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Abstract

In the era of big data, we can easily access information from multiple views which may be 

obtained from different sources or feature subsets. Generally, different views provide 

complementary information for learning tasks. Thus, multi-view learning can facilitate the 

learning process and is prevalent in a wide range of application domains. For example, in medical 

science, measurements from a series of medical examinations are documented for each subject, 

including clinical, imaging, immunologic, serologic and cognitive measures which are obtained 

from multiple sources. Specifically, for brain diagnosis, we can have different quantitative 

analysis which can be seen as different feature subsets of a subject. It is desirable to combine all 

these features in an effective way for disease diagnosis. However, some measurements from less 

relevant medical examinations can introduce irrelevant information which can even be 

exaggerated after view combinations. Feature selection should therefore be incorporated in the 

process of multi-view learning. In this paper, we explore tensor product to bring different views 

together in a joint space, and present a dual method of tensor-based multi-view feature selection 

(DUAL-TMFS) based on the idea of support vector machine recursive feature elimination. Experiments 

conducted on datasets derived from neurological disorder demonstrate the features selected by our 

proposed method yield better classification performance and are relevant to disease diagnosis.

Index Terms

tensor; brain diseases; multi-view learning; feature selection

I. Introduction

Many neurological disorders are characterized by ongoing injury that is clinically silent for 

prolonged periods and irreversible by the time symptoms first present. New approaches for 

detection of early changes in subclinical periods would afford powerful tools for aiding 

clinical diagnosis, clarifying underlying mechanisms and informing neuroprotective 

interventions to slow or reverse neural injury for a broad spectrum of brain disorders, 

including HIV infection on brain [10], [12], Alzheimer’s disease [30], Parkinson’s Disease, 

HHS Public Access
Author manuscript
Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 April 30.

Published in final edited form as:
Proc IEEE Int Conf Data Min. 2014 December ; 2014: 40–49. doi:10.1109/ICDM.2014.26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schizophrenia, Depression, etc. Early diagnosis has the potential to greatly alleviate the 

burden of brain disorders and the ever increasing costs to families and society. For example, 

total healthcare costs for those 65 and older, are more that three times higher in those with 

Alzheimer’s and other dementias [15].

As diagnosis of neurological disorder is extremely challenging, many different diagnosis 

tools and methods have been developed to obtain a large number of measurements from 

various examinations and laboratory tests. Information may be available for each subject for 

clinical, imaging, immunologic, serologic, cognitive and other parameters, as shown in 

Figure 1. In Magnetic Resonance Imaging (MRI) examination, for example, multiple 

strategies are used to interrogate the brain. Volumetric measurements of brain parenchymal 

and ventricular structures, and of major tissue classes (e.g. white matter, gray matter and 

CSF) can be derived. Volumetric measurements can also be quantified for a large number of 

individual brain regions and landmarks. While a single MRI examination can yield a vast 

amount of information concerning brain status at different levels of analysis, it is difficult to 

consider all available measures simultaneously, since they have different physical meanings 

and statistic properties. Capability for simultaneous consideration of measures coming from 

multiple groups is potentially transformative for investigating disease mechanisms and for 

informing therapeutic interventions.

As mentioned above, medical science witnesses everyday measurements from a series of 

medical examinations documented for each subject, including clinical, imaging, 

immunologic, serologic and cognitive measures. Each group of measures characterize the 

health state of a subject from different aspects. Conventionally this type of data is named as 

multi-view data, and each group of measures form a distinct view characterizing subjects in 

one specific feature space. An intuitive idea is to combine them to improve the learning 

performance, while simply concatenating features from all views and transforming a multi-

view data into a single-view data would fail to leverage the underlying correlations between 

different views. We observe that tensors are higher order arrays that naturally generalize the 

notions of vectors and matrices to multiple dimensions.

In this paper, we propose to use a tensor-based approach to model features (views) and their 

correlations hidden in the original multi-view data. Taking the tensor product of their 

respective feature spaces corresponds to the interaction of multiple views. In the multi-view 

setting for neurological disorder, or for medical studies in general, however, a critical 

problem is that there may be limited subjects available yet introducing a large number of 

measurements. Within the multi-view data, not all features in different views are relevant to 

the learning task, and some irrelevant features may introduce unexpected noise. The 

irrelevant information can even be exaggerated after view combinations thereby degrading 

performance. Therefore, it is necessary to take care of feature selection in the learning 

process. Feature selection results can also be used by researchers to find biomarkers for 

brain diseases. Such biomarkers are clinically imperative for detecting injury to the brain in 

the earliest stage before it is irreversible. Valid biomarkers can be used to aid diagnosis, 

monitor disease progression and evaluate effects of intervention [13].
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Considering feature selection, most of the existing studies can be categorized as filter 

models [17], [20] and embedded models based on sparsity regularization [7], [6], [26], [27]. 

