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ABSTRACT

The advent of DNA microarray technology and the
sequencing of multiple vertebrate genomes has
provided a unique opportunity for the integration of
comparative genomics with high-throughput gene
expression analysis. Here we describe the conserved
transcription factor binding site (CONFAC) software
that enables the high-throughput identification of
conserved transcription factor binding sites (TFBSs)
in the regulatory regions of hundreds of genes at a
time (http://morenolab.whitehead.emory.edu/cgi-bin/
confac/login.pl). The CONFAC software compares
non-coding regulatory sequences between human
and mouse genomes to enable identification of
conserved TFBSs that are significantly enriched in
promoters of gene clusters frommicroarray analyses
compared to sets of unchanging control genes using
aMann–WhitneyU-test.Analysisof randomgenesets
demonstrated that using our approach, over 98% of
TFBSs had false positive rates below 5%. As a proof-
of-principle, we have validated the CONFAC software
usinggenesets fromfourseparatemicroarraystudies
and identifiedTFBSsknown tobe functionally import-
ant for regulation of each of the four gene sets.

INTRODUCTION

Even though the binding site specificities of many transcrip-
tion factors have been experimentally defined, these transcrip-
tion factor binding sites (TFBSs) are short (6–12 bp)
degenerate motifs that are very common throughout genomic
sequences. The specificities of transcription factors are

typically represented as position weight matrices (PWMs)
that are found in the TRANSFAC database. The MATCH
and MatInspector software packages (1,2) use these PWMs
to identify sequence matches, but because TFBSs are so com-
mon, the vast majority of detected TFBSs are not functionally
important. One approach that greatly decreases the false
positive rate for detection of functionally relevant TFBSs is
the use of ‘phylogenetic footprinting’ or comparative genomics
(3–10). These methods are based on the hypothesis that
non-coding genomic sequences that are functionally important
for gene expression will be more highly conserved during
evolution than unimportant sequences.

The use of high-density DNAmicroarrays to identify sets of
genes with similar expression patterns is rapidly becoming a
widespread approach for understanding biological processes.
Typically, microarray data is analyzed by hierarchical cluster-
ing, self-organizing maps, K-means clustering or principle
component analysis. Most of these approaches readily identify
clusters of tens to hundreds of genes that demonstrate similar
expression patterns. One logical systematic approach to study
a cluster of genes with similar expression profiles is to analyze
the promoter sequences for each member of the gene clusters
and attempt to identify transcription factors that might be
crucial for regulating their expression.

Here we describe the conserved transcription factor binding
site (CONFAC) software that enables the high-throughput
identification of conserved TFBSs in the regulatory regions
of hundreds of genes at a time (http://morenolab.whitehead.
emory.edu/cgi-bin/confac/login.pl).Ournovelapproachallows
identification of TFBSs that are significantly more common
in promoters of a group of genes of interest from microarray
analyses than in a set of unchanging control genes. Although
other tools such as cis-regulatory module explorer (CREME)
(11) and TOUCAN (12,13) can analyze multiple genes, they
do not allow for direct comparisons against user-defined
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control gene lists. Moreover, in this study we have validated
the CONFAC software using gene sets from four separate
microarray studies and identified TFBSs known to be func-
tionally important for regulation of each of the four gene sets.

RESULTS AND METHODS

The CONFAC software runs in the Linux operating system,
using cgi scripts written in the Perl programming language,
and accepts lists of genes via a web-browser interface (http://
morenolab.whitehead.emory.edu/cgi-bin/confac/login.pl).The
user inputs a tab-delimited text file containing a unique
identifier for the gene name in the first column and a GenBank
accession number or RefSeq ID in the second column
(Figure 1A). The CONFAC software then automatically iden-
tifies orthologous murine genes by accessing ortholog lookup
tables obtained from the UCSC and ENSEMBL genome

