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Abstract

The range of defects that fall within fetal alcohol spectrum disorder (FASD) includes persistent 

behavioral problems, with anxiety and depression being two of the more commonly reported 

issues. Previous studies of rodent FASD models suggest that interference with hypothalamic-

pituitary-adrenal (HPA) axis structure and/or function may be the basis for some of the prenatal 

alcohol (ethanol) exposure (PAE)-induced behavioral abnormalities. Included among the previous 

investigations are those illustrating that maternal alcohol treatment limited to very early stages of 

pregnancy (i.e., gestational day [GD]7 in mice; equivalent to the third week post-fertilization in 

humans) can cause structural abnormalities in areas such as the hypothalamus, pituitary gland, and 

other forebrain regions integral to controlling stress and behavioral responses. The current 

investigation was designed to further examine the sequelae of prenatal alcohol insult at this early 

time period, with particular attention to HPA axis-associated functional changes in adult mice. The 

results of this study reveal that GD7 PAE in mice causes HPA axis dysfunction, with males and 

females showing elevated corticosterone (CORT) and adrenocorticotropic hormone (ACTH) 

levels, respectively, following a 15-min restraint stress exposure. Males also showed elevated 

CORT levels following an acute alcohol injection of 2.0 g/kg, while females displayed blunted 

ACTH levels. Furthermore, analysis showed that anxiety-like behavior was decreased after GD7 

PAE in female mice, but was increased in male mice. Collectively, the results of this study show 

that early gestational alcohol exposure in mice alters long-term HPA axis activity and behavior in 

a sexually dimorphic manner.
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Introduction

Alcohol use during pregnancy is one of the leading known causes of birth defects (Riley, 

Infante, & Warren, 2011), and therefore, represents a major health concern. Current 

estimates on the prevalence of Fetal Alcohol Syndrome (FAS) in the United States’ general 

population range from 0.2 to 7 per 1,000 live births (May et al., 2009). FAS is characterized 

by clear morphological changes and functional deficits, and represents the extreme end of 

the spectrum that can result from prenatal alcohol exposure (PAE). A recent addition to 

DSM-5, Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE), 

encompasses many of the same functional deficits but can be diagnosed in the absence or 

presence of any physical abnormalities. Both fall within Fetal Alcohol Spectrum Disorder 

(FASD), an umbrella term that describes the full spectrum of deficits that can occur 

following PAE, which has a prevalence of 2–5% in the United States (May et al., 2009). 

Based on longitudinal studies, an alarming proportion of individuals who are exposed 

prenatally to alcohol develop a range of mental health disturbances, with several studies 

finding the prevalence to be 90% or greater (Rasmussen, Andrew, Zwaigenbaum, & Tough, 

2008; Streissguth, Barr, Kogan, & Bookstein, 1996). Anxiety and depression, the more 

common of these problems, occur at higher rates than those found in the general population; 

rates of occurrence in prenatal alcohol-exposed individuals compared to the general 

population are 29% vs. 17% for anxiety (Barr et al., 2006; Somers, Goldner, Waraich, & 

Hsu, 2006) and 52% vs. 21% for depression (Cryan, Markou, & Lucki, 2002; Streissguth et 

al., 1996). The behavioral abnormalities in FASD are typically apparent in childhood (Fryer, 

McGee, Matt, Riley, & Mattson, 2007; O’Connor & Kasari, 2000; O’Connor et al., 2002; 

Steinhausen, Willms, Metzke, & Spohr, 2003) and often persist into adulthood (Barr et al., 

2006; Famy, Streissguth, & Unis, 1998).

Of particular interest for the current study is the association of anxiety and depression with 

altered hypothalamic-pituitary-adrenal (HPA) axis activity (Burke, Davis, Otte, & Mohr, 

2005; Nemeroff et al., 1984; Vreeburg et al., 2009; Wingenfeld & Wolf, 2011; Young, 

Abelson, & Cameron, 2004). Notably, the literature suggests that normalization of HPA axis 

dysregulation is a prerequisite for successful and persistent remission of these behavioral 

problems (Appelhof et al., 2006; Schüle, Baghai, Eser, & Rupprecht, 2009; Zobel et al., 

2001). Overall, HPA axis dysfunction can be a risk factor for HPA axis-related pathologies 

such as depression, anxiety, and alcoholism, particularly when it has been induced by early 

life adversity (De Bellis, 2002; Gordon, 2002; Macrì, Spinelli, Adriani, Dee Higley, & 

Laviola, 2007). Direct clinical evidence of PAE-mediated alterations in the HPA axis has 

been reported with infants as young as 5 months showing increased cortisol responsiveness 

to stress (Haley, Handmaker, & Lowe, 2006; Jacobson, Bihun, & Chiodo, 1999). Thus, these 