While in this paper, we focus on wrapper models for feature selection. We propose a dual 

method of tensor-based multi-view feature selection (DUAL-TMFS), taking care of both the input 

space and the reconstructed tensor product space and exploiting their underlying 

correlations. In addition, our proposed method can naturally extend to many views and 

nonlinear kernels. Empirical studies on datasets collected from the Chicago Early HIV 

Infection Study [19] demonstrate that the proposed method can obtain better accuracy for 

classification tasks on multi-view feature selection than compared approaches. While the 

empirical studies are based on medical data from a clinical application in HIV infection on 

brain, the DUAL-TMFS technique developed for detecting brain anomalies have considerable 

promise for early diagnosis for other neurological disorders.

For the rest of the paper, we first state the problem of multi-view feature selection for 

classification and introduce related notations in section II. Then we introduce our DUAL-TMFS 

algorithm in section III. Experimental results are discussed in section IV. In section VI, we 

conclude the paper.

II. Problem Definition

In this section, we state the problem of multi-view feature selection for classification and 

introduce the notation. Table I lists some basic symbols that will be used throughout the 

paper. Note that although we use the same symbol to represent a set of data instances and 

the space that contains them, it is always clear from the context what we mean.

Suppose we have a multi-view classification task with n labeled instances represented from 

m different views: , i ∈ {1, ⋯, n}, υ ∈ {1, ⋯, 

m}, where Iυ is the dimensionality of the υ-th view, and yi ∈ {− 1, 1} is the class label of the 

i-th instance. We denote ,  = {y1, ⋯, yn}, 

and  = {( 1, y1), ⋯, ( n, yn)}, respectively. The task of multi-view classification is to 

find a classifier function f : ℝI1 × ⋯ × ℝIm → {−1, 1} that correctly predicts the label of an 

unseen instance  = {x(1), ⋯, x(m)}.

One of the major challenges of multi-view classification comes from the fact that the 

combination of multiple views can potentially incur redundant and even conflicting 

information which is unfavorable for classifier learning. In order to tackle this problem, 

feature selection has been the focus of interest for quite some time and much work has been 

done in a supervised setting. A straightforward solution is to handle each view separately 

and conduct feature selection independently. This paradigm is based on the assumption that 

each view is sufficient on its own to learn the target concept [29]. However, individual 

views can often provide complementary information to each other leading to improved 

performance in real-world applications.

More generally, learning that involves conceptual multi-view is not just providing tools to 

analyze the data in multiple ways, which is more about managing the correlations among 

different views. Most previous feature selection approaches focus on exploiting multi-view 
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features simultaneously to facilitate the learning process, which usually use the 

reconstructed data to represent the original multi-view information and perform analysis, 

such as the method (a) and method (b) shown in Figure 2. However, intrinsic properties of 

raw multi-view features and hidden relationships between the original data and its 

reconstruction are totally ignored in these methods.

Taking into account the latent interactions among views and the redundancy triggered by 

multiple views, in this paper, we aim at combining multiple features in a principled manner 

and performing feature selection to obtain a consensus and discriminative low-dimensional 

feature representation. In particular, we will leverage the relationship between the original 

multi-view features and reconstructed data to facilitate the implementation of feature 

selection.

III. Proposed Method

As noted in the introduction, one of the key issues for multi-view classification is to choose 

an appropriate tool to model features (views) and their correlations hidden in the original 

multi-view features, since this directly determines how information will be used. The 

concept of tensor serves as a backbone for incorporating multi-view features into a 

consensus representation by means of tensor product, where the complex multiple 

relationships among views are embedded within the tensor structures. By mining structural 

information contained in the tensor, knowledge of multi-view features can be extracted and 

used to establish a predictive model. In this paper, we propose a dual method of tensor-based 

multi-view feature selection (DUAL-TMFS) in the tensor product space inspired by the idea of 

support vector machine recursive feature elimination (SVM-RFE) [9]. Our goal is to select 

useful features in conjunction with the classifier and simultaneously exploit the correlations 

among multiple views.