databases. The use of lookup tables is more conservative
than using protein BLAT searches against the mouse genome,
since it prevents the inadvertent comparison with non-
expressed pseudogenes or hypothetical genes, and provides
the user with well-curated sets of orthologs. While this
approach does not identify orthologs for all genes submitted,
a test run identified 350 murine orthologs upon submission of a
set of 450 randomly selected human RefSeq IDs, correspond-
ing to a hit rate of 78%. Once ortholog pairs are identified, 3 kb
of genomic sequence 50 of the transcriptional start site and up
to 20 kb of the first intron are downloaded from the UCSC
assemblies of the human and mouse genomes for each gene.
Downloaded human and mouse genomic sequences from
orthologous gene pairs are then compared by pairwise
BLAST, and only significantly conserved (e-value < 0.001)
sequences are analyzed for TFBSs via an automated interface
with the MATCH software (1). The user has the option of
defining core and matrix similarities used by MATCH when

Figure 1. (A) Schematic of data flow in CONFAC software. The user input is a tab-delimited list of genes of interest. The CONFAC software interfaces with the
human and mouse genomes, local pairwise BLAST and local MATCH software to identify TFBSs that are conserved between human and mouse promoter regions.
The output is a table of TFBS occurrences for each gene that has at least one conserved TFBS. (B) Identification of significantly enriched TFBSs. Two CONFAC
output tables for affected and control gene sets are submitted to aMann–WhitneyU-test to identify sites that are significantly overrepresented in the affected gene list
compared to controls.
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submitting the initial gene list for analysis. All MATCH ana-
lyses in this study were performed with a core similarity of
0.95 and a matrix similarity of 0.85 using the vertebrate set
of PWMs.

The CONFAC software compares the MATCH output from
the conserved human and mouse genomic sequences and iden-
tifies those TFBSs that are present in both the human and
mouse sequences within a 25 bp sliding window. The output
of the CONFAC software is a table in which each column
represents a given gene, and each row represents a transcrip-
tion factor with a PWM in the TRANSFAC database. A schem-
atic of the CONFAC software data flow and a sample output
are shown in Figure 1. Each element of the table is the number
of occurrences of any given TFBS in the human and mouse
conserved promoter sequences for a submitted gene. Conso-
lidated TFBS frequencies used in these studies were calculated
by summing all PWM hits for the same transcription factor, so
that for example, a sequence with two E2F_01 hits, three
E2F_02 hits and one E2F_03 hit would have a consolidated
total of six E2F hits. In addition to tabular output, graphical
output of the conserved regulatory sequences and conserved
TFBSs are also generated. The user has the option to download
the entire genomic sequences analyzed for each gene set,
conserved genomic sequences only, all TFBSs present in
the conserved human genomic sequences, or only TFBSs
that are conserved between the human and mouse genomic
sequences. In a benchmark test of the speed of the CONFAC
software, lists of 100 genes found 73–82 orthologous pairs and
conserved TFBSs were identified for 59–65 gene pairs in
under 8 min. This high level of automation and speed enables
the completion of analyses in minutes that previously would
take days or weeks if performed one gene at a time.

A critical and novel component in our method for the iden-
tification of functionally significant TFBSs is the statistical
comparison of identified TFBSs between two gene sets
(Figure 1B). Typically, we identify a control set of genes
that show little or no variation in a microarray experiment,
and a set of experimental genes that are increased or decreased
in expression after some perturbation. Users have the option to
upload their own control gene sets, or to use several available
control lists, including normalization control lists from Affy-
metrix U133A arrays, our default set that shows no change in
cancer cells, and sets of randomly selected genes. To allow the
user to perform statistical comparisons of identified TFBSs
between two gene sets, the CONFAC software uses the R
statistical programming environment and the RSPerl module
that enables integration of R functions with Perl cgi scripts.
The CONFAC software identifies TFBSs that are significantly
more common in the experimental gene set than in the control
gene set using a non-parametric Wilcoxon Rank Sum test
equivalent to a Mann–Whitney U-test. While the CONFAC
data can have many ties (0, 1, 2 TFBS), the Mann–Whitney
test (in which the null hypothesis is that the medians do not
differ against a two-sided alternative) adjusts for ties. The key
assumption of the Mann–Whitney test is that the underlying
distributions being compared must be continuous, but need not
be symmetric. However, others (14) have investigated the use
of the Mann–Whitney test in comparing discrete distributions
and have found only small losses in power when applying the
test to grouped data or data with a limited number of values
when appropriate provision for ties has been addressed. A list