HPA axis-associated consequences present early in life may contribute to the increase in 

later life mental health issues.
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Not only do clinical studies show functional deficits, they also reveal structural deficiencies 

in the pituitary or hypothalamus after PAE. An investigation directly examining 

morphological consequences of PAE showed abnormal development of the hypothalamus of 

both fetuses and children (Peiffer, Majewski, Fischbach, Bierich, & Volk, 1979). While the 

exact period of alcohol exposure in the previous study is unknown, an anatomical report 

looking at a 2.5-month-old girl exposed to first-trimester maternal binge alcohol abuse 

showed absence of the posterior pituitary, an enlarged and bulbous hypothalamus, and 

pituitary hormone deficiency (Coulter, Leech, Schaefer, Scheithauer, & Brumback, 1993). 

To date, such clinical research has mainly focused on heavy alcohol exposure for extended 

periods of time, leaving it unclear whether exposures that are more limited can lead to HPA 

axis dysfunction along with increased anxiety or depression.

While human research cannot readily delineate critical alcohol exposure times or the pattern 

and amount of maternal alcohol consumption necessary for structural and functional 

teratogenesis, animal models have proven invaluable in this regard. As seen in clinical 

studies, animal research employing models with low to moderate alcohol exposure 

throughout gestation suggests that even low levels of PAE lead to HPA dysfunction, which 

in turn contributes to behavioral abnormalities. Exemplary are reports describing the impact 

of PAE on fetal programming of the HPA axis response to stressors (Hellemans, Sliwowska, 

Verma, & Weinberg, 2010; Kim, Turnbull, Lee, & Rivier, 1999; Ogilvie & Rivier, 1997; 

Weinberg, Sliwowska, Lan, & Hellemans, 2008; Weinberg, Taylor, & Gianoulakis, 1996). 

Both rodents (Kim, Giberson, Yu, Zoeller, & Weinberg, 1999; Lee, Imaki, Vale, & Rivier, 

1990; Nelson et al., 1986; Taylor, Branch, Liu, & Kokka, 1982; Weinberg, 1992) and 

primates (Schneider, Moore, Kraemer, Roberts, & DeJesus, 2002) exposed prenatally to 

alcohol display enhanced HPA axis reactivity to multiple types of stressors, including 

morphine administration, restraint stress, footshock, cardiac puncture, and cold stress. 

Furthermore, an overall increase in depression-like symptoms as measured on the forced 

swim task (Carneiro et al., 2005; Hellemans, Verma, et al., 2010; Wilcoxon, Kuo, 

Disterhoft, & Redei, 2005) and anxiety-like behavior as measured on the elevated plus maze 

(Carneiro et al., 2005; Dursun, Jakubowska-Doğru, & Uzbay, 2006; Liang et al., 2014) was 

found in rats. These changes in anxiety-like behavior can be directly linked to changes in 

HPA axis activity, as evidenced by increased corticosterone (CORT) levels after testing on 

the elevated plus maze or open field in prenatal alcohol-exposed females, but not males 

(Hellemans, Verma, Yoon, Yu, & Weinberg, 2008; Osborn, Kim, Steiger, & Weinberg, 

1998). Importantly, the above findings highlight a role for sex in influencing alcohol’s 

teratogenic outcome and illustrate the importance of study designs that analyze both sexes.

The PAE animal models described above suggest consistent functional changes with alcohol 

exposure throughout gestation. However, acute, binge-like exposures have the advantage of 

targeting critical and precisely timed developmental events. This is especially important 

early in gestation, when developmental changes occur rapidly. Strongly supporting the 

potential of early, binge-like gestational insult to adversely affect the HPA axis are 

morphological studies showing that PAE limited to gestational day (GD)7 in mice 

(developmentally equivalent to the mid-third week post-fertilization in humans) can result in 

structural abnormalities of the pituitary gland as well as third ventricular enlargement, the 
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latter of which may reflect hypothalamic deficiency (Godin et al., 2010; Lipinski et al., 

2012).

The current study expands upon this previous anatomical work following an early 

gestational, binge-like exposure in mice to assess the functional deficits that occur at this 

period. The hypothesis tested was that early PAE would have lasting consequences on the 

sensitivity and activity of the HPA axis, that these would alter the expression of behaviors 

related to anxiety and depression, and that males and females would differ in both of these 

physiological and behavioral measurements. For this purpose, HPA axis activity was 

measured by CORT and adrenocorticotropic hormone (ACTH) levels following exposure to 

two differing stressors (restraint and alcohol injection), and affective behavior was measured 

in the elevated plus maze, light-dark chamber, and forced swim test.