A. Tensor Propagation for Multiple Views

We start by introducing some related concepts and notation about tensors, and conceptually 

analyzing our motivation of utilizing tensor to organize all the multi-view information.

Tensors are higher order arrays that generalize the notions of vectors (first-order tensors) 

and matrices (second-order tensors), whose elements are indexed by more than two indices. 

Each index expresses a mode of variation of the data and corresponds to a coordinate 

direction. The number of variables in each mode indicates the dimensionality of a mode. 

The order of a tensor is determined by the number of its modes. The use of this data 

structure has been advocated in virtue of certain favorable properties. A key to this work is 

to borrow the tensor structure to fuse all possible dependence relationships among different 

views. We first recall the definition of tensor product (i.e., outer product) of two vectors and 

then give a formal mathematical definition of the tensor, which provides an intuitive 

understanding of the algebraic structure of the tensor.

Definition 1 (Tensor product)—The tensor product of two vectors x ∈ ℝI1 and y ∈ ℝI2, 

denoted by x ⊗ y, represents a matrix with the elements (x ⊗ y)i1,i2 = xi1 yi2.
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Definition 2 (Tensor)—A tensor is an element of the tensor product of vector spaces, 

each of which has its own coordinate system.

The tensor product of vector spaces forms an elegant algebraic structure for the theory of 

tensors. Such structure endows the tensor with the inherent advantage in representing real-

world data, which naturally results from the interaction of multiple factors. Each mode of 

the tensor corresponds to one factor. For this reason, we conclude that the use of tensorial 

representation is a reasonable choice for adequately capturing the possible relationships 

among multiple views of data. Another advantage in representing all the multi-view 

information in the tensor data structure is that we can flexibly explore those useful 

knowledge in the tensor product space by virtue of tensor-based techniques.

Based on the definition of tensor product of two vectors, we can then express x ⊗ y ⊗ z as a 

third-order tensor in ℝI1 ⊗ ℝI2 ⊗ ℝI3, of which the elements are defined by (x ⊗ y ⊗ 

z)i1, i2, i3 = xi1yi2zi3 for all values of the indices. Proceeding in the same way,  = (xi1,…,im) 

is used to denote an mth-order tensor  ∈ ℝI1×⋯×Im and its elements. For υ ∈ {1, ⋯, m}, 

Iυ is the dimensionality of  along the υ-th mode. To indicate the object resulting by fixing 

the υ-th mode index of  to be iυ, we introduce the generic subscript : and denote by 

:,…,:,iυ,:,…,:.

In addition, we define the inner product and norm associated with tensor, which will be used 

in the following.

Definition 3 (Inner product)—The inner product of two same-sized tensors ,  ∈ 

ℝI1×⋯×Im is defined as the sum of the products of their elements:

(1)

Most importantly, note that for tensors  = x(1)⊗⋯⊗x(m) and  = z(1) ⊗⋯⊗z(m), it holds 

that

(2)

For the sake of brevity, in the following we will use the notation  and 

 to denote x(1) ⊗ ⋯ ⊗ x(m) and 〈x(1), z(1)〉 ⋯ 〈x(m), z(m)〉, respectively.

Definition 4 (Tensor norm)—The norm of a tensor  ∈ ℝI1 ×⋯×Im is defined to be the 

square root of the sum of all elements of the tensor squared, i.e.,

(3)
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As can be seen, the norm of a tensor is a straightforward generalization of the usual 

Frobenius norm for matrices and of the Euclidean or l2 norm for vectors.

B. Multi-view SVM in the Tensor Setting

Following the introduction above to the concepts of tensors, we describe how multi-view 

classification can be consistently formulated and implemented in the framework of the 

standard SVM in the tensor setting.

By the reasoning given in section III-A, we use tensor product operation to bring m-view 

feature vectors of each instance together, leading to a tensorial representation for common 

structure across multiple views, and allowing us to adequately diffuse relationships and 

encode information among multi-view features. In this manner, we have essentially 

transformed the multi-view classification task from an independent domain of each view 

{( (1), ⋯, (m)), } to a consensus domain { (1) × ⋯ × (m), } as a tensor 

classification problem.