of TFBSs that are significantly more common in the experi-
mental gene set are then returned to the user along with the
corresponding P-value. The user can define both the P-value
cutoff as well as a mean-difference cutoff, which sets a mini-
mum threshold for the differences in the average TFBS
frequencies between the two groups. Screenshots of the
user interface are shown in Figure 2 for uploading
gene lists (Figure 2A), submitting CONFAC results for
Mann–Whitney tests (Figure 2B) and the output table of
significant TFBSs (Figure 2C). In addition to tabular statistical
results, the Mann–Whitney page generates bar graphs of the
average conserved TFBS frequencies for the sample and
control gene sets.

False positive analysis of CONFAC software

To investigate the false positive rate of conserved TFBS detec-
tion, we generated 25 random sets of 100 RefSeq IDs and
identified conserved TFBSs in these random gene sets. We
then performed all 300 possible pairwise comparisons between
these 25 random gene sets using the Mann–Whitney U-test
with a mean-difference cutoff of 0.5 and a P-value of 0.05.
Only three TFBSs, (GATA3, ZTA and NKX25) had false
positive rates exceeding the predicted P-value of 5% (Table 1,
column 1). Since the CONFAC software looks for over 200
TFBSs, at least 197/200 or 98.5% of TFBSs had false positive
rates below 5%. We then went on and generated an additional
25 random sets of 100 RefSeq IDs and compared all 50 random
gene sets to random sets of 200 and 250 control genes that are
available as control comparison files on the CONFAC
Mann–Whitney test page. As can be seen in Table 1, only
one TFBS (NKX25) exceeded 5% false positive rate for the
set of 200 random control genes, and only one TFBS (E2F)
exceeded 5% for the set of 250 random control genes.

We next compared the 50 random gene sets to our default
control gene set of 41 genes that were expressed but exhibited
very little change between normal and tumor samples. This
control gene set includes ribosomal proteins, subunits of pro-
tein phosphatases and actin-associated proteins, among others
(Supplementary Table 1). Because the genes in the default
control set were not randomly selected, these genes had a
higher false positive rate compared to random gene sets.
With a P-value of 0.05 and a mean-difference cutoff of 0.5,
this control gene set produced 18 TFBSs that exceeded a false
positive rate of 5% when compared to the 50 random gene sets
(not shown). However, using a more stringent P-value cutoff
of 0.01, only five TFBSs (CEBPDELTA, NKX25, LPOLYA,
POU1F and S8 HOX) had false positive rates that exceeded
5%. For the validation analyses used in this study, we used a
P-value cutoff of 0.01 and a mean-difference cutoff of 0.5
unless otherwise noted. Nevertheless, many of the TFBSs
that were significantly different between random gene sets
and this default control gene set at the less stringent
P-value of 0.05 were homeobox and forkhead box (FOX) bind-
ing sites. These data suggest that comparison of non-changing
genes in a microarray experiment against multiple random
datasets can also potentially provide a measure of what
TFBSs are important in changes seen in microarray data.

