
SledgeHMMER: a web server for batch searching the
Pfam database
Giridhar Chukkapalli1, Chittibabu Guda1 and Shankar Subramaniam1,2,*

1San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505,
USA and 2Departments of Bioengineering, Chemistry and Biochemistry, University of California, San Diego, 9500
Gilman Drive, La Jolla, CA 92093, USA

Received February 15, 2004; Revised and Accepted March 24, 2004

ABSTRACT

The SledgeHMMER web server is intended for
genome-scale searching of the Pfam database with-
out having to install this database and the HMMER
software locally. The server implements a parallelized
version of hmmpfam, the program used for searching
the Pfam HMM database. Pfam search results have
been calculated for the entire Swiss-Prot and TrEmbl
database sequences (�1.2million) on 256 processors
of IA64-based teragrid machines. The Pfam database
canbesearchedinlocal,glocalormergedmode,using
either gathering or E-value thresholds. Query se-
quences are first matched against the pre-calculated
entries to retrieve results, and those without matches
areprocessed through anewsearchprocess.Results
are emailed in a space-delimited tabular format upon
completion of the search. While most other Pfam-
searching web servers set a limit of one sequence
per query, this server processes batch sequences
with no limit on the number of input sequences. The
web server and downloadable data are accessible
from http://SledgeHmmer.sdsc.edu.

INTRODUCTION

Searching for conserved domains has become an integral part
of several bioinformatics data analysis pipelines. The Pfam
protein families database [(1); http://pfam.wustl.edu] contains
the single largest public collection of conserved functional
domains and hence is integrated into many bioinformatics
resources. The current version (release 12) of the Pfam-A
database contains 7316 HMM domains, making it an indis-
pensable resource for protein functional annotation (2). How-
ever, the size of the Pfam database is quite large (�600 MB)
and genome-scale searching of protein sequences against this
database is a highly compute-intensive task. Hence, with
the exception of the Sanger Center web server (http://www.

sanger.ac.uk/Software/Pfam), all other Pfam-searching
servers permit submission of only one protein sequence at
a time (http://pfam.wustl.edu, http://pfam.jouy.inra.fr, http://
pfam.cgb.ki.se). Currently, the Sanger Center web server lim-
its batch submission to 1000 sequences at a time. Other than
this, for batch searching, users are required to install the Pfam
database and the HMMER software [(3); http://hmmer.wustl.
edu) locally. Given the size and dynamic nature of this data-
base (14 updates in the last two years), it is not convenient to
maintain the latest versions of these tools locally. Moreover,
the hmmpfam program used for searching the Pfam database
is very slow and memory intensive (on Solaris machines, the
processing speed is about 10 sequences per 1 h of CPU time),
making this process a bottleneck in several data analysis
pipelines.

Web servers that enable batch searching of the Pfam data-
base are extremely beneficial to the user community, especi-
ally to those without local access to high-end computational
power, memory and disk space. To this end we have devel-
oped a parallelized version, as well as an optimized single-
processor version, of hmmpfam from release 2.3.2 of the
HMMER software, as described in the next section. Using
these programs, we present the SledgeHMMER web server
(http://SledgeHmmer.sdsc.edu), which is capable of batch
searching a large number of protein sequences concurrently.

DESIGN AND IMPLEMENTATION

The current web service is mainly intended for genome-scale
searching of the Pfam-A database. Searches are possible for
different Pfam-searching modes such as local, glocal and
merged, using either gathering or E-value thresholds. To
expedite the response time, we developed a database contain-
ing pre-calculated Pfam search results. Query sequences are
matched against the pre-calculated entries using hexadecimal
hashing methods from the MD5 Perl module, and those with-
out matches are separated out. Results for matching sequences
are retrieved from the pre-calculated database while, for
other sequences, a new search process is initiated using our

*To whom correspondence should be addressed. Tel: +1 858 822 0986; Fax: +1 858 822 3782; Email: shankar@ucsd.edu

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original
place of publicationwith the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative
work this must be clearly indicated.

