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Abstract

Purpose—CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids 

that adapt as new environmental threats arise. There are emerging examples of CRISPR-Cas 

functions in bacterial physiology beyond their role in adaptive immunity. This highlights the 

poorly understood, but potentially common, moonlighting functions of these abundant systems. 

We propose that these non-canonical CRISPR-Cas activities have evolved to respond to stresses at 

the cell envelope.

Recent findings—Here, we discuss recent literature describing the impact of the extracellular 

environment on the regulation of CRISPR-Cas systems, and the influence of CRISPR-Cas activity 

on bacterial physiology. The described non-canonical CRISPR-Cas functions allow the bacterial 

cell to respond to the extracellular environment, primarily through changes in envelope 

physiology.

Summary—This review discusses the expanding non-canonical functions of CRISPR-Cas 

systems, including their roles in virulence, focusing mainly on their relationship to the cell 

envelope. We first examine the effects of the extracellular environment on regulation of CRISPR-

Cas components, and then discuss the impact of CRISPR-Cas systems on bacterial physiology, 

focusing on their roles in influencing interactions with the environment including host organisms.

Keywords

CRISPR-Cas; envelope stress; membrane composition; bacterial pathogenesis

#Corresponding author: David S. Weiss, Emory Vaccine Center, 954 Gatewood Road, Room 2028, Tel: (404) 727-8214, 
david.weiss@emory.edu.
†These authors contributed equally
*Current address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125

Conflicts of interest: TRS and DSW have filed provisional patents based on CRISPR-Cas technological applications. HKR has no 
conflict of interest.

HHS Public Access
Author manuscript
Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

Published in final edited form as:
Curr Opin Infect Dis. 2015 June ; 28(3): 267–274. doi:10.1097/QCO.0000000000000154.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Prokaryotic organisms have evolved unique, adaptive, nucleic acid restriction machineries to 

prevent the uptake of mobile genetic elements, such as those derived from bacteriophages 

and plasmids(1). Termed CRISPR (clustered, regularly interspaced, short, palindromic 

repeats) - Cas (CRISPR-associated) systems, these RNA-guided endonuclease machineries 

canonically act in a sequence-specific fashion to cleave foreign DNA or RNA targets(2-5). 

This protects cells from exposure to potentially harmful genetic elements(2-4). Beyond this 

well-established function, CRISPR-Cas systems have been observed to play alternative roles 

in physiology. These moonlighting functions of CRISPR-Cas systems include roles in 

oxidative stress tolerance, antibiotic resistance, extracellular structure formation, DNA 

repair, and host-microbe interactions.

The molecular mechanism of many alternative CRISPR-Cas functions has not yet been fully 

elucidated, but may utilize a similar activity to that used in canonical targeting of foreign 

nucleic acids (6, 7). The signature component of CRISPR-Cas systems is the CRISPR array, 

composed of short, repetitive, and often palindromic sequences(8). These repeats are 

interspaced by short, unique, spacer sequences that are complementary to different nucleic 

acid targets (2, 9, 10). In most systems, the CRISPR array is transcribed as a single 

transcript (the pre-crRNA array) and is cleaved into small targeting RNAs (crRNAs) 

(11-14). These crRNAs form complexes with Cas proteins, which are encoded in adjacent, 

conserved operons (4). The complexes are capable of sequence-specific interaction with 

foreign nucleic acids (6). Upon hybridization of the crRNA to its target sequence, 

endonuclease activity of the associated Cas protein(s) is triggered, resulting in target 

cleavage (6). CRISPR-Cas systems are diverse and can be grouped into three main subtypes 

(types I,II, and III) defined by the unique Cas proteins used in crRNA processing and 

targeting/cleavage(1). While the type I and III systems use multimeric protein complexes for 

these processes, the type II system requires a single Cas protein, Cas9, as well as a unique 

accessory RNA, the trans-activating CRISPR RNA (tracrRNA) (1, 13, 15, 16). Uniquely, 

CRISPR-Cas systems can also acquire new spacer sequences within the CRISPR array as 

the nucleic acid threats (such as bacteriophages) in the environment change (2, 17).