Methods

Animal care and prenatal alcohol treatment

C57Bl/6J mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed 

on a 12-h/12-h light/dark cycle (lights on at 7:00 AM) with ad libitum access to standard 

rodent chow (Isopro RMH 3000; Purina, St. Louis, MO) and water. Timed pregnancies were 

established by housing two female mice with one male mouse for a period of 1–2 h. GD0, 0 

hour, was defined as the beginning of the breeding period in which a copulation plug was 

detected. Pregnant dams were administered two intra-peritoneal (i.p.) injections of 25% 

(v/v) ethanol in a vehicle of lactated Ringer’s solution (offspring defined as GD7 Alc) at a 

dosage of 2.9 g/kg, given 4 h apart starting on GD7, 0 hour. Control mice were injected 

similarly with vehicle alone (offspring defined as GD7 Con) to control for the stress of 

injection. Blood alcohol concentrations resulting from this PAE procedure have been 

previously reported, with the peak reaching approximately 420 mg/dL 30 min after the 

second alcohol injection (Godin et al., 2010; Kotch & Sulik, 1992).

A total of 102 litters were used for all the experiments. An approximately equal proportion 

of GD7 Con and GD7 Alc litters were used for all experiments. Litters were culled to a 

maximum of 8 pups. There were no significant differences in litter size (average size 

approximately 6 pups/litter) or the number of pups that survived into adulthood between 

those that were alcohol- or vehicle-treated. All offspring, both male and female, were 

weaned at 28 (± 1) days and used at 2–4 months for the studies outlined below. The unit of 

determination for each study was the number of individual mice. For the HPA axis 

experiments, 1–2 mice/litter/sex were randomly assigned to each time point. For the 

behavioral experiments, 1–2 mice/litter/sex were randomly assigned to either the anxiety or 

depression tests. All experiments were conducted between 8:30 AM–1:00 PM. The 

experiments were in accordance with National Institutes of Health guidelines and approved 

by the Animal Care and Use Committee at the University of North Carolina at Chapel Hill.

Stress Procedures

Restraint stress and blood collection—Mice were subjected to 5 or 15 min of 

restraint stress using a plastic cone with openings at both ends to allow sufficient airflow 
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during restraint (Decapicone; Braintree Scientific, Inc., Braintree, MA). Following restraint, 

trunk blood was collected for subsequent hormonal analyses. So that all hormone levels 

were measured at the same time relative to the initiation of restraint, blood was taken 10 min 

after the end of the 5-min restraint and immediately following the 15-min restraint. Trunk 

blood was also collected in separate mice 60 or 90 min after the end of the 15-min restraint 

period. For control samples, trunk blood was collected from mice that were undisturbed until 

blood collection. Baseline samples collected during both stress procedures (restraint and 

alcohol injection) were combined for analysis. Litter total = 31; male (n’s) = baseline (13–

17), 5 min (7–11), 15 min (4–7), 60 min (4–7), 90 min (3–6); female (n’s) = baseline (12–

17), 5 min (7–9), 15 min (5–7), 60 min (5–7), 90 min (4–7).

Acute alcohol injection and blood alcohol concentration measurements—Mice 

were administered an i.p. injection of 25% (v/v) ethanol in lactated Ringer’s solution at a 

dosage of 2.0 g/kg. Trunk blood was collected 20, 60, or 120 min after injection for 

hormone and blood alcohol concentration (BAC) analysis. BACs were determined from 

plasma samples using an Analox Alcohol Analyzer (Model AM1; Analox Instruments USA, 

Inc., Lunenburg, MA). Litter total = 35; male (n’s) = 20 min (7–8), 60 min (4–6), 90 min (6–

8); female (n’s) = 20 min (6–7), 60 min (7–8), 90 min (8).

Radioimmunoassay—From the blood collected for both stress procedures, I125 

radioimmunoassay kits (MP Biomedicals, Costa Mesa, CA) were used to measure CORT 

and ACTH levels. Total binding was determined in the absence of unlabeled CORT or 

ACTH, and non-specific binding was determined in the absence of antibody. Steroid levels 

in the samples were extrapolated from the standard curve generated during each run.

Behavioral Tests

Mice were assigned to either the anxiety or the depression tests. Mice assigned to the 

anxiety tests underwent the elevated plus maze testing followed approximately one week 

later by light-dark testing. Mice assigned to the depression test underwent a forced swim 

test.

Light-dark testing—A light-dark chamber using a photocell-equipped automated open 

field (41 cm × 41 cm × 30 cm; Versamax System; Accuscan Instruments, Columbus, OH) 

with an insert used to form the dark side of the chamber was employed. Mice were placed in 

the light side of the chamber and allowed to freely move between the light and dark side for 

10 min. Light exploration was measured via number of entries, time, and distance traveled 

on the light side of the chamber. Data were automatically recorded and analyzed with 

VersaMap (Versamax System; Accuscan Instruments, Columbus, OH). The number of light 

entries, light time, and percent light distance traveled ([light distance/(light + dark distance)] 

× 100) are reported in the Results section. Litter total = 18; male n’s = 8–9; female n’s = 9–

12.

