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Abstract

Recent studies showed that specific isoprenoid modification may be critical for RhoB subcellular 

location and function. Therefore, we determined whether the function of the highly related RhoA 

protein is also critically dependent on specific isoprenoid modification: (a) in contrast to 

observations with RhoB or Ras proteins, where farnesylated and geranylgeranylated versions 

showed differences in subcellular location, both prenylated versions of RhoA showed the same 

plasma membrane and cytosolic location; (b) a farnesylated version of activated RhoA(63L) 

retained the same diverse functions as the normally geranylgeranylated RhoA(63L) protein, and 

both proteins show indistinguishable abilities to stimulate gene expression, cause growth 

transformation of NIH 3T3 mouse fibroblasts, to stimulate the motility of T47D human breast 

epithelial cells, and to block HIV-1 viral replication and gene expression; and (c) cells expressing 

farnesylated RhoA retained sensitivity to the growth inhibition caused by inhibition of 

geranylgeranyltransferase I, indicating that other proteins are critical targets for inhibitors of 

geranylgeranylation.

Introduction

The Rho family of small GTPases constitutes a major branch of the Ras superfamily. As 

with Ras, Rho proteins function as regulated GTP/GDP switches and cycle between an 

active GTP-bound form and an inactive GDP-bound form (reviewed in Ref. (1). To date, at 

least 18 distinct mammalian Rho family GTPases (2) have been identified and include 

RhoA, RhoB, RhoC, RhoD, RhoE/Rnd3, Rnd1, Rnd2, RhoG, Rac1, Rac2, Rac3, Cdc42, 

TTF, Chp (3), TCL (4), and Rif (5). Of these, RhoA, Rac1, and Cdc42 have been the most 

intensively studied.

Rho family GTPases are mediators of diverse cellular functions:

a. They are regulators of actin cytoskeletal organization. Whereas Cdc42 promotes 

filopodia formation, Rac1 promotes formation of lamellipodia or membrane ruffles, 
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and RhoA triggers actin stress fiber and focal adhesion formation (reviewed in 

Refs. 1, 2). In contrast, RhoE causes a disruption of stress fibers and cell rounding 

(6, 7). Consequently, Rho GTPase function can influence cell-cell and cell-

substratum interactions, which in turn can modulate cell movement. For example, 

we showed that Rac1 and Cdc42 activation promoted the motility and invasion in 

vitro of T47D human breast epithelial cells (8). Activated Rac1 promoted T-cell 

invasion in vitro (9). Overexpression of RhoC has been shown to promote the 

metastatic properties of melanoma cells in vivo (10). Thus, inhibitors of Rho 

GTPases have been considered as novel anticancer drugs (11).

b. Rho GTPases are regulators of gene expression and stimulate the activity of various 

transcription factors, including NF-κB3 (12, 13), SRF (14), and c-Jun (15, 16).

c. Rho GTPases can regulate cell cycle progression and cellular proliferation. For 

example, constitutive activation of RhoA, Rac1, and Cdc42 has been shown to 

promote tumorigenic transformation of rodent fibroblasts, and the function of these 

GTPases is required for the transforming activity of Ras and other oncoproteins 

(reviewed in Ref. 2). Finally, among a diverse spectrum of other functions, we 

determined recently that RhoA activation antagonizes HIV-1 viral replication and 

gene expression (17, 18). In light of the diverse signaling and biological activities 

of RhoA, it is not surprising that a large spectrum of functionally diverse proteins 

have been identified as downstream effector targets of RhoA (1, 2, 19).

In addition to GDP/GTP cycling, Rho GTPase function is also believed to be critically 

dependent on posttranslational modification by isoprenoid lipids. Similar to Ras, Rho 

GTPases also terminate in a COOH-terminal CAAX tetrapeptide sequence motif (where C is 

cysteine, followed by two aliphatic amino acids, ending in a variant amino acid; reviewed in 

Refs. 20, 21). This sequence signals for covalent attachment of an isoprenoid lipid group to 

the cysteine of the CAAX sequence, followed by endoprotease removal of the -AAX 

residues and carboxymethylation of the now terminal prenylated cysteine. These 

modifications promote the association of Ras and Rho GTPases with plasma and 

intracellular membranes.