For the sake of simplicity, we are slightly abusing notation by using i to denote 

. Then the dataset of labeled multi-view instances can be represented as  = 

{( 1, y1), ⋯, ( n, yn)}. Note that each multi-view instance i is an mth-order tensor that 

lies in the tensor product space ℝI1 ×⋯×Im, but one must keep in mind that each element of 

i is the tensor product of multi-view features in the input space, which we denote by 

xi(i1,…,im). Now, based on the definitions of inner product and tensor norm, we can formulate 

multi-view classification as a global convex optimization problem in the framework of the 

standard SVM as follows:

(4)

(5)

(6)

where  can be regarded as the weight tensor of the separating hyperplane in the tensor 

product space ℝI1 ×⋯×Im, b is the bias, ξi is the error of the i-th training sample, and C is 

the trade-off between the margin and empirical loss. As such it can be solved with the use of 

optimization techniques developed for SVM, and the weight tensor of  can be obtained 

from

(7)

where αi is the dual variable corresponding to each instance. The resulting decision function 

is
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(8)

where  denotes a test multi-view instance given by the tensor product of its multi-view 

features x(υ) for all υ ∈ {1, ⋯, m}. We simply call the model as multi-view SVM.

Despite this property, there are two major drawbacks incurred by the combination of 

multiple views. First, the dimensionality of the resulting tensor in a multi-view dataset can 

be extremely large, which grows at an exponential rate with respect to the number of views. 

Direct application of the multi-view SVM will suffer from the curse of dimensionality. 

Second, such tensors may contain much redundant and irrelevant information due to the 

intrinsic multi-view property, which will negatively influence the performance of the 

learning process.

Therefore, in order to implement multi-view classification using multi-view SVM, it is 

necessary to perform dimensionality reduction by feature extraction or selection to 

concentrate multi-view information and improve tensorial representation. Many tensor-

based algorithms have been proposed as dimensionality reduction for classification 

problems. However, to the best of our knowledge, all of them discard the original multi-

view features after constructing tensors. In the following, we investigate their relationship to 

each other and proceed to develop a wrapper feature selection approach DUAL-TMFS.

C. Dual Feature Selection in the Tensor Product Space

Based on the multi-view SVM classifier in the tensor setting, in this subsection, we approach 

the problem of identifying and concentrating multi-view knowledge via tensors by 

proposing the linear DUAL-TMFS method. We will extend it to the nonlinear case in the next 

subsection.

Inspired by SVM-RFE [9], we can see from Eq. (8) that the inner product of weight tensor 

 = (wi1,…,im) and input tensor  = (xi1,…,im) determines the value of f ( ). Intuitively, the 

input features that are weighted by the largest absolute values influence most on the 

classification decision, and correspond to the most informative features. Therefore, the 

absolute weights |wi1,…,im| or the square of the weights (wi1,…,im)2 can be used as feature 

ranking criterion to select the most discriminative feature subset. Based on this observation, 

we can conduct feature selection on multi-view SVM.

Let us denote the ranking score of each feature xi1,…,im as ri1,…,im. Our target is to perform 

feature elimination in the tensor product feature space by

(9)

SVM-RFE performs SVM-based feature selection in the vector space, as the method (a) 

shown in Figure 2. A straightforward approach, which can be seen as a natural tensorial 

extension of SVM-RFE, is to directly perform feature elimination in the tensor product 

space using the following feature ranking criterion:
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(10)

As the method (b) shown in Figure 2, however, the number of variables wi1,…,im is 

equivalent to the dimensionality of the resulting tensors in tensor product space. Obviously, 

it is computationally intractable to enumerate all values of wi1,…,im in such a high-

dimensional tensor product space. On the other hand, the original multi-view features 

usually contain much redundant and irrelevant features. It can be further exaggerated over 

the manipulation of tensor product, thereby degrading the generalization performance. In 

order to overcome these problems, it would be desirable to remove irrelevant features before 

manipulating the tensor product.

Considering that each view has specific statistical properties and its intrinsic physical 

meanings, we conduct multi-view feature selection in the input space and maintain 

independent rankings of features in each view. We leverage the weight coefficients  in the 

tensor product space to facilitate the implementation of feature selection in the input space. 

That is, for the υ-th view, supposing , the ranking score of the feature 

, iυ ∈ {1, ⋯, Iυ} in the input space is , which means  is a function of wi1,…,im.