This effect was even more pronounced in the set of Affy-
metrix U133 control genes. With the mean-difference cutoff of
0.5 and a P-value of 0.05, the random gene sets produced
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32 TFBSs with a false positive rate exceeding 5% and 12 of
those exceeded 20% (not shown). Using a more stringent
mean-difference cutoff of 1.0 and a P-value of 0.001, the
number of TFBSs with false positive rates exceeding 5%

was reduced to two (HFH3 and HNF3ALPHA). These results
are also a direct result of the fact that the genes in the Affy-
metrix normalization control set are also non-random and were
chosen because they show very little variation among a wide

Figure 2. (A) A screenshot of the CONFAC user interface for uploading gene lists. The user can specify core and matrix similarities, and sets of PWMs. (B) A
screenshot of the user interface for the Mann–Whitney test for statistical significance. The user can upload their own control datasets or choose from several default
control sets. The user also specifies the P-value and mean-difference cutoffs for the analysis. (C) A screenshot of the output of the Mann–Whitney test, which lists
significant TFBSs, the average frequencies for both sets, the mean difference and the P-values.
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variety of biological conditions. The results in Table 1 show
that the promoters of these normalization control genes are
significantly lacking in AP1, HFH3, HNF3ALPHA and
HNF3B sites. Thus, while the use of non-randomly selected
control gene sets can increase the sensitivity of detection of
significant TFBSs, it is important for the user to be aware of
the effects that this can introduce and either adjust the P-value
and mean-difference cutoffs, or be cautious of results with
respect to specific TFBSs that have high false positive rates.

Validation of the CONFAC software with forkhead
overexpression microarray data

To validate the CONFAC approach using publicly available
microarray data, we analyzed the results from Ramaswamy
et al. (15), in which the authors identified three classes of
genes that respond to overexpression of the forkhead-family
transcription factor FKHR (or FOXO1). The first class of
genes was induced by FKHR in a manner that was dependent
on the ability of FKHR to bind to DNA, and thus one would
predict that FOX sites and insulin response sites (IRS), towhich
FKHR has been shown to bind (15), would be enriched in the
promoters of thisClass I gene set (seeTable 2). The second class
of geneswas induced byFKHRoverexpression in amanner that
was independent of the ability of FKHR to bind to DNA, sug-
gesting that FKHRmight activate the expression of this gene set

by protein–protein interactions with other transcription factors
involved in regulation of these genes. The third class of genes
was repressed by FKHR overexpression, also in a manner inde-
pendent of its DNA-binding domain (DBD).

We analyzed the promoters of FKHR Class I, Class IIA,
Class IIB and Class III target genes for conserved TFBSs
using CONFAC. The default control set of 41 constitutively
expressed genes that exhibit very little variation in compar-
isons of normal and tumor tissues was used for the control gene
set. The number of genes analyzed, the number of orthologous
pairs with conserved TFBSs and the nature of each class are
summarized in Table 2. A detailed list of the members of each
gene class is given in Supplementary Table 2. Analysis of
these four experimental and one control gene sets using the
CONFAC software found that for those genes in Class I that
require an intact FKHR DBD, there was a statistically signific-
ant increase in nine TFBSs (Figure 3A). Four of the significant
TFBSs were FOX family sites and a fifth corresponds to the
IRS to which FKHR has been shown to bind (15). The com-
plete CONFAC tables for the significant TFBSs shown in
Figure 3A are given in Supplementary Table 3. In the
FKHR Class IIA and Class IIB target genes, which were acti-
vated by FKHR in a DBD-independent manner, no significant
TFBSs were significantly enriched. Thus, the CONFAC
software identified significant conserved TFBSs for
FKHR-activated genes that require FKHR recognition of its

Table 2. Summary of FKHR target classes and CONFAC analysis

FKHR target
class

Total genes
analyzed

Orthologous pairs
with conserved TFBS

Percent genes with
conserved TFBS (%)

Type of FKHR
target

Dependence on DNA
binding domain

Class I 32 20 63 Activation Dependent
Class IIA 20 13 65 Activation Independent
Class IIB 37 26 70 Activation Independent and stronger in

DBD mutant
Class III 27 24 89 Repression Independent

Table 1. Summary of false positive TFBS analyses

TFBS False positive in
random versus random
comparisons (%)