The CAAX motif of Ras and Rho GTPases signal for covalent modification by either of two 

types of isoprenoid lipids (reviewed in Refs. 20, 21). The FTase enzyme catalyzes the 

addition of a C15 farnesyl group to a subset of CAAX sequences, when X is serine, 

methionine, cysteine, alanine, or glutamine. For CAAX sequences where X is leucine or 

isoleucine, the GGTaseI enzyme catalyzes addition of the more hydrophobic C20 

geranylgeranyl moiety. All isoforms of Ras are modified by farnesylation, whereas the 

closely related R-Ras and TC21/R-Ras2 proteins are modified by geranylgeranylation. A 

majority of Rho GTPases is modified by the geranylgeranyl group (e.g., RhoA, Rac, and 

Cdc42), whereas some are modified by a farnesyl group (e.g., RhoE/Rnd3; Ref. 22), and 

others can be modified by both isoprenoids (e.g., RhoB; Refs. 23, 24).

3The abbreviations used are: NF-κB, nuclear factor-κB; SRF, serum response factor; FTase, farnesyltransferase; GGTaseI, 
geranylgeranyltransferase I; FTI, farnesyltransferase inhibitor; GGTI, geranylgeranyltransferase I inhibitor; HA, hemagglutinin; GFP, 
green fluorescent protein; SRF, serum response factor; WT, wild type.
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Prenylation may critically influence subcellular location of a protein as well as regulate its 

ability to interact with other proteins. The contribution of CAAX-signaled processing to 

protein function has been best studied with Ras proteins (25–27). Mutation of the CAAX 

motif of Ras proteins prevents prenylation and abolishes plasma membrane association, 

causing a complete loss of oncogenic Ras transforming activity. This information has led to 

the development of FTIs to block Ras processing and function, and hence, are being 

developed as anticancer drugs to treat ras mutation-positive human cancers. To address the 

importance of specific isoprenoid modification for Ras function, CAAX mutants of Ras that 

undergo modification by geranylgeranylation were generated. Although the subcellular 

location of these variants was altered, with localization to intramembrane compartments, 

geranylgeranylated versions of oncogenic Ras retained potent transforming activity (28, 29). 

Therefore, it appears that oncogenic Ras function can be facilitated by modification with 

either isoprenoid group.

The importance of protein prenylation for Rho GTPase function has been best evaluated 

with RhoB. Activated RhoB can promote growth transformation, and a nonprenylated 

version of activated RhoB showed a loss of transforming activity (30, 31). However, it 

retained the ability to stimulate SRF activation. Thus, some but not all RhoB function is 

dependent on prenylation. However, in contrast to the observations with Ras, RhoB function 

appears to be critically dependent on specific isoprenoid function. RhoB appears to be 

modified primarily by farnesylation in vivo. However, FTI treatment caused an 

accumulation of geranylgeranylated RhoB (32). Prendergast and colleagues (33, 34) showed 

that geranylgeranylated RhoB inhibited the growth of rodent and human cells. Thus, 

whereas farnesylated RhoB is a growth-promoting protein, geranylgeranylated RhoB is an 

apoptosis-inducing protein. Consistent with these opposing functions, farnesylated RhoB 

function was shown to be required for Ras transformation (30), whereas geranylgeranylated 

RhoB blocked Ras transforming activity (33). Consequently, the FTI-induced formation of 

inhibitory geranylgeranylated RhoB has been proposed as the basis for the antitumor activity 

of FTIs.