Now we can formulate the problem in terms of the process, for which we need to minimize 

the following function in each view υ ∈ {1, ⋯, m}:

(11)

An alternative approach is to evaluate the value of  from wi1,…,im by virtue of the 

relationship between the input space and the tensor product space. Based on the definition of 

the tensor product, we can see that the feature  in the input space will diffuse to 

:,…,:,iυ,:,…,: in the tensor product space, thus to :,…,:,iυ,:,…,:. Intuitively, it means that the 

contribution of  determining the value of decision function f ( ) transfers to 

:,…,:,iυ,:,…,:. For this reason, the ranking score of  can be estimated from the elements 

of :,…,:,iυ,:,…,:. To realize such purpose, we set  equal to the sum of the square of all 

elements in :,…,:,iυ,:,…,:, which is given as follows:

(12)

By substituting the exact solution given in Eq. (7) into the right-hand side of this equality, 

we find that
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(13)

In this way, compared with performing feature selection in the tensor product space, the 

computational complexity is largely reduced, since irrelevant and redundant features can be 

detected by the classifier constructed in the tensor product space, but removed in the input 

space, which concentrates the multi-view information within tensor operations. Conducting 

feature selection in the input space is superior in terms of better readability and 

interpretability, because it maintains the physical meanings of the original features without 

any manipulation. This property has its significance in many real-world applications such as 

finding clinical markers to a specific disease.

Nevertheless, although this is expected to improve tensorial representation of multi-view 

data and perform feature selection for multi-view classification, it can result in potential 

over-fitting, since the number of variables wi1,…,im grows at an exponential rate as m (i.e., 

the number of views) increases. Especially in medical studies, there may be limited subjects 

available yet introducing a large number of measurements in many views. Therefore, the 

problem reduces to improving the generalization capability of multi-view SVM in the tensor 

setting, for which we need a more sophisticated approach to reduce the number of variable 

wi1,…,im (i.e., the number of elements of  that need to be estimated) and facilitate feature 

selection without incurring extensive computation.

In the context of supervised tensor learning, tensor decompositions are usually used to 

reduce the number of unknown tensors (i.e., the dimensionality of tensor), and meanwhile 

avoid overfitting. Following assumptions in the supervised tensor learning framework [24], 

here we assume that  can be decomposed as , where 

. By applying Eqs. (2) and (3), we can then represent the optimization 

problem in Eqs. (4)–(6) as:

(14)

(15)

(16)

thus the optimal decision function is:

(17)
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Clearly, in this manner, the number of variables with respect to  is greatly reduced from 

 to . Moreover, from Eq. (17), we can see that the influence of input feature 

 on the value of decision function f ( ) constructed in the tensor product space is 

determined only by its corresponding weight coefficient , i.e., the feature ranking 

criterion defined in Eq. (12) can be simplified as:

(18)

Theorem 1—The ranking criterion Eq. (18) is equivalent to Eq. (12) for each view.

Proof: Based on the definition of tensor product, we have . 

Substituting this into Eq. (12), it can be written as:

(19)

where . For the υ-th mode, the multiplier P(− υ) is constant and 

non-negative, thus has no effect on ranking orders. The proof is complete.

Now we illustrate how to solve the optimization problem in Eqs. (14)–(16). In an iterative 

manner, we can update the variables associated with a single mode at each iteration. That is, 

for the υ-th mode, we need to fix variables in other modes and solve the following 

optimization problem:

(20)

(21)

(22)

where P(−υ) and  are constants that denote  and 

.
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Let  and , then the optimization problem in 

Eqs. (20)–(22) is equivalent to the following problem:

(23)

(24)

(25)

which reduces to the standard linear SVM, and thus can be efficiently solved by available 

algorithms, obtaining w(υ) as follows:

(26)

where  is the dual variable corresponding to each instance in the υ-th mode, obtained in 

Eqs. (23)–(25).

It is illustrated in Figure 2 that, the method (c) leveraging the ranking criterion Eq. (18) 

jointly considers the input space and the tensor product space, and effectively exploits their 

underlying relationship. We summarize our proposed dual method of multi-view feature 

selection (DUAL-TMFS) in Figure 3.