Elevated plus maze—A metal plus maze with two closed arms (wall height: 20 cm) and 

two open arms (length: 30 cm) was used. The maze was elevated 50 cm from the floor. Mice 

were placed on the center section and allowed to freely explore for 5 min. Entries and time 
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in each arm were manually recorded during the trial by two observers who were blind to 

prenatal treatment. Number of entries and percent time in the open arms ([open arms time/

(closed + open arms time)] × 100) are reported in the Results section. Litter total and n’s are 

the same as the light-dark testing, as above.

Forced swim test—Mice were placed into a 4-L Pyrex® beaker containing 3 L of 23–26 

°C tap water for a period of 6 min. The total distance traveled and duration of immobility 

were scored using Ethovision 7 (Noldus Information Technology, Leesburg, VA) with an 

immobility threshold of 6%. Litter total = 18; male n’s = 10–11; female n’s = 13–15.

Statistical analyses

Results are expressed as the mean ± SEM. The HPA axis data were analyzed with a two-

way ANOVA (prenatal treatment × time), while the data for light-dark testing and forced 

swim testing were analyzed per minute bins with a two-way repeated-measures ANOVA 

(prenatal treatment × time). Post hoc analyses were performed using Bonferroni post hoc 

tests when F tests revealed significance at p ≤ 0.05. The data for the elevated plus maze 

were analyzed over the entire test with unpaired, two-tailed Student’s t tests. To explore the 

relationship between CORT or ACTH levels and BACs, Pearson’s correlation coefficients 

were utilized.

Results

General

While no quantitative analysis of facial dysmorphology was conducted, it was observed that 

no severe craniofacial abnormalities were present in adult mice. Some of the more extreme 

malformations caused by GD7 PAE previously discovered in GD17 fetuses, such as 

hydrocephaly and severe micrognathia, were not found in the current mice that survived to 

adulthood.

Hypothalamic-Pituitary-Adrenal Axis Function

Acute Restraint Stress—To evaluate HPA axis function, CORT and ACTH levels were 

measured after 5 min and 15 min of restraint stress (Fig. 1). Two-way ANOVA results 

demonstrated a significant main effect of time regardless of sex or hormone being analyzed 

(all p’s < 0.0001); CORT and ACTH levels were highest following the 15-min restraint 

stress. The CORT analysis revealed no significant prenatal treatment × time interaction for 

either males or females. However, there was a significant main effect of prenatal treatment 

for males [F(1,53) = 4.93, p < 0.05], but not females (Fig. 1A, 1B). To indicate which 

groups were statistically different from each other based on post hoc analysis, letters were 

placed above each bar in the respective graphs, with like letters denoting statistical similarity 

and different letters representing statistical difference. Post hoc analysis revealed no prenatal 

treatment differences in CORT levels following 5 min of restraint stress for either males or 

females. However, when restraint stress was increased to 15 min, male GD7 Alc mice 

showed increased CORT levels relative to male GD7 Con mice (c vs. d; p < 0.05) (Fig. 1A). 

ACTH analysis revealed a significant prenatal treatment × time interaction for females 

[F(2,52) = 9.69, p < 0.001], but not males (Fig. 1C, 1D). Post hoc analysis revealed that at 
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15 min, female GD7 Alc mice showed increased ACTH levels relative to female GD7 Con 

mice (c vs. d, p < 0.001) (Fig. 1D). Neither males nor females demonstrated a significant 

main effect of prenatal treatment. Results also showed that male and female GD7 Alc mice 

have a slightly dampened ACTH response to 5 min of restraint stress as indicated by their 5-

min restraint ACTH levels being similar to their baseline levels, but not statistically different 

from the ACTH levels of GD7 Con mice after 5 min of restraint (Fig. 1C, 1D).

To further evaluate HPA axis function, CORT and ACTH levels were measured 60 and 90 

min after the end of restraint to reveal whether hormone levels differed over time (Fig. 2). 

Two-way ANOVA results demonstrated a significant main effect of time regardless of sex 

or hormone being analyzed (all p’s < 0.0001); CORT and ACTH levels were highest 

immediately after the stress and declined over time. The CORT analysis revealed no 

significant prenatal treatment × time interaction for either males or females. However, there 

was a significant main effect of prenatal treatment for males [F(1,53) = 7.13, p < 0.01] (Fig. 

2A). Post hoc analysis revealed that male GD7 Alc mice had significantly elevated CORT 

relative to GD7 Con mice at the 0 time point (p < 0.05). The CORT analysis for females 

demonstrated a trend toward a main effect of prenatal treatment [F(1,56) = 3.56, p = 0.06] 

(Fig. 2B). ACTH analysis revealed a significant prenatal treatment × time interaction for 

females [F(3,57) = 5.39, p < 0.01], but not males (Fig. 2C, 2D). Females, but not males, 

showed a significant main effect of prenatal treatment [F(1,57) = 6.67, p = 0.01] (Fig. 2D). 

