP_Apriori 

and TP_lists does not depend of g).

Clearly, the execution time of both RTP_no-lists and RTP_lists increases with g because the 

search space becomes larger (more temporal patterns become RTPs). The figure shows that 

when the maximum gap is 21 months, RTP_no-lists becomes slower than TP_Apriori. The 

reason is that for large values of g, applying the Apriori pruning [1] in candidate generation 

becomes more efficient (generates less candidates) than the backward extension of temporal 

patterns (see Example 3). On the other hand, RTP_lists increases much slower with g and 

maintains its efficiency advantage over TP_lists for larger values of g.

6. CONCLUSION

The increasing availability of large temporal datasets prompts the development of scalable 

and more efficient temporal pattern mining techniques. Methods for mining sequential 

(time-point) data were first introduced in the literature starting in the mid-1990 [2, 31, 18, 

30]. Since then, these methods have been extended to mining time interval data [22, 11, 17, 

14, 26, 27, 15]. Unfortunately, mining the entire set of temporal patterns (sequential patterns 

or time-interval patterns) from large-scale datasets is inherently a computationally expensive 

task. To alleviate this problem, temporal constraints (e.g., restricting the total pattern 

duration or restricting the permitted gap between consecutive events in a pattern) have been 

proposed to scale up the mining [19].

In this paper, we proposed a new class of temporal constraints for finding Recent Temporal 

Patterns (RTPs), which are particularly important for monitoring and event detection 

problems. We presented an efficient algorithm that mines time-interval patterns backward in 

time, starting from patterns related to the most recent observations. Our experimental 

evaluation on EHRs for diabetes patients showed that the RTP framework is very useful to 

efficiently find patterns that are important for predicting various types of disorders 

associated with diabetes.
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Figure 1. An example of an EHR data instance with three temporal variables. The black dots 
represent their values over time
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Figure 2. An MSS representing 24 days of a patient record. In this example, there are two 
temporal variables (creatinine and glucose)
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Figure 3. Allen’s temporal relations
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Figure 4. A temporal pattern with states 〈(C, H), (G, N), (B, H), (G, H)〉 and temporal relations 
R1,2 = c, R1,3 = c, R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c
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Figure 5. The number of temporal patterns of TP and RTP on all major diagnosis datasets 
(minimum support is 15%)
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Figure 6. The mining time (in seconds) of TP_Apriori, RTP_no-lists, TP_lists and RTP_lists on all 
major diagnosis datasets (minimum support is 15%)
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Figure 7. The mining time (in seconds) of TP_Apriori, RTP_no-lists, TP_lists and RTP_lists on the 
CARDI dataset for different minimum support values
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Figure 8. The mining time (in seconds) of TP_Apriori, RTP_no-list, TP_lists and RTP_lists on the 
CARDI dataset for different maximum gap values (in months). The minimum support is 15%
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Table 1
The eight major diagnosis categories (diseases) used in the diabetes study and the number 
of cases for each category. The number of controls is set to be the same as the number of 
cases

Dx code Description # cases

CARDI Cardiovascular disease 2,743

RENAL Renal disease 3,355

PERIP Peripheral vascular disease 3,370

NEURO Neurological disease 2,193

METAB Metabolic disease 968

INFLM Inflammatory (infectious) disease 2,394

OCULR Ocular (ophthalmologic) disease 2,245

CEREB Cerebrovascular disease 2,824
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Table 2
The classification accuracy for the different feature representation methods (SVM is used 
for classification)

Dataset Last_values TP TP_sparse RTP RTP_sparse

CARDI 67.41 71.82 71.62 71.82 71.98

RENAL 77.71 76.38 76.66 78.08 78.33

PERIP 66.82 68.55 68.38 70.01 69.91

NEURO 64.66 68.95 68.33 69.18 69.68

METAB 72.83 74.64 73.61 73.3 73.09

INFLM 64.6 66.73 66.69 67.5 67.94

OCULR 65.83 70.8 70.71 68.82 69.22

CEREB 65.21 66.64 66.7 67.93 66.98
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Table 3
The area under the ROC curve (AUC) for the different feature representationmethods 
(SVM is used for classification)

Dataset Last_values TP TP_sparse RTP RTP_sparse

CARDI 75.1 80.13 79.61 80.18 80.52

RENAL 85.45 84.8 84.97 86.13 86.23

PERIP 74.38 76.08 75.95 77.88 78.31

NEURO 72.25 76.43 75.81 77.34 76.98

METAB 80.64 82.67 81.66 82.52 82.97

INFLM 71.04 73.62 73.43 74.39 74.92

OCULR 72.12 78.34 78.28 76.11 76.85

CEREB 72.23 73.46 74.42 75.37 75.18
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Table 4
Predictive RTPs with their precision (prec) and recall

RTP prec recall

P1: BUN=VH ⇒ Dx=RENAL 0.97 0.17

P2: Creat=N before Creat=H ⇒ Dx=RENAL 0.96 0.21

P3: BUN=H co-occurs Creat=H ⇒ Dx=RENAL 0.95 0.21

P4: Gluc=H before Gluc=VH ⇒ Dx=METAB 0.79 0.24

P5: Dx=CARDI co-occurs ( Gluc=N before
 Gluc=H) ⇒ Dx=CEREB 0.71 0.22

Abbreviations: Dx: diagnosis code (one of the 8 major categories in Table 1); BUN: Blood Urea Nitrogen; Creat: creatinine; Gluc: blood 
glucose. Abstractions: BUN=VH:> 49 mg/dl; BUN=H:> 34 mg/dl; Creat=H: > 1.8 mg/dl; Creat=N: [0.8-1.8] mg/dl; Gluc=VH: > 243 mg/dl; 
Gluc=H:>191 mg/dl.
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