False positive
in random versus
random 200 (%)

False positive
in random versus
random 250 (%)

False positive in
random versus
control-default (%)

False positive in random
versus Affymetrix
U133 controls (%)

AP1 2 0 0 0 4
CAAT 1.7 2 0 2 0
CEBPDELTA 4.7 0 0 8 2
E2F 0.3 0 6 0 0
ER 2.7 4 0 0 0
GATA3 9.7 2 0 2 0
HFH3 3 0 0 2 8
HNF3ALPHA 3 0 0 0 18
HNF3B 1.3 0 0 0 4
IK1 3.3 2 0 2 2
LPOLYA 0 0 0 10 0
NKX25 6.7 8 0 6 0
OCT_1 5 0 0 4 0
POU1F1 1 0 0 8 0
S8 1.7 2 0 8 0

P-value cutoff 0.05 0.05 0.05 0.01 0.001
Mean difference 0.5 0.5 0.5 0.5 1.0

The first column is the result of 300 pairwise comparisons of 25 random sets of 100 genes. The last four columns are the result of 50 comparisons of 50 random gene
sets against single sets of 200 random genes, 250 random genes, 41 genes that show little change between tumor and normal samples and 97 normalization control
genes for Affymetrix U133 GeneChip arrays.
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DNA binding site, but not for genes that were activated by
FKHR independently of its ability to bind to DNA.

Finally, we analyzed 27 FKHR Class III repression target
genes that are repressed independently of FKHR DNA bind-
ing, and analyzed the conserved TFBSs in 24 orthologous gene
pairs. NoTFBSswere significantly overrepresented in this gene
set relative to control genes. However, when the Class III
repression target genes were compared to the Class I activation
target genes, the only significantly different TFBSs were FOX
family sites (Figure 3B). These data are consistent with repres-
sion of these genes via a mechanism that does not require DNA
binding by FKHR.

Validation of the CONFAC software with NF-kB
target gene microarray data

It is well established that the transcription factor NF-kB activ-
ates transcription of target genes in response to signal trans-
duction pathways activated by the cytokine, tumor necrosis
factor-a (TNF-a) (16). We next analyzed a set of 29 genes
found by DNA microarray analysis (17) to be upregulated
2-fold within 1 h of TNF-a treatment to determine whether
these genes would be enriched for NF-kB binding sites
(Supplementary Table 4). For this gene set, conserved
TFBSs were identified in 21 orthologous gene pairs and
21 TFBSs were significantly increased relative to control
gene sets, using a P-value threshold of 0.01 (Supplementary
Table 5). Of those 21 TFBSs, the most significant 7 TFBSs had
a P < 0.001, and are shown relative to control genes in
Figure 4A. Of the seven TFBSs with a P < 0.001, five were
NF-kB sites. The other highly significant TFBSs were C/EBPd
and ETS2, suggesting that C/EBP and ETS factors may play an
important role in the NF-kB response to TNF signaling.

In another microarray study of NF-kB target genes in
Hodgkin and Reed–Steinberg (HRS) tumor cells (18), the
authors identified several known NF-kB targets and verified
a number of novel ones. They also showed that NF-kB

induced overexpression and activation of STAT5a in HRS
cells. We analyzed a set of 26 NF-kB target genes from this
study and identified conserved TFBSs in 20 orthologous pairs
(Supplementary Table 6). A total of eight significant TFBSs
enriched in these 20 genes relative to control genes using a
P-value of 0.05 and a mean-difference cutoff of 0.25 are
shown in Figure 4B. Not only were 50% of the significant
TFBSs NF-kB sites, but also STAT and STAT5b sites were
significantly enriched in this gene set, suggesting that besides
activating STAT5a in HRS cells, NF-kB cooperates with
activated STAT5 to activate target gene expression. While
the IK1 site produced false positive hits when the random
gene sets were compared to this control gene set (Table 1),
the STAT sites showed no false positives even with a P-value
of 0.05 and a mean difference of 0.25. The genes with both
conserved NF-kB and STAT sites included ICAM-1,
lymphotoxin-a, granulocyte–macrophage colony-stimulating
factor (GM-CSF) and the antiapoptotic genes Bcl-x and
immediate early response 3 (IEX-1).