Interestingly, many of the alternative activities (not involving the targeted degradation of 

foreign nucleic acid) of CRISPR-Cas systems are linked to processes occurring at the 

bacterial envelope. Herein, we present a CRISPR view of how CRISPR-Cas systems 

monitor and respond to stresses at the cell envelope, allowing bacteria to counteract not only 

bacteriophage infection, but also diverse insults such as antibiotics and host defenses. First, 

we discuss the transcriptional regulation of CRISPR-Cas systems in response to 

environmental changes signaled by the status of the bacterial envelope. We then describe the 

current understanding of how CRISPR-Cas systems regulate bacterial physiology, largely 

through changes at the cell surface, to promote resistance to environmental stresses. Finally, 

we highlight unanswered questions in the field of CRISPR-Cas biology, the exploration of 

which will provide insight into the evolution of CRISPR-Cas systems and the origins of 

their increasingly broad functions in bacterial physiology.
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Activation and function of CRISPR-Cas systems in response to envelope 

stress

Since CRISPR-Cas systems target nucleic acids that have entered the cell through the 

envelope, it is interesting to note that their transcriptional activation often occurs directly, 

and indirectly, in response to envelope stresses (Figure 1). The most explicit example of this 

occurs during bacteriophage infection. It is logical to think that upon bacteriophage 

adsorption and DNA injection the envelope is disrupted, resulting in an envelope stress 

response(18-20). Concomitantly, activation of CRISPR-Cas transcription has been observed, 

suggesting that the cell actively senses the status of the envelope in order to respond to 

invading threats(21, 22). Furthermore, it has been observed that membrane protein 

dysregulation is capable of inducing the increased expression of CRISPR-Cas systems. For 

instance, in Escherichia coli, the BaeSR extracytoplasmic stress response regulator acts to 

activate its CRISPR-Cas system when the bacterial envelope is perturbed (23). Furthermore, 

the transcriptional regulator H-NS is an inhibitor of CRISPR-Cas expression. Upon an 

envelope stress response, H-NS is inhibited, leading to an upregulation of a CRISPR-Cas 

system in Salmonella enterica and E. coli (24, 25). Additionally, high temperatures result in 

misfolding of membrane proteins and an envelope stress response leading to activation of 

heat shock protein G (HtpG) (26, 27). HtpG has subsequently been shown to activate 

transcription of CRISPR-Cas systems in E. coli (27). Thus, CRISPR-Cas systems can be 

primed by stress at the envelope, likely at least in part to counter actin coming foreign 

nucleic acids.

In line with this idea, a recent study of Streptococcus mutans, a cause of tooth decay, 

revealed that expression of the Type II-A CRISPR-Cas system was negatively affected by 

the stress response regulator VicK/R two-component system, which also positively regulated 

the expression of its Type I-C system (28-30). Additionally, it was observed that both of 

these CRISPR-Cas systems play a role in temperature stress tolerance. CRISPR-Cas locus 

deletion mutants exhibited reduced survival after heat exposure, and surprisingly, double 

mutants in both loci had a greater sensitivity to high temperature than mutants from either 

locus alone, suggesting independent activity of each system (30). Furthermore, CRISPR-Cas 

mutants in the type II-A system, but not the Type I-C system, displayed reduced growth 

upon exposure to membrane stress (detergents) as well as oxidative stress (paraquat and 

hydrogen peroxide) (30). Together, these data directly link CRISPR-Cas function to 

envelope stresses, and further suggest that VicK/R may differentially regulate each 

CRISPR-Cas system under specific conditions. This raises the questions of whether these 

systems work together in nucleic acid defense as well, if they have distinct defense activities 

beyond adaptive immunity, or if they diverged in function to fulfill distinct regulatory roles, 

perhaps by altering the envelope. Exactly how these CRISPR-Cas systems regulate stress 

tolerance remains to be elucidated, and continued study of this phenomenon in diverse 

bacteria will be necessary to identify common themes. It is reasonable to postulate that this 

occurs through physiological changes at the envelope, which acts as the frontline to 

counteract environmental stressors.
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CRISPR-Cas control of population behaviors

In addition to roles in the envelope stress response, CRISPR-Cas systems have been 

implicated in complex population behaviors that involve extensive envelope alterations, 

such as biofilm formation and fruiting body development (Figure 2). Before CRISPR-Cas 

systems were identified, three genes encoded by the Gram-negative saprophytic bacterium 

Myxococcusxanthus, were found to be necessary for sporulation and fruiting body 

development (31-33). Interestingly, the three genes, devT, devR, and devS, respectively 

correspond to cas8, cas7, and cas5from a type I CRISPR-Cas system. In the absence of devT 

(cas8), M. xanthus displayed delayed cellular aggregation, sporulation, and chemotaxis, as 

well as decreased transcript levels for a fruiting body transcriptional activator(31). While the 

mechanism of regulation has not been fully elucidated, the M. xanthus CRISPR array 

encodes two spacers that have identity to endogenous sequences on the bacterial 

chromosome. One has identity to an integrase of a Myxococcus bacteriophage, while the 

other has identity to a casgene in a different CRISPR-Cas locus, raising the intriguing 

possibility that the CRISPR-Cas system regulates endogenous targets (33). However, 

whether the CRISPR array itself is required for control of the aforementioned processes 

remains unknown.