ª 2004, the authors

Nucleic Acids Research, Vol. 32, Web Server issue ª Oxford University Press 2004; all rights reserved

W542–W544 Nucleic Acids Research, 2004, Vol. 32, Web Server issue
DOI: 10.1093/nar/gkh395

http://SledgeHmmer.sdsc.edu
http://pfam.wustl.edu
http://www
http://pfam.wustl.edu
http://pfam.jouy.inra.fr
http://
http://hmmer.wustl
http://SledgeHmmer.sdsc.edu


improved hmmpfam program. Results are emailed in a space-
delimited tabular format upon completion of the search.

Parallelizing the hmmpfam algorithm

Computing batch searches against the Pfam database is a two-
dimensional (2D) problem, i.e. searching N query sequences
againstM Pfam HMMs. Thus, this problem can be parallelized
across any dimension or across both dimensions. A minor
disadvantage of parallelizing across the M dimension is that
a global gather needs to be performed at the end of the
computation to identify the best matched HMM models.
Along the N dimension the computation is completely inde-
pendent, however; due to the variation in the query sequence
lengths, the traditional message passing interface (MPI) tech-
nique of splitting the file into equal numbers of sequences may
result in load imbalance. Hence, the best way to parallelize
code along the N dimension is to stripmine the query
sequences as the processors finish working on their previous
ones. This can be achieved using an MPI technique in which
one processor reads the query sequence file and sends the
sequences to all others.

Here, we have parallelized the HMMER code along the N
dimension (query sequences) using a Unix-based file-locking
technique. This implementation requires all the processors,
nodes and computers working on a single problem to have
access to a file system that honors Unix file locking. So far, we
have tested the implementation on AIX, Linux, NFS and GPFS
file systems and found our program to work correctly. The
advantages of parallelizing with file locking are that (i) new
processes can join or leave the process pool in the middle of
computing; (ii) almost perfect load balancing can be achieved;
(iii) processors with different clock speeds running different
operating systems can be part of the same pool; and (iv) sys-
tems do not need to have MPI or parallel virtual machine
(PVM) installed. Since the parallelized subroutines are written
in a separate file as function calls, very little change is needed
to the original HMMER code. These parallel routines are
generic and, hence, can be used to parallelize other programs
with similar computational requirements, such as the BLAST
suite of programs. A brief description of the parallel function
calls is provided below.

All the processes joining the work pool will call

iteratorInit(int strt, char* lockFile);

The first process that calls this subroutine will create the lock-
File and write the starting index. This is the index from which
sequence stripmining happens. The rest of the processes open
the file stream to the lockFile. Then, inside the main work
loop, every process calls

int iteratorNext();

resulting in every process getting a unique next available job
(index). Each process computes the homology search for the
sequence index matching the unique index obtained. These
steps are iterated until no more sequences are left in the query
sequence file. Outside the work loop at the end, all the pro-
cesses call

iteratorStop();

which will close the lockFile. The user has to ensure a unique
lockFile for each new query sequence file. If for some reason

the work pool is stopped in the middle of a query sequence file,
it can continue from the same point by using the same lockFile.
In this version of the hmmpfam program, all processes
write search results to a single output file. To minimize syn-
chronization overheads, each process writes the output into a
temporary buffer and writes once per sequence into the output
file. For the sake of convenience, additional synchronization
routines are provided for locking and unlocking.

This parallel algorithm has been tested on several platforms
and file systems including Intel IA32, IA64 Linux platforms,
power3 and power4-based AIX platforms and Sparc4-based
Solaris platforms. The code was run on 800 processors of
power4-based datastar machines and 256 processors of
IA64-based teragrid machines located at the San Diego Super-
computer Center (SDSC) to test scalability issues.

Single-processor optimization of hmmpfam

Initially, we utilized version 2.2g of HMMER. Performance
analysis revealed that the main computational kernel was
accessing the 2D arrays with a wrong stride. Correcting this
resulted in doubling of the performance; however, the
HMMER developer has rectified this issue in release 2.3.2.
In addition, HMMER reads the database file from disk for
every sequence it searches. This is extremely inefficient for
batch searches. We have corrected this by reading the whole
database into memory once and conducting searches from
memory.