CONFAC analysis of Cyclin D target genes identifies
C/EBPd TFBS

Recent studies have shown that C/EBP is critical for activation
of genes regulated by Cyclin D1 (19). We analyzed a set of
43 genes from this study that were highly correlated with
Cyclin D1 expression in a large set of tumor tissue samples
(Supplementary Table 7) and found conserved TFBSs in
31 human–mouse ortholog pairs. CONFAC analysis and com-
parison with our default set of 41 control genes identified
C/EBPd as the only significantly enriched TFBS in the pro-
moters of this gene set, again validating the CONFAC
approach. An average of 1.5 conserved C/EBP sites were
detected in the promoters of the 31 genes that were very highly
correlated with cyclin D1 expression, while only 0.5 C/EBP
sites were found on average in the promoters of the control
gene set (P-value = 0.002).

Figure 3. (A) The average frequency of TFBSs that are significantly enriched in 20 FKHRClass I target genes relative to 41 control genes are graphed for bothClass I
target genes and control genes. Four FOX sites and the FKHR-responsive IRS site were significantly overrepresented in this DBD-dependent gene set. Error bars
represent the standard error for each conserved TFBS in this and all subsequent figures. (B) FOX sites were significantly more frequent in promoters of 20 FKHR
Class I activation target genes than in promoters of 24 FKHR Class III repression target genes.
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CONFAC analysis of genes upregulated in
prostate cancer

We next wanted to apply the CONFAC analysis to a set of
genes for which the expected TFBSs were unknown but that
would be of clinical interest. A number of studies have applied
microarray analysis to the study of genes affected in prostate
cancer (20–25). One meta-analysis of several prostate cancer
microarray studies identified sets of genes that were upregul-
ated in multiple microarray studies, and assigned a false-
discovery rate, or q-value for each gene (23). We selected
the 46 genes with the most significant q-values (q < 0.1)
for CONFAC analysis, and found conserved TFBSs in 33
ortholog pairs (Supplementary Table 8). Four TFBSs were
significantly enriched in the promoters of these 33 genes
that are overexpressed in prostate cancers and three of these

four sites were homeobox family sites (Figure 5). Interest-
ingly, when these genes were analyzed with a less stringent
P-value cutoff of 0.05, hypoxia-inducible factor 1 (HIF-1),
FOXA1, FOXN1 and growth factor-independent1 (GFI1)
sites were also significantly enriched in genes that are over-
expressed in prostate cancer (not shown). In addition, the
average TFBS frequency of FOXA1 and FOXN1 sites was
greater than two sites/promoter, suggesting that many of these
prostate cancer specific genes could be activated by the AKT–
FKHR pathway in cooperation with homeobox, and GATA3
factors. Consistent with this hypothesis, both functional and
physical interactions have been demonstrated between FKHR
and HOXA5 (26), and between FOXA2 and GATA4 (27).
Furthermore, the enrichment for HIF1 sites is consistent
with an established role of HIF1-a in prostate cancer and
interactions between HIF1-a and the PI3K/AKT pathway in
human prostate cancer cells (28–30).