Post hoc analysis demonstrated that female GD7 Alc mice had significantly elevated ACTH 

relative to GD7 Con mice at the 0 time point (p < 0.001).

Acute alcohol injection—HPA axis activity was also examined after exposure to an 

acute alcohol injection (Fig. 3). CORT and ACTH levels were measured at baseline and 20, 

60, or 120 min after a 2.0 g/kg alcohol injection. Two-way ANOVA results again revealed a 

significant main effect of time regardless of sex or hormone being analyzed (p’s < 0.0001), 

except there was only a trend for a difference across time when looking at ACTH levels 

measured in males (p = 0.08); hormone levels were highest 20 min after the alcohol 

injection and declined over time. The CORT analysis revealed no significant prenatal 

treatment × time interaction for either males or females. Males, but not females, showed an 

overall significant main effect of prenatal treatment [F(1,63) = 4.93, p < 0.05] (Fig. 3A, 3B). 

The ACTH analysis revealed no significant prenatal treatment × time interaction for either 

males or females. Unlike the CORT results, females, but not males, showed a significant 

main effect of prenatal treatment [F(1,65) = 4.97, p < 0.05] (Fig. 3C, 3D) on ACTH levels. 

Post hoc analysis demonstrated that female GD7 Alc mice had significantly blunted ACTH 

levels compared to GD7 Con mice at 60 min after acute alcohol injection (p < 0.05) (Fig. 

3D).

Additional analysis revealed an interesting relationship between the time-course of BACs 

and CORT or ACTH levels. BACs were measured at the same time points after the acute 

alcohol injection as CORT and ACTH (Fig. 3E, 3F). Two-way ANOVA results revealed no 

significant prenatal treatment × time interaction, but there was a significant main effect of 

time (p < 0.0001); BACs were highest 20 min after injection and declined over time. When 

correlating BACs and CORT over time, regression analysis revealed an influence of sex 

(Supplemental Fig. 1). Over time, BACs and CORT levels were positively correlated in 
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male mice, but not correlated in female mice. More noteworthy, regression analysis revealed 

a significant influence of prenatal treatment and sex on the correlation over time between 

BACs and ACTH levels (Fig. 4). Both male GD7 Con (Fig. 4A) and female GD7 Alc (Fig. 

4D) mice displayed a significant positive correlation between BACs and ACTH levels, 

while male GD7 Alc (Fig. 4C) and female GD7 Con (Fig. 4B) mice displayed no significant 

correlation.

Behavioral Measures

Light-dark testing—Overall, male GD7 Alc mice displayed increased anxiety-like 

behavior, while female GD7 Alc mice displayed decreased anxiety-like behavior during 

light-dark testing (Fig. 5A–F). Two-way repeated-measures ANOVA revealed a significant 

main effect of time regardless of sex or behavioral measure being analyzed (p’s < 0.05), 

except there was only a trend for a difference across time when looking at light duration in 

males (p = 0.08); light exploration fluctuated over time. There was no significant prenatal 

treatment × time interaction for any behavioral measures. However, there was a significant 

main effect of prenatal treatment on light duration [F(1,15) = 5.33, p < 0.05] (Fig. 5C) and 

light distance [F(1,15) = 5.82, p < 0.05] (Fig. 5E) in male mice. With both measures, male 

GD7 Alc mice displayed an overall decrease in light exploration relative to male GD7 Con 

mice. Conversely, female GD7 Alc mice displayed an overall increase in light exploration 

relative to female GD7 Con mice, as indicated by a significant main effect of prenatal 

treatment on light entries [F(1,19) = 4.23, p = 0.05] (Fig. 5B).

Elevated Plus Maze—t test analysis revealed a significant increase in percent time spent 

in the open arms for female GD7 Alc mice compared to female GD7 Con mice (p < 0.05) 

(Fig. 5H). No significant differences were seen in open-arm entries for females. Males 

showed no significant differences on either measure.

Forced swim test—Two-way repeated-measures ANOVA revealed no significant 

prenatal × time interaction, but there was a significant main effect of time for both males and 

females (all p’s < 0.0001) (Fig. 6); immobility peaked at 4 min for males and increased over 

time for females. There was a trend toward a significant main effect of prenatal treatment in 

males [F(1,19) = 3.56, p = 0.07]. Post hoc analysis revealed a significant decrease in 

immobility duration at minute 4 for male GD7 Alc mice compared to male GD7 Con mice 

(p < 0.05) (Fig. 6A). Female mice showed no significant main effect of prenatal treatment 

on immobility duration (Fig. 6B). Total distance traveled was the same between prenatal 

treatment groups for both males and females (data not shown).