D. Extension to Nonlinear Kernels

As discussed above, tensor is an effective approach of capturing correlations across multiple 

views. However, correlations between features within the same view are not considered by 

taking the tensor product of features in different views. In such case, we can replace the 

linear kernel with a nonlinear kernel. Through implicitly projecting features into a high 

dimensional space within each view, a nonlinear kernel can work together with the tensor 

tools to exploit correlations across different views as well as those within each view.

In the case of nonlinear SVMs, we first represent optimization problem in Eqs. (23)–(25) in 

the dual form as:

(27)

(28)

(29)
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where H is the matrix with elements .

To compute the change in cost function caused by removing input component iυ in the υ-th 

mode, one leaves the α’s unchanged and one re-computes matrix H. This corresponds to 

computing , yielding matrix H(−iυ), where the notation (−iυ) means 

that component iυ has been removed in the υ-th mode. Thus, the feature ranking criterion for 

nonlinear SVMs is:

(30)

The input corresponding to the smallest difference  shall be removed. In the linear case, 

 and . Therefore , 

which is equivalent to the one we proposed in the previous section for linear SVMs.

IV. Experiments

In this section, we conduct experiments on datasets collected from HIV infected brain 

disease, to evaluate our proposed method in different aspects. In section IV-C, we have 

seven methods compared on the classification tasks composing of two views. Experiments 

extend to more than two views in section IV-D. In nonlinear cases, our method can still be 

effectively applied, as shown in section IV-E.

A. Data Collections

In order to evaluate the performance of multi-view feature selection for classification, we 

compare methods on datasets collected from the Chicago Early HIV Infection Study [19], 

which have 56 HIV and 21 seronegative control subjects enrolled. For each subject, 

hundreds of clinical, imaging, immunologic, serologic and cognitive measures were 

documented. This illustrates the curse of dimensionality because there are far more variables 

of interest than available subjects. Thus, it is important to incorporate feature selection in the 

learning process for disease diagnosis.

There are seven groups of measurements investigated in our datasets, including 
neuropsychological tests, flow cytometry, plasma luminex, freesurfer, overall brain 

microstructure, localized brain microstructure, brain volumetry. Each group can be 

regarded as a distinct view that partially reflects subject status, and measurements from 

different medical examinations can provide complementary information. Simultaneous 

consideration of all the data, exploiting correlations among multiple measurements can be 

transformative for investigating disease mechanisms and for informing therapeutic 

interventions. Different views are sampled to form multiple combinations. The datasets used 

for our experiments are summarized in Table II. Additionally, features are normalized 

within [0, 1].
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B. Compared Methods

In order to demonstrate the effectiveness of our multi-kernel learning approach, we compare 

the following methods:

• CF refers to single-kernel SVM applying on concatenated features.

• TPF refers to single-kernel SVM applying on the tensor product feature space [11]. 

By taking the tensor product of features from different views, adequate correlations 

among different views are exploited.

• LINEAR-MKL is a conventional multi-kernel method [5]. Different kernels can naturally 

correspond to different views. Through an optimization framework, weights can be 

learned that reflect the relative importance of different views. It implements a linear 

combination of multiple kernels.

• RFE-CF denotes the method that directly applies SVMR-FE on the concatenation of 

all the features [9].

• RFE-TPF denotes the method that SVM-RFE is applied on the tensor product feature 

space [21].

• MIQP-TPFS refers to the method of iterative tensor product feature selection with 

mixed-integer quadratic programming [21]. It explicitly considers the cross-domain 

interactions between two views in the tensor product feature space. The bipartite 

feature selection problem is formulated as an integer quadratic programming 

problem. A subset of features is selected that maximizes the sum over the 

submatrix of the original weight matrix.

• DUAL-TMFS is the proposed dual method of tensor-based multi-view feature selection 

in the tensor product feature space. It effectively exploits the correlations among 

different views in the tensor product feature space, and also efficiently completes 

feature selection in the input space at the same time.

A detailed comparison between these methods is summarized in Table III, against four 

dimensions on whether the schemes can conduct feature selection, discriminate against 

different views, be applicable to many views and compatible with nonlinear kernels. Note 

that sparsity regularization models [8], [27] are not considered as we focus on wrapper 

models in this paper, without looking into embedded models.

For a fair comparison, we use LibSVM [3] with linear kernel as the base classifier for all the 

compared methods. In the experiments, 3-fold cross validations are performed on balanced 

datasets. The soft margin parameter C is selected through a validation set. For all the 

methods with feature selection, the number of features selected is explicitly set to 50%.