DISCUSSION

Here we have described a rapid, novel and practical approach
for identification of transcription factors that may regulate
clusters of genes from DNA microarray experiments. We
have also validated our approach with data from four separate
studies (15,17–19). Our approach for integrating high-
throughput comparative genomics with TFBS analysis and
statistical comparisons can be applied to virtually any micro-
array experiment. For example, cells that have been treated
with a drug, cytokine or growth factor can be analyzed by
microarray expression profiling, and the sets of induced genes
analyzed using the CONFAC software to identify the tran-
scription factors that act downstream of signal transduction
pathways. Such analyses could also provide insights into
mechanisms of drug actions. Moreover, it may be possible
to identify co-factors that interact with a given transcription
factor to regulate various clusters of genes if sets of TFBSs are
detected together. The CONFAC approach is not necessarily
limited to sets of microarray data, since the input to the

Figure 5. The average frequency of TFBSs that are significantly enriched in
33 genes strongly upregulated in prostate cancer (23) relative to 41 control
genes is shown. Three of the four significant TFBSs were homeobox family
sites.

Figure 4. (A) The average frequency of TFBSs that are highly significantly
enriched (P < 0.001) in 21 TNF-inducible genes relative to 41 control genes is
shown. Five of the most significant (P < 0.001) TFBSs were NF-kB sites.
(B) The five most significantly enriched TFBSs in promoters of 20 NF-kB
target genes from HRS tumor cells were NF-kB sites. STAT sites were also
significantly enriched relative to control genes using P-value <0.05 and mean
difference >0.25.
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software is only a list of genes. Thus, sets of genes that are
thought to be co-regulated can be analyzed even without
access to microarray evidence. Ultimately, this approach
can (and will) be applied to the entire genome.

There are several important assumptions that the user
should be aware of that underlie the application of the
CONFAC software to identify important TFBSs in clustered
microarray gene lists. First, there is the assumption that sets of
similarly expressed genes are regulated by common transcrip-
tion factors. In some cases, sets of genes may be activated or
repressed via a handful of distinct mechanisms, and this will
decrease the sensitivity of the CONFAC approach. The more
tightly clustered in expression pattern a gene list is, the more
likely they will be regulated by common transcription factors,
and the more likely the CONFAC analysis will provide useful
insights into molecular mechanisms that affect expression of
gene clusters.

Second, it is assumed that important regulatory sequences
will be evolutionarily conserved between mouse and human
genomes. Several studies have shown this to be a valid
assumption for 70–90% of regulatory sequences (3–10). Ana-
lysis of 28 muscle-specific genes found that 74/75 (98%) of
experimentally defined TFBSs were located within regions
that are conserved between human and mouse genomes (6).
In a study of Bruton’s tyrosine kinase (BTK), a highly con-
served 3.5 kb section adjacent to the first exon was shown to
confer lineage-specific expression to reporter constructs (3).
In another study, 1Mb of orthologous human and mouse
sequences containing a cytokine gene cluster were compared
and 35/40 (88%) of experimentally defined AP-1 and NFAT
sites were present in conserved, orthologous sequences (8).
Moreover, the total number of AP-1 and NFAT sites that were
identified was reduced by 95% when searching only the con-
served sequences compared to the entire 1Mb segment. Yet
another study of 14 gene pairs and 40 verified TFBSs found
that the total number of sites detected was reduced by 85%
while maintaining detection of 83% of verified sites (7). Thus,
comparison of human and mouse genome sequences can
greatly reduce the background noise of false positive
TFBSs with only a small loss in the overall sensitivity for
detection of functionally significant TFBSs. While other
resources (rVISTA (8), TraFaC (31) and ConSite (7)) that
allow for the alignment and TFBS analysis of orthologous
sequences do exist, these resources are designed to be used
a single gene at a time, so that analysis of 50 genes or more
becomes impractical. Other tools such as (CREME) (11) and
TOUCAN (12,13) have been developed for analysis of multi-
ple genomic regulatory regions. CREME enables the identi-
fication of sets of TFBSs that co-occur in a significant manner,
but it requires an input of at least 50 genes, and does not
compare the data from the gene list of interest with a control
gene list. Moreover, the promoter regions that are analyzed in
CREME do not include more than one sequence conserved
in human–mouse alignments, which is often fairly short
(<200 bp), and it does not examine any intronic sequences.
The TOUCAN software does compare data from genes of
interest with background files that are mathematical repres-
entations of the noise in genomic sequences, but it does
not allow direct comparisons with user-selected control
sequences, and often identifies many more TFBSs than the
Mann–Whitney tests built into the CONFAC software.