M. xanthus regulation of fruiting body formation is further influenced by a type III-B 

CRISPR-Cas locus, which also regulates exopolysaccharide (EPS) production and type IV 

pili mediated chemotaxis (34). Not only is crRNA processing required for this regulatory 

activity, but the associated cas genes are as well (34). Further studies are needed to 

determine if and how the type I and III systems in M. xanthus interact to regulate fruiting 

body formation, as well as the mechanism of CRISPR-Cas mediated EPS regulation. It will 

be interesting to determine whether these functions evolved due to pressures to restrict 

mobile genetic elements, broader stresses at the envelope, or from entirely different 

environmental pressures.

Another population behavior involving extensive envelope changes, biofilm formation, is 

regulated by the type I CRISPR-Cas system in the opportunistic pathogen Pseudomonas 

aeruginosa (35, 36). A spacer within the P. aeruginosa CRISPR array has sequence 

similarity to a gene within a chromosomally integrated prophage (36). The CRISPR-Cas 

system interaction with this chromosomal element is necessary to represss warming motility 

and biofilm formation (35, 36). While it is not known how repression occurs, it is 

established as a sequence-specific activity requiring all interference components of this 

CRISPR-Cas system (36, 37). Given the importance of biofilm formation to antibiotic 

resistance and pathogenesis in P. aeruginosa, it is likely that this CRISPR-Cas system plays 

an important role in mediating infection of eukaryotic hosts.

CRISPR-Cas mediated regulation of host-pathogen interactions

While all bacteria encounter numerous environmental stresses, those bacteria that interact 

with eukaryotes, particularly mammalian hosts, are subjected to a variety of 

microenvironments and stressors as they traffic through the host and encounter the immune 

system (Figure 2). It is therefore an exciting proposition that CRISPR-Cas systems may be 
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utilized in response to these host-derived stresses and ultimately mediate host-microbe 

interactions.

Recently, it has been observed that CRISPR-Cas systems can modulate host immune 

evasion. The intracellular pathogen Francisellanovicida upregulates its type II-B CRISPR-

Cas system in the phagosome of host macrophages, a stressful environment containing a 

plethora of host defenses that attack the bacterial envelope (38). Components of this system 

(Cas9, tracrRNA, and a small CRISPR-Cas associated RNA [scaRNA]) regulate the 

production of an endogenous bacterial lipoprotein (BLP), a process necessary for 

strengthening the bacterial envelope (38, 39). Loss of these components results in increased 

envelope permeability and subsequently increases susceptibility to membrane damaging 

compounds, such as those found in the macrophage phagosome (39). Furthermore, 

regulation of the BLP dramatically alters how F. novicida survives within its mammalian 

host. In fact, cas9 mutants are attenuated in a mouse model by 103-104 fold compared to 

wild-type bacteria (38). Cas9 and its associated RNAs enable evasion of the host innate 

immune response through two distinct pathways, both of which originate due to changes at 

the membrane. In the absence of Cas9, the BLP transcript is de-repressed, and the bacteria 

are detected by the host pattern recognition receptor (PRR) Toll-like receptor 2 (TLR2), 

which initiates a proinflammatory response upon recognition of BLP(38). Additionally, 

repression of the BLP increases envelope integrity and reduces activation of the AIM2/ASC 

inflammasome, a protein complex involved in a programmed host cell death pathway that 

results in loss of Francisella's replicative niche (39). This CRISPR-Cas mediated evasion of 

both TLR2 and the AIM2/ASC inflammasome is critical for the ability of F. novicida to 

cause disease.