C. Two Views

We first study the effectiveness of our proposed method on the task of learning from two 

views. Results on D2.1 and D2.2 are shown in Table IV, where the average performances of 

the compared methods with standard deviations are reported with respect to four evaluation 

metrics: accuracy, precision, recall and F1-measure.

Cao et al. Page 13

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In comparison of the top three methods not conducting feature selection, there is no clear 

advantage for any of the methods. Performance can vary depending on datasets, if the 

redundancy coming from different views is not taken care of. Thus, it is necessary to select 

discriminative features and eliminate redundant ones when multiple views are combined.

While considering feature selection, DUAL-TMFS significantly improves the accuracy over other 

methods by effectively pruning redundant and irrelevant features. On the other hand, simply 

applying SVM-RFE method on either the input space (i.e., RFE-CF) or the tensor product 

feature space (i.e., RFE-TPF) cannot achieve better performance. For RFE-CF, correlations 

between multiple views are not exploited when selecting features; while for RFE-TPF, features 

are directly selected in the tensor product space, leaving the potential of overfitting. MIQP-TPFS 

can take advantage of feature selection by maximizing the sum over the weight submatrix in 

the tensor product feature space.

D. Many Views

In real-world applications, there are usually more than two views. It is desirable to leverage 

all of them simultaneously. However, RFE-TPF and MIQP-TPFS need to explicitly compute the 

tensor product feature space, resulting in complexity and space complexity exponential to 

the number of views. They are therefore no longer feasible in the case of many views, due to 

high dimensionality of the tensor product feature space. Although DUAL-TMFS also exploits the 

correlations among different views in the tensor product feature space, it can efficiently 

complete feature selection in the input space. Thus, our proposed method have time 

complexity and space complexity linear with respect to the number of views and can 

naturally extend to more than two views. The experimental results are summarized at D3.1-

D6.2 in Table IV.

As can be seen, neither CF nor RFE-CF performs well. This shows that simply concatenating all 

features across multiple views does not work well. We next consider schemes that 

discriminate different views. TPF performs badly as it computes the tensor product feature 

space, introducing some potentially irrelevant features coming from the correlations among 

multiple views. In general, LINEAR-MKL performs well in most cases by linearly weighting 

multiple kernels. However, by further performing feature selection, DUAL-TMFS achieves a 

significant improvement over other methods and always ranks first on F1 and accuracy, 

indicating that compared with approaches not distinguishing different views or not 

conducting feature selection, a better subset of discriminative features can be selected for 

classification by considering the correlations across multiple views based on tensor.

E. Nonlinear Kernels

As discussed above, tensor is an effective approach of capturing correlations across multiple 

views. However, correlations between features within the same view are not considered by 

taking the tensor product of features in different views. In such case, we can replace a linear 

kernel with a nonlinear kernel. Through implicitly projecting features into a high 

dimensional space within each view, a nonlinear kernel can work together with the tensor 

tools to exploit correlations across different views as well as that within each view.
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Here we replace the linear kernel with the RBF kernel for all the compared methods, and 

show experimental results in Figure 4. LINEAR-MKL is not applicable in the nonlinear case. 

Neither do TPF, RFE-TPF and MIQP-TPFS, because they need to explicitly compute the high 

dimensional feature space which is intractable when we apply a nonlinear kernel. It 

illustrates that DUAL-TMFS still outperforms other methods in the nonlinear case, in the sense of 

accuracy and F1-measure.

F. Feature Evaluation

Table V lists the most discriminative measures selected by DUAL-TMFS. Our results are 

validated by literature on brain diseases. The Karnofsky Performance Status is the most 

widely used health status measure in HIV medicine and research [16]. [2] observes CD4+ T 

cell depletion during all stages of HIV disease. Mycoplasma membrane protein (MMP) is 

identified as a possible cofactor responsible for the progression of AIDS. The fronto-orbital 

cortex, one of the cerebral cortical areas, is mainly damaged in AIDS brains [28]. Whole 

brain MTR is reduced in HIV-1-infected patients [18]. [1] concludes HIV dementia is 

associated with specific gray matter volume reduction, as well as with generalized volume 

reduction of white matter.