Third, it is assumed that the mouse and human orthologous
genes will be similarly regulated transcriptionally, which
should be true for most (but not all) ortholog pairs. Fourth,
it is assumed that the important regulatory sequences lie in the
proximal 3 kb of genomic sequence upstream of the transcrip-
tion start site and in the first intron. While this assumption is
clearly not true for all genes, it is for a large number of them.
We are in the process of developing improvements to the
CONFAC software that will allow the user to define the size
of the genomic regions to be analyzed. Finally, the CONFAC
software is currently limited in its sensitivity by the available
PWMs that are present in the TRANSFAC 4.0 database. Thus,
it cannot detect what it does not know to look for. Planned
enhancements to the CONFAC software are to enable the user
to upload their own PWMs, provide an alternative set of
unique, non-redundant PWMs and interfaces with de novo
detection algorithms to identify novel, conserved, DNA-
binding motifs. In addition, the CONFAC software is currently
designed for use only with human microarray datasets. Future
plans will enable analysis of mouse and rat gene lists, as well.
In addition, algorithms to identify sets of TFBSs that may
function as control modules are under development.

Another critical component of the CONFAC software is the
choice of which control gene list should be used to compare
against sets of induced or repressed genes. The optimal choice
for a control gene list is a set of genes that are expressed but
show little or no variation in the same microarray experiment
as the experimental gene list. If such a list is not available
because the user is analyzing published data without access to
the entire dataset, a good (and fairly sensitive) second choice is
a set of normalization controls for Affymetrix U133A Gene-
Chips or the default list of 41 genes used in this report that
have exhibited very little change in numerous hybridizations.
However, the user should apply the P-value and mean-
difference cutoffs used in Table 1 with these datasets and
be aware which sites are more likely to produce false positive
hits with these control gene sets. A third, more conservative
choice, is to use a large, randomly selected gene set. Randomly
selected gene sets will usually decrease the sensitivity of
the CONFAC approach in Mann–Whitney comparisons. How-
ever, if one detects highly significant TFBSs even against
several randomly selected gene sets, the user can be quite
confident of the significance of the results. For example, the
NF-kB sites found in the TNF-induced target genes were
highly significant (P < 0.001) against every control set tested.

Another issue is how to most appropriately deal with stat-
istical multiple testing issues, since we are testing approxim-
ately 200 TFBSs for statistical significance. One approach
would be to simply reduce the cutoff P-value. Another
would be to perform resampling of the genes into 1000 ran-
domized groups in a bootstrapping approach, and we are cur-
rently investigating the utility of this method. Nevertheless, we
have found that an effective heuristic method for reducing the
number of false positives while retaining likely important
TFBSs is by use of the mean-difference cutoff, as shown in
the microarray validation studies described in this report. This
approach is similar to the use of fold change cutoffs in SAM
analyses (32) of DNA microarray data, and performed quite
well at reducing false positives while retaining true positives.

While the CONFAC software is a highly useful approach
for microarray data analysis and hypothesis generation, it does
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not prove in any way the functional importance of any tran-
scription factor in regulation of a gene cluster. Nevertheless, it
can provide useful insights into potential mechanisms of gene
regulation and interactions between transcription factors that
can then be followed up experimentally in vitro and in vivo.
We have validated the CONFAC approach using microarray
datasets from four different studies, and in each case detected
patterns of significant TFBSs that match molecular observa-
tions, demonstrating the utility of combining comparative
genomics, gene clustering and statistical comparisons to
identify functionally important TFBSs. Moreover, these
approaches may be useful in future studies for identification
of novel, uncharacterized TFBSs. As the number of validated
TFBSs grows, so will the power of the CONFAC approach
described here.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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