Discussion

The results of this study demonstrate that a single, binge-like exposure to alcohol early in 

gestation is sufficient to cause persistent HPA axis and behavioral abnormalities in the 

offspring. Specifically, HPA axis activity is affected differentially depending on the type of 

stimulus (i.e., acute stress or acute alcohol injection). Moreover, measures of anxiety- and 

depression-like behavior reveal a sexually dimorphic response. As discussed below, these 
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results support an influence of PAE on stress reactivity and extend previous findings to 

identify a critical developmental period of vulnerability during early gestation.

The current study reveals that both male and female GD7 Alc mice displayed increased 

HPA axis activity following acute restraint stress exposure. Multiple other animal studies 

using a range of PAE paradigms show findings consistent with the current results following 

stress exposure (Kim, Giberson, et al., 1999; Lee et al., 1990; Nelson et al., 1986; Schneider 

et al., 2002; Taylor et al., 1982; Weinberg, 1992). Interestingly, there was a sex difference in 

the endocrine marker that was most affected by PAE. Male GD7 Alc mice displayed a 

greater CORT response, while female GD7 Alc mice displayed a greater ACTH response. In 

the current study, HPA activity was measured in naturally cycling female mice. Previously, 

it has been shown in rats that gonadal hormones mediate the effects of alcohol on HPA axis 

activity. During proestrus, when estradiol and progesterone levels peak, prenatal alcohol-

exposed rats showed elevated CORT levels at baseline and after stress relative to control 

rats, while ACTH levels were less regulated by estrous cycle but still increased overall (Lan 

et al., 2009). Therefore, CORT levels, which appear less affected in the current study by 

GD7 PAE in female mice, may be more influenced by estrous cycle. The lack of significant 

change between female GD7 Con and GD7 Alc mice may be a result of collapsing data 

across all stages of the estrous cycle. However, the small within-group variation (as reflected 

by the low SEM) suggests that the current cohort of mice was not significantly influenced by 

estrous cycle. Overall, though, these results suggest that early PAE is indeed sufficient to 

alter HPA axis activity in response to an acute stressor. Moreover, since the increased HPA 

axis responsiveness differed between males and females, this work also highlights the need 

to examine multiple endocrine factors.

Further analysis of HPA axis reactivity after an acute alcohol injection also revealed a 

sexually dimorphic response. Male GD7 Alc mice displayed an overall increase in CORT 

and an observable, but not significant, lack of increase in ACTH at 20 min, the time of peak 

ACTH levels in the GD7 Con mice. The increase in CORT may be a reflection of increased 

responsiveness to the stress of an injection by male GD7 Alc mice. More interestingly, 

though, female GD7 Alc mice showed no differences in the CORT response, but a 

significant blunting of ACTH levels. The stress of an injection may be different between 

GD7 Con and GD7 Alc mice (as acknowledged with the CORT response), but data not 

reported here showed no differences in ACTH levels after a saline injection. Thus, the 

overall blunted ACTH levels in GD7 Alc mice likely reflects an acute alcohol-specific 

effect. Interestingly, clinical research illustrates blunted ACTH and cortisol responses 

following an acute alcohol injection among individuals at risk for developing alcohol-abuse 

disorders (Schuckit, Risch, & Gold, 1988; Schuckit, Tsuang, Anthenilli, Tipp, & 

Nurnberger, 1996). A significant study examining adverse life outcomes in individuals with 

FAS or fetal alcohol effects showed a 46% prevalence of alcohol and drug problems in 

adults age 21 and older (Streissguth et al., 2004). Thus, the increased prevalence of alcohol 

abuse in adults with PAE may be associated with alterations in HPA reactivity to alcohol; 

this possibility warrants further investigation.

Correlative analysis revealed an interesting relationship between the time course of ACTH 

and CORT levels and BACs. The correlation between ACTH, but not CORT, levels and 
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BACs was influenced by prenatal treatment. This suggests that PAE on GD7 may more 

significantly affect development of the pituitary compared to the adrenal gland, and the HPA 

alterations present in the current study may be reflective of these changes. More specifically, 

ACTH levels are positively correlated with BACs in male GD7 Con and female GD7 Alc 

mice but not their respective counterparts, further suggesting that sex and prenatal treatment 

interact to influence ACTH levels. Several studies show that PAE (as well as other prenatal 

stressors) can contribute to the feminization of male rodents and masculinization of female 

rodents (Halasz, Aird, Prystowsky, & Redei, 1993; McGivern, Clancy, Hill, & Noble, 1984; 

Meyer & Riley, 1986; Udani, Parker, Gavaler, & Van Thiel, 1985; Ward, Ward, Winn, & 

Bielawski, 1994). Thus, the current HPA axis results support these findings, suggesting that 

early PAE can cause sexually dimorphic HPA axis responses.