V. Related Work

Currently, representative methods for multi-view learning can be categorized into three 

groups [29]: co-training, multiple kernel learning, and subspace learning. Generally, the co-

training style algorithm is a classic approach for semi-supervised learning, which trains 

alternatively to maximize the mutual agreement on different views. Multiple kernel learning 

algorithms combine kernels that naturally correspond to different views, either linearly [14] 

or nonlinearly [25], [4] to improve learning performance. Subspace learning algorithms 

learn a latent subspace, from which multiple views are generated. Multiple kernel learning 

and subspace learning are generalized as co-regularization style algorithms [22], where the 

disagreement between the functions of different views is taken as one part of the objective 

function to be minimized. Overall, by exploring the consistency and complementary 

properties of different views, multi-view learning is more effective than single-view 

learning.

One of the key challenges of multi-view classification comes from the fact that the 

incorporation of multiple views will bring much redundant and even conflicting information 

which is unfavorable for classifier learning. In order to tackle this problem, feature selection 

has been the focus of interest and much work has been done. Most of the existing studies 

can be categorized as filter models [17], [20] and embedded models based on sparsity 

regularization [7], [6], [26], [27]. While in this paper, we focus on wrapper models for 

feature selection. The problem of feature selection in the tensor product space is formulated 

as an integer quadratic programming problem in [21]. However, this method is limited to the 

interaction between two views and hard to extend to many views, since it directly selects 

features in the tensor product space resulting in the curse of dimensionality. [23] studies 

multi-view feature selection in the unsupervised setting.
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We notice that support vector machine recursive feature elimination (SVM-RFE) can 

intelligently select discriminative features using the weight vector produced by support 

vector machine [9], but it can only be applied on a single-view data. In this paper, we use 

tensor product to organize multi-view features and study the problem of multi-view feature 

selection based on SVM-RFE and tensor techniques. Different from existing approaches, we 

leverage the correlations between the original data and the reconstructed tensors and develop 

a wrapper feature selection approach.

VI. Conclusion

In this paper, we studied the problem of multi-view feature selection. We explored tensor 

product to bring different views together in a joint space, and presented a dual method of 

tensor-based multi-view feature selection (DUAL-TMFS). Empirical studies in brain disease 

demonstrate the features selected by our proposed method yield better classification 

performance and are relevant to disease diagnosis.

Our proposed method has broad applicability for biomedical applications. Capabilities for 

simultaneous analysis of multiple feature subsets has transformative potential for yielding 

new insights concerning risk and protective relationships, for clarifying disease mechanisms, 

for aiding diagnostics and clinical monitoring, for biomarker discovery, for identification of 

new treatment targets and for evaluating effects of intervention.
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Fig. 1. 
An example of multi-view learning in medical studies.
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Fig. 2. 
Schematic view of the key differences among three strategies of multi-view feature 

selection. Method (a) concatenates features from all views in the input space. Method (b) 

converts multiple views into a tensor and directly performs feature selection in the tensor 

product space. Our method (c) efficiently conducts feature selection in the input space while 

effectively leveraging relationships between the original data and its reconstruction in the 

tensor product space.
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Fig. 3. 
The DUAL-TMFS algorithm
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Fig. 4. 
Classification performance in the nonlinear case.
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TABLE I

List of symbols

Symbol Definition and Description

s each lowercase letter represents a scale

v each boldface lowercase letter represents a vector

M each boldface capital letter represents a matrix

each calligraphic letter represents a tensor, set or space

⊗ denotes tensor product

〈․, ․〉 denotes inner product

|․| denotes absolute value

‖․‖F denotes (Frobenius) norm of vector, matrix or tensor
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TABLE IV

Classification performance “average score ” in the linear case. For each dataset, the top-3 methods are 

without feature selection.
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TABLE V

Top-3 measures selected in each view.

neuropsychological tests : Karnofsky Performance Scale, NART FSIQ, Rey Trial

flow cytometry : Tcells 4+8-, 3+56-16+NKT Cells 4+8-, Lymphocytes

plasma luminex : MMP-2, GRO, TGFa

freesurfer : Cerebral Cortex, Thalamus Proper, CC Mid Posterior

overall brain microstructure : MTR-CC, MTR-Hippocampus, MD-Cerebral-White-Matter

localized brain microstructure : MTR-CC Mid Anterior, FA-CC Anterior, MTRCC_Central

brain volumetry : Norm Peripheral Gray Volume, BPV, Norm Brain Volume
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