Consistent with the idea that CRISPR-Cas systems have evolved functions to mediate 

interactions with eukaryotic hosts, Neisseria meningitidis Cas9 is necessary for intracellular 

survival in human epithelial cells (38). Further, N. meningitidis Cas9 is also required for 

attachment and entry into these cells, processes dependent on surface components, 

suggesting that it may regulate envelope structures in this bacterium (38). Cas9 is likewise 

necessary for attachment and intracellular survival of Campylobacterjejuni, a cause of 

diarrheal disease and Guillain-Barré syndrome, in epithelial cells (40). Furthermore, C. 

jejunicas9 mutants displayed increased surface antibody binding, as well as increased 

envelope permeability and antibiotic susceptibility, all potentially linking Cas9 to the 

regulation of envelope components (40). Finally, it was observed bioinformatically that the 

presence of envelope sialylation correlates with a loss of the type II CRISPR-Cas system in 

multiple bacteria (including N. meningitidis, C. jejuni, and Haemophilus parainfluenzae) 

(40). Taken together, these data provide additional evidence for alternative functions of 

CRISPR-Cas systems in regulating envelope functions in response to environmental 

pressures.

Another example of a CRISPR-Cas system promoting host-microbe interactions is observed 

in the Gram-negative bacterium Xenorhabdus nematophila. Here, an orphan CRISPR RNA, 

termed NilD, is necessary for X. nematophila to colonize Steinemema spp. nematodes, a 

symbiotic relationship that facilitates the pathogenesis of these nematodes for their insect 

hosts (41). This is the first example of a CRISPR-Cas system modulating a mutualistic and 

Ratner et al. Page 5

Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tripartite interaction, and sheds light on the under explored complexity of CRISPR-Cas 

functions in broader ecological niches. Interestingly, this CRISPR-Cas system is expressed 

at a higher level in iron limiting conditions, furthering the concept that these machineries 

respond to extracellular changes and to events that are tightly regulated at the bacterial 

envelope (41). Additionally, the role of the crRNA from this system in colonization is 

independent of the effector protein Cas3, suggesting that the NilD CRISPR RNA has a 

unique function not involving canonical CRISPR-Cas activity (41). Further studies to 

elucidate the molecular mechanism of NilD-mediated nematode colonization will shed light 

not only on envelope changes that facilitate colonization, but also on how orphan crRNAs 

can potentially function as regulatory elements.

Similar to NilD, it was observed that the cas2 gene of the type II-B CRISPR-Cas system of 

Legionella pneumophila was required for intracellular survival within amoebae, and that 

cas2 was upregulated during intra-amoeba growth (42). Interestingly, no other cas gene was 

required, and cas2 was not required for growth in broth culture or intracellular infection of 

macrophages (42). Furthermore, expression of cas2 in a L. pneumophila strain that lacks a 

CRISPR-Cas system increased the strain's ability to replicate within amoebae, further 

indicating that Cas2 can act independently of canonical CRISPR-Cas function (43). Cas2 

orthologs have RNase and/or DNase activity, depending on the organism, and are involved 

in spacer acquisition (17, 44-47). Cas2 nuclease activity is dependent on a single catalytic 

residue, which is also required for L. pneumophila intra-ameobal survival (43). In. L. 

pneumophila, not only is Cas2 RNase activity more efficient than DNase activity, but each 

requires a different divalent ion (Mg2+ or Mn2+, respectively)(43). Thus, preferred nuclease 

activity may change with shifts in the bacterial environment. It is unclear which nuclease 

activity promotes survival in amoebae, and a comparison of the ion concentrations in 

different growth environments may shed light on this difference. Likewise, the precise role 

of Cas2 in promoting intracellular survival is still unknown; it is tempting to consider that 

Cas2 has functions in mRNA regulation, particularly given that residues in its nuclease 

motif are essential for its role in intra-amoeba survival. Studies to observe which nucleic 

acids associate with Cas2 in different stages and contexts of Legionella growth, as well as 

determining the environmental cues governing the independent regulation of this Cas 

protein, will significantly enhance the understanding of CRISPR-Cas function as a regulator 

of intracellular survival.

Are CRISPR-Cas systems more broadly involved in stress responses?