The current study also highlights neurobehavioral phenotypic variation that is qualitatively 

different between males and females. Both a light-dark chamber and elevated plus maze 

were used to test anxiety-like behavior; these procedures are sensitive to changes in anxiety-

like behavior because anxiolytic drugs influence specific behavioral measures (Crawley & 

Goodwin, 1980; Pellow, Chopin, File, & Briley, 1985). Male GD7 Alc mice displayed 

increased anxiety-like behavior as measured by decreased light duration and distance during 

light-dark testing. Conversely, female GD7 Alc mice displayed reduced anxiety-like 

behavior as measured by increased light entries during light-dark testing. This effect in 

females was also supported by increased time spent in the open arms on the elevated plus 

maze. The increased anxiety-like behavior in male GD7 Alc mice corroborates previous 

studies focusing on more moderate alcohol exposure throughout gestation (Carneiro et al., 

2005; Dursun et al., 2006; Hellemans et al., 2008; Liang et al., 2014); however, the decrease 

in anxiety-like behavior in female GD7 Alc mice is novel compared to these previous 

findings. Subsequent analysis of the light-dark and elevated plus maze tests revealed that 

female mice showed a significant positive correlation between all behavioral measurements 

analyzed during both tests; that is, as light exploration during light-dark testing increased, so 

did open-arm exploration during the elevated plus maze. Thus, individual differences in 

anxiety-like behavior were cross-validated between behavioral measurements, suggesting 

consistency and appropriateness of using these tests to analyze anxiety-like behavior.

Qualitative sex differences in response to PAE were further seen when using the forced 

swim test to assess depression-like behavior. Male GD7 Alc mice showed decreased 

immobility on the forced swim test, reflective of decreased depression-like behavior, while 

females showed no differences. There were no differences in total distance traveled during 

the forced swim test, which suggests that differences in immobility are likely not modulated 

by motor differences. The females’ behavior is in contrast to previous findings, which show 

no depression (Sanchez Vega, Chong, & Burne, 2013) or increased depression-like 

(Carneiro et al., 2005; Hellemans, Verma, et al., 2010; Wilcoxon et al., 2005) behavior 

following PAE. The differing results among these studies are likely reflective of differences 

in the amount and pattern of alcohol exposure as the above studies focused on low to 

moderate chronic alcohol exposure. The forced swim results for the males corroborate one 

previous study examining depressive-like behavior in prenatal alcohol-exposed rats 

following chronic mild stress (Hellemans, Verma, et al., 2010). Immobility is often 

interpreted as “behavioral despair”, because of the ability of antidepressants to reverse 
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immobility on this test (Petit-Demouliere, Chenu, & Bourin, 2005). However, some 

literature suggests that immobility is actually reflective of a successful coping strategy 

employed to conserve energy (Borsini & Meli, 1988; Nishimura, Tsuda, Oguchi, Ida, & 

Tanaka, 1988; West, 1990). Thus, the results would then suggest that male GD7 Alc mice 

might have cognitive deficits that do not allow them to recognize the situation as 

detrimental, but future studies would need to be conducted to be able to better interpret these 

results.

While the alterations in HPA axis function and behavior found in this study are likely 

directly influenced by alcohol’s effect on the development of the pituitary and/or 

hypothalamus, it is important to note that GD7 PAE has been shown to also cause forebrain 

deficiencies that extend beyond these regions (Godin et al., 2010; Lipinski et al., 2012; 

Sulik, Johnston, & Webb, 1981; Sulik, Lauder, & Dehart, 1984). For example, the 

hippocampus and septal region are affected after GD7 PAE, and both areas regulate 

emotion. This may partly be due to their ability to influence the HPA axis. Thus, the brain 

regions involved in the GD7 alcohol-induced behavioral changes may not be exclusively 

and directly modulated by direct HPA axis.

GD7 PAE in mice not only results in brain dysmorphology, but can also cause clear facial 

dysmorphology. Face-brain dysmorphology patterns are positively correlated (Godin et al., 

2010; Lipinski et al., 2012). Prior studies using this PAE paradigm focused on consequences 

at the fetal stage, with the current study being the first to focus on more long-term 

consequences in adult mice. The present study finds that most GD7 Alc mice that survive 

into adulthood do not show obvious facial dysmorphology; yet, they show small but 

consistent HPA and behavioral abnormalities. Although litter sizes did not differ 

significantly between control and alcohol-treated mice, it could be suggested that some of 

the more severely affected alcohol-treated mice did not survive, and thus, explains why the 

results may not be larger in magnitude. These animal findings provide critical support for 

the new diagnosis, ND-PAE, which came out in DSM-5 and supports the prevalence of 

mental disturbances after PAE in the absence of any physical deficits.