RhoA and RhoB share significant sequence identity (>85%). For example, they share 

complete identity in core effector domain sequences (residues 32–40) required for 

interaction with downstream effectors. RhoA and RhoB exhibit greatest sequence 

divergence in residues immediately NH2-terminal to the CAAX motif. Because these 

sequences contain elements that influence the targeting of Ras and Rho GTPases to specific 

membrane compartments, it is not surprising that RhoA and RhoB exhibit different 

subcellular locations. One study found that only a minor fraction of RhoA was associated 

with the plasma membrane, with the majority of the protein located in the cytosol (35). In 

contrast, RhoB was associated with early endosomes and a prelysosomal compartment. 

However, a recent analysis of GFP-tagged proteins in live cells determined that RhoB was 

located predominantly at the plasma membrane, and it was suggested that the earlier 

localization of RhoB to endosomes may be an artifact of fixation (36). In contrast, RhoA 

showed a predominantly cytosolic location.

RhoA is modified exclusively by geranylgeranylation. Whether all RhoA function is 

critically dependent on prenylation and whether modification by farnesylation can support 
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RhoA function has not been determined. Additionally, pharmacological inhibitors of 

GGTaseI, the enzyme that modifies RhoA and other Rho GTPases, have been shown to 

possess antitumor activity, possibly by blocking the function of RhoA (37–40). RhoA 

function is mediated by interaction with a multitude of downstream effectors, and the 

precise location of RhoA may critically influence proper interaction with effectors (1, 2, 19). 

In the present study, we determined the requirement for modification by geranylgeranylation 

for RhoA function, whether modification by farnesylation could support the diverse 

biological functions RhoA, and whether RhoA is the critical target for GGTIs. We 

determined that RhoA function was dependent on prenylation, but that a farnesylated form 

of RhoA was unchanged in function and subcellular location. Thus, our observations 

contrast with those of RhoB and show that RhoA function is not dependent on modification 

by a specific isoprenoid. Finally, cells expressing farnesylated RhoA were still sensitive to 

growth inhibition by GGTI treatment, indicating that RhoA is not the only critical target for 

GGTIs.

Results

A Mutation in the CAAX Motif of RhoA Renders the Protein Sensitive to FTase Inhibitor 
Treatment but Does Not Alter Subcellular Location

RhoB has been found to exhibit distinct and opposing functions when modified by different 

isoprenoids (33, 34). This alteration in function has been attributed to a distinct subcellular 

location of the farnesylated and geranylgeranylated forms of RhoB. To evaluate the 

importance of prenylation for RhoA function, we generated two variants of the activated and 

transforming RhoA(63L) mutant protein:

a. The WT CAAX sequence (CLVL) was mutated to the CAAX sequence of the 

farnesylated H-Ras protein [CVLS; designated RhoA(63L)-CVLS]. This CAAX 

motif has been determined to be specific to signal for farnesylation as opposed to 

geranylgeranylation (21, 41).

b. We also generated a nonprenylated version by mutating the isoprenoid-accepting 

cysteine into a serine [SLVL; designated RhoA(63L)-SLVL]. We verified that the 

two mutant proteins were stable and could be expressed at levels comparable with 

that of the WT protein. Transiently or stably transfected NIH 3T3 cells showed that 

RhoA(63L) and RhoA(63L)-CVLS were expressed at comparable levels (Fig. 1A). 

Interestingly, in both transiently and stably transfected cells, we observed that the 

RhoA(63L)-SLVL was expressed at higher levels than RhoA(63L).

We next determined the subcellular location of the different CAAX variants of RhoA and 

then verified that the RhoA(63L)-CVLS protein was now modified by farnesylation. For 

these analyses, we generated GFP-tagged versions of each RhoA(63L) protein to evaluate 

subcellular localization in live cells. Similar to what has been described previously (35, 36), 

RhoA(63L)-WT showed both a punctate, perinuclear, and a plasma membrane staining 

distribution. GFP-tagged RhoA(63L)-CVLS showed a similar pattern and distribution (Fig. 