Intriguingly, CRISPR-Cas systems are also regulated by a broad range of environmental 

conditions not necessarily linked to envelope stress (Figure 1). For instance, in nutrient rich 

conditions, the leucine-responsive protein (Lrp) represses CRISPR-Cas expression in 

Salmonella enterica serovar Typhi (24). However, upon starvation, Lrp is inactivated and 

may de-repress CRISPR-Cas transcription (24). Additionally, the regulator LeuO is an 

activator of CRISPR-Cas expression in S. enterica and Escherichia coli (24, 25, 48). LeuO 

is active under low phosphate and stationary phase conditions, further suggesting that 

starvation responses can increase CRISPR-Cas expression (49, 50). It is interesting to 

speculate that expression of CRISPR-Cas systems may also be tied to nutrient conditions 

since prokaryotic organisms may actively seek out nucleic acids as a nutrient source (51). 
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While starvation is a stress in itself, it can indirectly result in dysregulation of membrane 

composition, as well as serve as a signal for prophages to become lytic (52, 53). The same is 

true for oxidative and osmotic stress, which have been shown to activate CRISPR-Cas 

systems and cause broad stress to the cell, including at the membrane (54, 55). Therefore, it 

is unclear whether there is a universal link between induction of CRISPR-Cas systems and 

envelope stress, or if these machineries may more broadly be induced by diverse stresses. In 

total, these examples provide further links between CRISPR-Cas activation and the response 

to environmental cues, which may occur through either their canonical or alternative 

functions.

In addition, CRISPR-Cas systems may act to regulate the cell's response against other 

diverse environmental stresses(38, 41, 54-57). For example, in E. coli, both the CRISPR 

array and Cas1 can participate in mediating DNA repair, while in Thermoproteustenax, a 

CRISPR-Cas system is activated in response to DNA damaging UV light (55, 56). 

Therefore, CRISPR-Cas systems may be responsible for alleviating the effects of stresses 

that damage the chromosome. In another example, the orphan CRISPR locus in 

Listeriamono cytogenes, rliB, acts to upregulate the production of the iron transport system 

feoAB, further demonstrating that CRISPR-Cas systems mediate physiological changes that 

are likely in response to environmental stress (57). Overall, these observations demonstrate 

that CRISPR-Cas systems may have evolved multiple functions to not only be activated in 

response to diverse environmental stress, but also to play active roles in preventing stress-

promoted damage.

Conclusion

CRISPR-Cas systems are complex machineries that act to protect the cell against potentially 

harmful mobile genetic elements. As such, it would be efficient to regulate expression of 

these systems to times when the threat of such elements is imminent. Accordingly, there are 

now multiple examples of increased activation of CRISPR-Cas systems in response to 

envelope stress, such as bacteriophage binding and envelope disruption, ultimately enabling 

cells to activate defenses against potential genetic threats.

We have summarized numerous examples of CRISPR-Cas systems having functions beyond 

defense against foreign nucleic acids, many of which involve regulation of envelope 

physiology and how the cell interacts with its host and environment. It is interesting to 

consider how these non-canonical functions may have arisen. These observed roles could 

have appeared due to independent pressures, or stochastically due to accidental acquisition 

of spacers targeting self. Furthermore, the relationships between CRISPR-Cas system 

subtype and their non-canonical functions are poorly understood. Since some bacterial 

species encode multiple CRISPR-Cas subtypes within the same genome, each unique system 

may represent a fine-tuning of nucleic acid defense, perhaps based on niche and 

environmental cues. Alternatively, the presence of multiple systems may be linked to non-

canonical functions, whereby some systems are preferentially used for nucleic acid defense 

and others to regulate bacterial physiology, or multiple systems facilitate different non-

canonical functions. We hypothesize that clues to these interactions lie at the envelope, and 

that by studying the non-canonical functions of CRISPR-Cas systems from this perspective, 
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we will gain insight into the evolution of both commensal and pathogenic bacteria to defend 

against their own pathogens and survive within their diverse replicative niches.

Acknowledgments

Due to the rapidly expanding field, we have undoubtedly omitted some relevant studies. We apologize in advance 
to those authors whose work we did not cite.

Financial support and sponsorship: DSW is supported by NIH grant R01-AI110701 and a Burroughs Wellcome 
Fund Investigator in the Pathogenesis of Infectious Disease award.

References

1. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and 
classification of the CRISPR–Cas systems. Nat Rev Micro. 2011; 9(6):467–77.

2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR Provides 
Acquired Resistance Against Viruses in Prokaryotes. Science. 2007; 315(5819):1709–12. [PubMed: 
17379808] 

3. Marraffini LA, Sontheimer EJ. CRISPR Interference Limits Horizontal Gene Transfer in 
Staphylococci by Targeting DNA. Science. 2008; 322(5909):1843–5. [PubMed: 19095942] 

4. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and 
archaea. Nature. 2012; 482(7385):331–8. [PubMed: 22337052] 

5. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, et al. RNA-guided RNA cleavage by a 
CRISPR RNA-Cas protein complex. Cell. 2009; 139(5):945–56. [PubMed: 19945378] 

*6. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic 
basis of CRISPR-Cas systems. Nat Rev Micro. 2014; 12(7):479–92. A complete resource 
describing the molecular action of CRISPR-Cas systems. 

7. Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev 
Micro. 2014; 12(5):317–26.

8. Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and 
bacteria. Nucleic Acids Res. 2013; 41(8):4360–77. [PubMed: 23470997] 

9. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly 
spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution. 
2005; 60(2):174–82. [PubMed: 15791728] 

10. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome 
repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England). 
2005; 151(Pt 8):2551–61.

11. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR 
RNAs guide antiviral defense in prokaryotes. Science. 2008; 321(5891):960–4. [PubMed: 
18703739] 

12. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, et al. 
Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol. 
2010; 77(6):1367–79. [PubMed: 20624226] 

13. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA 
maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011; 471(7340):602–
7. [PubMed: 21455174] 

*14. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, et al. Processing-
Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis. Molecular 
cell. 2013; 50(4):488–503. An elegant demonstration of a unique CRISPR-Cas system, whereby 
individual crRNAs contain their own promoter, rather than being processed from a single 
transcript. [PubMed: 23706818] 

*15. Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II 
CRISPR-Cas systems. Nucleic Acids Res. 2014; 42(10):6091–105. A comprehensive resource 
and forward thinking analysis of type II CRISPR-Cas systems. [PubMed: 24728998] 

Ratner et al. Page 8

Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



*16. Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas 
immunity systems. RNA Biology. 2013; 10(5):726–37. A complete analysis of known type II 
CRISPR-Cas systems and their molecular functions. [PubMed: 23563642] 

*17. Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by 
CRISPR-Cas immune systems. Molecular Microbiology. 2014; 93(1):1–9. An inclusive resource 
for the molecular mechanism of CRISPR-Cas adaptation. [PubMed: 24806524] 

18. Darwin AJ. Stress Relief during Host Infection: The Phage Shock Protein Response Supports 
Bacterial Virulence in Various Ways. PLoS Pathog. 2013; 9(7):e1003388. [PubMed: 23853578] 

19. Fallico V, Ross RP, Fitzgerald GF, McAuliffe O. Genetic response to bacteriophage infection in 
Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, 
D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. 
Journal of virology. 2011; 85(22):12032–42. [PubMed: 21880765] 

20. Raivio T. Identifying your enemies – could envelope stress trigger microbial immunity? Molecular 
Microbiology. 2011; 79(3):557–61. [PubMed: 21255103] 

21. Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, et al. Phage-induced expression of 
CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. 
PloS one. 2012; 7(5):e38077. [PubMed: 22666452] 

22. Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of 
Thermus thermophilus CRISPR systems after phage infection. Journal of molecular biology. 2010; 
395(2):270–81. [PubMed: 19891975] 

23. Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, Ke A, et al. Envelope stress is a 
trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol. 2011; 79(3):
584–99. [PubMed: 21255106] 

24. Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernandez AL, Vazquez A, Olvera L, Gutierrez-
Rios RM, et al. The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and 
leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol. 2011; 
193(10):2396–407. [PubMed: 21398529] 

25. Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M, Stratmann T, et al. H-NS-mediated 
repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription 
activator LeuO. Mol Microbiol. 2010; 77(6):1380–93. [PubMed: 20659289] 

26. Bardwell JC, Craig EA. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia 
coli. Proceedings of the National Academy of Sciences. 1987; 84(15):5177–81.

27. Yosef I, Goren MG, Kiro R, Edgar R, Qimron U. High-temperature protein G is essential for 
activity of the Escherichia coli clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas system. Proceedings of the National Academy of Sciences. 2011; 108(50):20136–
41.

28. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiological Reviews. 
1986; 50(4):353–80. [PubMed: 3540569] 

29. Senadheera D, Krastel K, Mair R, Persadmehr A, Abranches J, Burne RA, et al. Inactivation of 
VicK affects acid production and acid survival of Streptococcus mutans. J Bacteriol. 2009; 
191(20):6415–24. [PubMed: 19684142] 

*30. Serbanescu MA, Cordova M, Krastel K, Flick R, Beloglazova N, Latos A, et al. Role of the 
Streptococcus mutans CRISPR/Cas systems in immunity and cell physiology. J Bacteriol. 2014 
A new study revealing unique roles for the S mutans CRISPR-Cas systems in tolerance to 
temperature, oxidative, and envelope stress. 