Performance testing

We compared our improved IA64 single-processor hmmpfam
with the equivalent program from the original HMMER 2.3.2
release on an Itanium II IA64 processor (Figure 1). As
expected, the per sequence CPU time for our program is
reduced up to 10-fold in batch searches, while in the case
of the original 2.3.2 release, it is linear to the number of
sequences. Performance difference in single-sequence proces-
sing could be attributed to compilation differences. Perform-
ance differences resulting in the slope difference of the two
plots may be due to the elimination of the need to reload the

Figure 1. Comparison of CPU times between the original (release 2.3.2) and
improved hmmpfam binaries.

Nucleic Acids Research, 2004, Vol. 32, Web Server issue W543



Pfam database from disk for every sequence in our case. Pro-
cessing data from disk can be an order of magnitude slower
than processing in memory.

Scaling tests were conducted on a 128-node Itanium II IA64
cluster. We used a fixed set of 500 sequences as the test set and
ran on 1–32 processors. As expected, the time required to
process a given set of sequences reduces linearly with the
number of processors (data not shown). This also indicates
that the parallelization overheads using our method are
minimal. However, as the ratio of the number of sequences
to the number of processors reduces to one, load imbalances
due to the processing time differences between different
sequences start to dominate, reducing parallel efficiency.

Pre-calculated results

We have generated pre-calculated Pfam search results for the
entireSwiss-Prot andTrEmblprotein sequences (�1.2million),
using our parallelized ‘hmmpfam’ on 256 processors of IA64-
based teragrid machines located at the SDSC. Pfam searches
have been performed separately, using either gathering
thresholds or E-value cutoffs against glocal (Pfam_ls) or
local (Pfam_fs) alignment models. Glocal and local search
results were parsed and merged by removing all local search
hits that are completely overlapped by glocal search hits.

Input and output formats

The program takes only FASTA-formatted sequences as input
and searches can be done in any search mode, i.e. local, glocal
or merged. The maximum E-value allowed for searches is 10.
SledgeHMMER results are emailed to the user in a space-
delimited, one hit per line tabular format (Figure 2). The
response time for receiving results depends on the number
of query sequences and the fraction of these existing in the
pre-calculated entries.

DISCUSSION

The SledgeHMMER server provides a unique service to the
scientific community wishing to batch search the Pfam data-
base on the web. To the best of our knowledge, this is the only
such server that has no limit on the number of input sequences.
The current pre-calculated database covers�70% of the avail-
able non-redundant protein sequence space, and we plan to add
additional new sequences from other resources such as the NR
database from GenBank and SEQRES from the PDB (Protein
Data Bank) in the future. Our pre-calculated database is
updated for every new release of the Pfam database or
SPTr databases (Swiss-Prot + TrEMBL) in order to provide
access to the most current data. Single-processor optimized
hmmpfam binaries and the source code can be downloaded
from the current web server. In the future, we intend to make
such binaries available for many additional operating systems
and propagate these modifications to other HMMER programs
as well.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Pfam consortium
and the HMMER developers for making available such valu-
able tools to the scientific community.

REFERENCES

1. Bateman,A., Coin,L., Durbin,R., Finn, R.D., Hollich,V., Griffiths-
Jones,S., Khanna,A., Marshall,M., Moxon,S., Sonnhammer,E.L.,
Studholme,D.J., Yeats,C. and Eddy,S.R. (2004) The Pfam protein
families database. Nucleic Acids Res., 32, D138–D141.

2. Guda,C., Fahy,E. and Subramaniam,S. (2004) MITOPRED: a genome-
scale method for prediction of nuclear-encoded mitochondrial
proteins. Bioinformatics, 10.1093/bioinformatics/bth171.

3. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics,
14, 755–763.

Figure 2. Screen shot showing SledgeHMMER results and output format.

W544 Nucleic Acids Research, 2004, Vol. 32, Web Server issue