Collectively, this work contributes significantly to defining the functional abnormalities that 

can occur after prenatal alcohol insult early in gestation. Males and females were 

differentially affected after early PAE, therefore highlighting the importance of analyzing 

both sexes during studies. The two stimulus challenges revealed that early PAE leads to 

overall HPA axis dysfunction but the response can differ depending on the type of stimulus. 

Further studies need to be conducted in order to understand the mechanisms driving these 

responses. The results discussed here are especially important in light of the report revealing 

that half of all pregnant women in the U.S. drank alcohol during the 3 months preceding 

pregnancy recognition and the majority did not know they were pregnant until after the 

fourth week of pregnancy (Floyd, Decouflé, & Hungerford, 1999). These findings are of 

clinical importance because they emphasize the significance of avoiding alcohol during even 

the early stages of pregnancy. Awareness of the full range of potential consequences 

following PAE is also expected to improve diagnosis and treatment.
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HIGHLIGHTS

• Mice were exposed to an early binge-like dose of alcohol on gestational day 7.

• HPA axis-associated changes were examined once the offspring reached 

adulthood.

• Early alcohol exposure causes HPA axis dysfunction following multiple 

stressors.

• Early alcohol exposure causes sexually dimorphic behavioral abnormalities.

• The results suggest that a binge-like exposure can cause long lasting 

consequences.
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Figure 1. PAE increases HPA axis activity after acute restraint stress
CORT (A,B) and ACTH (C,D) were measured under basal conditions and after 5 min and 

15 min of restraint stress in males (left column) and females (right column). Letters above 

each bar (a, b, c, or d) denote the groups that are statistically similar, e.g., a bar with the 

letter ‘a’ above it is statistically similar to all other bars with an ‘a’ above them. All groups 

that are statistically different have p’s < 0.05. Male (n’s) = baseline (13–17), 5 min (7–11), 

15 min (47); female (n’s) = baseline (12–17), 5 min (7–9), 15 min (5–7).

Wieczorek et al. Page 17

Alcohol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. PAE increases HPA axis activity over time following acute restraint stress
CORT (A,B) and ACTH (C,D) were measured 60 and 90 min following a 15-min restraint 

period in males (left column) and females (right column). The baseline and 15-min restraint 

time points shown in Fig. 1 were graphed in Fig. 2 as B and 0 min, respectively, in order to 

better depict the profile of CORT and ACTH levels over time. *with bracket p < 0.05, 

significant main effect of prenatal treatment; *p < 0.05, GD7 Alc vs. GD7 Con; Male (n’s) = 

baseline (13–17), 5 min (7–11), 15 min (4–7), 60 min (4–7), 90 min (3––6); female (n’s) = 

baseline (12–17), 5 min (7–9), 15 min (5–7), 60 min (5–7), 90 min (4–7).
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Figure 3. PAE causes HPA axis dysfunction after an acute alcohol injection
CORT (A,B) and ACTH (C,D) were measured under basal conditions and 20, 60, and 120 

min after a 2.0 g/kg alcohol injection in males (left column) and females (right column). 

BACs (E,F) were measured at 20, 60, and 120 min. *with bracket p < 0.05, significant main 

effect of prenatal treatment; Male (n’s) = 20 min (7–8), 60 min (4–6), 90 min (6–8); female 

(n’s) = 20 min (6–7), 60 min (7–8), 90 min (8).
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Figure 4. PAE and sex interact to influence the relationship between BACs and ACTH levels
Regression analysis of BACs and ACTH levels in males (left column) and females (right 

column) exposed prenatally to vehicle (Ringer’s solution) (A,B) or alcohol (C,D). BACs and 

ACTH levels positively correlate in male GD7 Con and female GD7 Alc mice but not male 

GD7 Alc and female GD7 Con mice. Male (n’s) = GD7 Con (19), GD7 Alc (17); female 

(n’s) = GD7 Con (21), GD7 Alc (21).
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Figure 5. PAE affects anxiety-like behavior in a sexually dimorphic manner
Mice were tested on two procedures that measure anxiety-like behavior, light-dark testing 

(A–F) and elevated plus maze (G–H). Light entries (A,B), light duration (C,D) and percent 

light distance ([light distance/(light + dark distance)] × 100) (E,F) were measured during 

light-dark testing, while percent time spent in the open arms ([open arms time/(closed + 

open arms time)] × 100) (G,H) was measured on the elevated plus maze in males (left 

column) and females (right column). *with bracket p < 0.05, significant main effect of 

prenatal treatment; *p < 0.05, GD7 Alc vs. GD7 Con; male n’s = 8–9; female n’s = 9–12.
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Figure 6. PAE affects depression-like behavior in a sexually dimorphic manner
Immobility duration on the forced swim test was measured in males (A) and females (B) to 

test depression-like behavior. *p < 0.05, GD7 Alc vs. GD7 Con; Male n’s = 10–11; Female 

n’s = 13–15.
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