1B). Thus, modification by a different isoprenoid did not cause a detectable change in 

subcellular location.
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Because previous studies of RhoB localization found differences when evaluated in live 

cells when compared with fixed cells (36, 42), we also evaluated the location of HA epitope-

tagged versions of these two proteins in fixed cells (Fig. 1C). Essentially similar results were 

seen, where both WT and CVLS versions of RhoA(63L) showed punctate, perinuclear 

staining patterns. In contrast, the nonprenylated RhoA(63L)-SLVL mutant showed a diffuse 

cytoplasmic localization. We also evaluated subcellular distribution by high-speed 

fractionation into cytosolic S100 soluble and membrane-containing P100 particulate 

fractions. Both RhoA(63L)-WT and RhoA(63L)-CVLS were found predominantly in the 

P100 fraction, although RhoA(63L)-CVLS showed a reproducibly greater percentage of 

protein in the S100 fraction (data not shown). Thus, in contrast to what has been described 

for RhoB, mutation of the CAAX motif to alter the specific isoprenoid modification did not 

cause a significant change in subcellular location.

We then determined whether the distribution of the CVLS mutant was sensitive to inhibition 

by a FTI. As expected, treatment with the FTI-2153 inhibitor caused a redistribution of 

RhoA(63L)-CVLS to a diffuse cytoplasmic and nuclear location, whereas the distribution of 

RhoA(63L)-WT was unchanged (Fig. 1B). Conversely, treatment with the GGTI-2166 

GGTaseI inhibitor resulted in a diffuse distribution of RhoA(63L)-WT but did not alter the 

perinuclear distribution of RhoA(63L)-CVLS. Similar results were also seen with the HA 

epitope-tagged proteins, where RhoA(63L)-CVLS, but not RhoA(63L)-WT, was sensitive to 

FTI treatment, as measured by a change in mobility in SDS-PAGE (data not shown). We 

conclude that RhoA(63L)-CVLS is modified by farnesylation, but this alternative 

prenylation did not result in the significant change in subcellular location that has been 

described for the different prenylated forms of RhoB (32).

RhoA-mediated Transcriptional Activation of SRF, NF-κB, and the Cyclin D1 Promoter Is 
Dependent on Prenylation

Previously, it has been shown that RhoA can activate several transcription factors, such as 

SRF (14) and NF- κB (12), and can stimulate transcription from the cyclin D1 promoter 

(43). Therefore, to determine whether RhoA requires the modification by a specific prenyl 

group for activation of these factors, transient expression analyses were done using reporter 

plasmids, where expression of the luciferase gene is regulated by minimal promoters that 

contain SRF- or NF-κB-responsive elements or by the human cyclin D1 promoter. We 

found that RhoA(63L)-WT and RhoA(63L)-CVLS expression caused comparable activation 

of SRF (~ 10-fold), NF-κB (~11-fold), and cyclin D1 (~3-fold; Fig. 2). In contrast, the 

RhoA(63L)-SLVL mutant failed to cause significant stimulation in any assay. Thus, 

although prenylation is essential for the activation of these pathways, farnesylated and 

geranylgeranylated RhoA activate similar signaling pathways.

Prenylation Is Essential for the Growth-promoting Properties of RhoA(63L) but Specific 
Isoprenoid Modification Is Not

To assess the importance of prenylation in RhoA transforming activity, we analyzed the 

activity of the two mutant proteins using two transformation assays. Because Rho family 

members are weakly transforming in traditional NIH 3T3 focus assays, we and others have 

used a cooperation focus formation assay to assess the transforming activity of Rho proteins 
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and their activators (44–46). The cooperation assay allows for the synergistic enhancement 

of focus-forming ability when activated RhoA(63L) is co-expressed with a weakly 

transforming Raf-1 protein [Raf(340D)]. As we described previously, cultures transfected 

with the RhoA(63L) expression construct alone showed minimal transforming activity (< 10 

foci/dish), whereas the coexpression of RhoA(63L) with Raf(340D) resulted in a 5-fold 

above additive increase in the appearance of transformed foci (Fig. 3; Ref. 47). The 

farnesylated RhoA(63L)-CVLS mutant showed a comparable level of focus-forming 

activity, whereas the unprocessed RhoA(63L)-SLVL mutant showed greatly impaired focus-

forming activity.