31. Boysen A, Ellehauge E, Julien B, Sogaard-Andersen L. The DevT protein stimulates synthesis of 
FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus 
xanthus. J Bacteriol. 2002; 184(6):1540–6. [PubMed: 11872704] 

32. Thony-Meyer L, Kaiser D. devRS, an autoregulated and essential genetic locus for fruiting body 
development in Myxococcus xanthus. J Bacteriol. 1993; 175(22):7450–62. [PubMed: 7693658] 

33. Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. Regulation of dev, an operon that 
includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and 
repeats. J Bacteriol. 2007; 189(10):3738–50. [PubMed: 17369305] 

Ratner et al. Page 9

Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



*34. Wallace RA, Black WP, Yang X, Yang Z. A CRISPR with roles in Myxococcus xanthus 
development and exopolysaccharide production. J Bacteriol. 2014; 196(23):4036–43. A recent 
study demonstrating a regulatory function of the M. xanthus CRISPR-Cas systems in the 
regulation of exopolysaccharide production, fruiting body formation, and motility. [PubMed: 
25201946] 

35. Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. Interaction between 
bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas 
aeruginosa. J Bacteriol. 2009; 191(1):210–9. [PubMed: 18952788] 

36. Cady KC, O'Toole GA. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the 
Csy and Cas3 proteins. J Bacteriol. 2011; 193(14):3433–45. [PubMed: 21398535] 

37. Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O'Toole GA. The CRISPR/Cas adaptive 
immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and 
engineered phages. J Bacteriol. 2012; 194(21):5728–38. [PubMed: 22885297] 

*38. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. A CRISPR/Cas system mediates 
bacterial innate immune evasion and virulence. Nature. 2013; 497(7448):254–7. The first 
mechanistic observation of CRISPR-Cas mediated endogenous gene regulation with effects on 
the virulence of a bacterial pathogen. [PubMed: 23584588] 

39. Sampson TR, Napier BA, Schroeder MR, Louwen R, Zhao J, Chin CY, et al. A CRISPR-Cas 
system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. 
Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(30):
11163–8. [PubMed: 25024199] 

*40. Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, et al. A 
novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre 
syndrome. European journal of clinical microbiology & infectious diseases : official publication 
of the European Society of Clinical Microbiology. 2013; 32(2):207–26. The first demonstration 
that components of a CRISPR-Cas system are important for traits linked in virulence. 

*41. Veesenmeyer JL, Andersen AW, Lu X, Hussa EA, Murfin KE, Chaston JM, et al. NilD CRISPR 
RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes. Mol 
Microbiol. 2014; 93(5):1026–42. The first demonstration that components of a CRISPR-Cas 
system are involved in colonization of a symbiotic bacterium. [PubMed: 25041533] 

*42. Gunderson FF, Cianciotto NP. The CRISPR-associated gene cas2 of Legionella pneumophila is 
required for intracellular infection of amoebae. mBio. 2013; 4(2):e00074–13. An interesting 
observation that a component of the adaptive machinery of CRISPR-Cas systems is required for 
intracellular survival. [PubMed: 23481601] 

*43. Gunderson FF, Mallama CA, Fairbairn SG, Cianciotto NP. The Nuclease Activity of Legionella 
pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells. Infection and 
immunity. 2014 A study describing the molceular action that Cas2 may require to mediate 
Legionella survival in amoeba. 

44. Beloglazova N, Brown G, Zimmerman MD, Proudfoot M, Makarova KS, Kudritska M, et al. A 
novel family of sequence-specific endoribonucleases associated with the clustered regularly 
interspaced short palindromic repeats. The Journal of biological chemistry. 2008; 283(29):20361–
71. [PubMed: 18482976] 

45. Nam KH, Ding F, Haitjema C, Huang Q, DeLisa MP, Ke A. Double-stranded endonuclease 
activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats 
(CRISPR)-associated Cas2 protein. The Journal of biological chemistry. 2012; 287(43):35943–52. 
[PubMed: 22942283] 

46. Ka D, Kim D, Baek G, Bae E. Structural and functional characterization of Streptococcus 
pyogenes Cas2 protein under different pH conditions. Biochemical and biophysical research 
communications. 2014; 451(1):152–7. [PubMed: 25079131] 

47. Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation 
process in Escherichia coli. Nucleic Acids Res. 2012; 40(12):5569–76. [PubMed: 22402487] 

48. Hernandez-Lucas I, Gallego-Hernandez AL, Encarnacion S, Fernandez-Mora M, Martinez-Batallar 
AG, Salgado H, et al. The LysR-type transcriptional regulator LeuO controls expression of several 
genes in Salmonella enterica serovar Typhi. J Bacteriol. 2008; 190(5):1658–70. [PubMed: 
18156266] 

Ratner et al. Page 10

Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC. Global analysis of proteins synthesized 
during phosphorus restriction in Escherichia coli. J Bacteriol. 1996; 178(15):4344–66. [PubMed: 
8755861] 

50. Stratmann T, Pul U, Wurm R, Wagner R, Schnetz K. RcsB-BglJ activates the Escherichia coli 
leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol 
Microbiol. 2012; 83(6):1109–23. [PubMed: 22295907] 

51. Finkel SE, Kolter R. DNA as a Nutrient: Novel Role for Bacterial Competence Gene Homologs. 
Journal of Bacteriology. 2001; 183(21):6288–93. [PubMed: 11591672] 

52. Death A, Notley L, Ferenci T. Derepression of LamB protein facilitates outer membrane 
permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol. 
1993; 175(5):1475–83. [PubMed: 8444809] 

53. Hansen AM, Gu Y, Li M, Andrykovitch M, Waugh DS, Jin DJ, et al. Structural basis for the 
function of stringent starvation protein a as a transcription factor. The Journal of biological 
chemistry. 2005; 280(17):17380–91. [PubMed: 15735307] 

54. Strand K, Sun C, Li T, Jenney F Jr, Schut G, Adams MW. Oxidative stress protection and the 
repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and 
in related species. Arch Microbiol. 2010; 192(6):447–59. [PubMed: 20379702] 

55. Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R. Characterization of the CRISPR/Cas 
subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol. 
2012; 194(10):2491–500. [PubMed: 22408157] 

56. Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, et al. A dual function of the 
CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Molecular Microbiology. 
2011; 79(2):484–502. [PubMed: 21219465] 

57. Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding 
RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 2007; 
35(3):962–74. [PubMed: 17259222] 

Ratner et al. Page 11

Curr Opin Infect Dis. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key points

• CRISPR-Cas systems play roles in bacterial gene regulation.

• Regulatory roles of CRISPR-Cas systems are linked to processes occurring at 

the bacterial envelope.

• The ability to respond to envelope stress may have driven the involvement of 

CRISPR-Cas systems in gene regulation
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Figure 1. Activation of CRISPR-Cas systems in response to environmental changes
CRISPR-Cas systems can be activated in response to the broader environmental stressors of 

nutrient starvation, stationary phase growth, and iron limitation. Likewise, CRISPR-Cas 

systems can be activated directly in response to envelope stressors, such as phage infection 

and high temperature. These examples highlight the influence of the extracellular 

environment on the regulation of CRISPR-Cas systems.
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Figure 2. CRISPR-Cas mediated physiological changes
CRISPR-Cas systems influence bacterial physiology, altering population behavior and host-

microbe interactions through events that are centered at the envelope. In 

Francisellanovicida, Cas9, tracrRNA and scaRNA form a complex that represses a bacterial 

lipoprotein mRNA (BLP). Repression of the BLP increases membrane integrity, conferring 

resistance to membrane targeting antibiotics and enabling evasion of the host immune 

system, increasing virulence. Cas9 from Neisseria meningitidis and Cas2 from Legionella 

pneumophila type II systems increase host-cell attachment and intracellular survival. In 

Xenorhabdus nematophila, Cas6 and a CRISPRRNA (crRNA) of the type I-E system are 

required for host colonization. In Myxococcusxanthus, the type III CRISPR-Cas system 

regulates exopolysacchride production (EPS) to enable chemotaxis, while negatively 

effecting fruiting body formation. Conversely, Cas5, Cas7, and Cas8 of its type III CRISPR-

Cas system are necessary for fruiting body formation and sporulation. Finally, in 

Pseudomonas aeruginosa, all interference components of the Type I CRISPR system are 

required for biofilm formation and swarming motility. These examples provide a framework 

for understanding the alternative functions of CRISPR-Cas systems from interactions at the 

prokaryotic envelope.
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