Next, we determined the ability of the prenylation mutants to promote growth factor-

independent cell proliferation. Previously, we showed that RhoA(63L)-expressing NIH 3T3 

cells continue to proliferate in growth medium supplemented with low serum (44). Both the 

RhoA(63L)- and RhoA(63L)-CVLS-expressing cells retained the ability to grow in 0.5% 

serum after 21 days (Fig. 4A) and retained a refractile morphology and formed multilayered 

cultures (Fig. 4B). In contrast, both the empty vector- and RhoA(63L)-SLVL-transfected 

cells had become quiescent and formed a monolayer of non-refractile cells. These results 

demonstrate that prenylation is crucial for the growth-promoting property of RhoA(63L), 

but either isoprenoid modification could support this activity.

Prenylation Is Important for the Ability of RhoA to Promote Motility of T47D Cells

We showed previously that activated Rac1 or Cdc42 could promote increased motility and 

invasive properties of T47D human breast epithelial cells in vitro (8). Recently, we have 

also determined that activated RhoA(63L) can also cause these same changes (48).4 We 

therefore examined the importance of prenylation modification in mediating this RhoA 

function. For these analyses, we established mass populations of T47D cells stably 

transfected with expression vectors encoding each of the RhoA(63L) proteins. A comparable 

level of expression of each RhoA(63L) protein was verified by Western blot analyses (data 

not shown). As described previously, we used a haptotactic assay where transwells were 

coated on the underside of the filter with collagen. Each cell population was then plated on 

the transwell filter and allowed to migrate for 24 h through the pores of the transwell to the 

collagen-coated underside. RhoA(63L)- and RhoA(63L)-CVLS-expressing cells both caused 

an enhancement of motility across the transwell as compared with the vector control (Fig. 

5). This enhancement was not seen with cells expressing the unprenylated SLVL mutant. 

Therefore, similar to our observations with the NIH 3T3 transformation assays, activated 

RhoA(63L)-stimulated migration of T47D cells was also dependent on prenylation but could 

be facilitated by either farnesylation or geranylgeranylation.

Suppression of HIV-1 Replication by RhoA Requires Prenylation

We next wanted to determine whether geranylgeranylation of RhoA was crucial for RhoA 

inhibition of HIV-1 replication (18). For these analyses, we used two transient expression 

assays to evaluate the ability of the mutant RhoA(63L) proteins to block HIV-1 function:

4P. J. Keely, manuscript in preparation.
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a. We observed previously that the RhoA(63L) mutant inhibited HIV-1 replication, as 

measured by the production of infectious virus and of virion-associated reverse 

transcriptase activity (80 and 50% reduction, respectively). A similar level of 

inhibition was seen with the RhoA(63L)-CVLS mutant in both assays (80 and 60% 

reduction), whereas RhoA(63L)-SLVL was impaired significantly (30% reduction) 

in this ability (Fig. 6A).

b. We measured the ability of the prenylation mutants to block gene expression from 

the HIV-1 genome. These analyses used a recombinant HIV-1 virus where the 

luciferase gene is inserted in the HIV-1 Nef open reading frame (49). Similar to 

RhoA(63L), RhoA(63L)-CVLS also greatly impaired luciferase gene expression, 

whereas RhoA(63L)-SLVL showed a complete loss of this inhibitory activity (Fig. 

6B). This suggests the importance of RhoA prenylation, but not the specific 

isoprenoid modification, in mediating inhibition of HIV-1 function.

Farnesylated RhoA Does Not Protect Cells from Growth Inhibition Caused by Inhibition of 
GGTaseI

Pharmacological inhibition of GGTaseI has been shown to inhibit normal and tumor cell 

proliferation, in part by blocking progression through G1 of the cell cycle (50). Rho 

GTPases are substrates for GGTaseI and have been shown to be required for proliferation 

through G1 (51, 52). Hence, geranylgeranylated Rho GTPases constitute logical targets for 

the inhibitory action of GGTIs. One approach for evaluating this possibility is to determine 

whether variants of Rho GTPases that are insensitive to GGTIs can protect cells from GGTI 

growth inhibition. In this study, we have shown that farnesylation can support the diverse 

signaling and biological functions of RhoA. Thus, this farnesylated variant of RhoA can 

serve as a useful reagent to evaluate whether RhoA is a critical target of GGTIs.

To determine whether RhoA is an important target for the inhibitory activity of GGTIs, we 

compared the sensitivity of NIH 3T3 cells stably expressing RhoA(63L)-WT and 

RhoA(63L)-CVLS. Similar to what has been described previously, treatment of cells 

expressing RhoA(63L)-WT with GGTI-2166 caused a dose-dependent inhibition of 

proliferation. RhoA(63L)-WT expressing cells cultured in growth medium supplemented 

with 3 μm GGTI-2166 showed an ~30% reduction in cell number and an ~80% reduction at 

10 μm GGTI-2166 (Fig. 7). Essentially identical levels of growth inhibition was seen with 

RhoA(63L)-CVLS-expressing cells. Thus, the growth-inhibitory activity caused by GGTI 

treatment is not attributable solely, if at all, to the loss of RhoA function.

Discussion

Ras and Rho small GTPases undergo posttranslational modification by either the C15 

farnesyl or C20 geranylgeranyl isoprenoid groups in reactions that are catalyzed by distinct 

but structurally related enzymes, FTase and GGTaseI, respectively (21, 25, 41). Whether 

protein function is uniquely influenced by modification by a specific isoprenoid remains 

incompletely understood. Recent studies suggest that RhoB function is greatly altered by the 

type of isoprenoid modification it undergoes (33, 34). Whereas farnesylated RhoB exhibits a 

growth-promoting function, geranylgeranylated RhoB exhibited a growth-inhibitory, 
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apoptotic activity. These observations prompted us to evaluate whether the function of the 

closely related RhoA protein is also greatly influenced by specific isoprenoid modification. 

We found that a farnesylated version of activated RhoA(63L) retained the abilities to cause 

growth transformation of NIH 3T3 cells, to stimulate transcription factor activity, to 

promote T47D breast carcinoma migration, and to block HIV-1 replication and gene 

expression. Conversely, a nonprenylated form of RhoA(63L) showed a loss of all function. 

Thus, we conclude that RhoA function is dependent on prenylation but independent of 

specific isoprenoid modification. Additionally, because cells expressing farnesylated RhoA 

retained sensitivity to growth inhibition by GGTaseI inhibition, other GGTaseI substrates 

must also be important targets for GGTaseI inhibitors.

Our analyses of the role of isoprenoid modification on RhoA function extend on previous 

studies that address whether specific isoprenoid modification is critical for protein function. 

Approximately 0.5% of mammalian proteins undergo posttranslational modification by 

isoprenoid lipids, and of the two types of prenylation, geranylgeranylation is the 

predominant modification (21, 25). Interestingly, proteins that are both structurally and 

functionally related can be modified by different isoprenoid moieties. For example, the three 

Ras isoforms (H-Ras, K-Ras, and N-Ras) are all modified by farnesylation, whereas the 

closely related R-Ras1 and R-Ras2/TC21 proteins are modified by geranylgeranylation. 

However, despite differences in isoprenoid modification, constitutively activated mutants of 

Ras and R-Ras isoforms all cause growth transformation. Similarly, whereas RhoA is 

modified by geranylgeranylation, the related RhoE protein is modified by farnesylation (22). 

In this case, though, these proteins have opposing functions, with RhoA promoting actin 

stress fiber formation and RhoE causing a disruption of stress fibers. Whether the different 

prenylated nature of these two proteins accounts for their opposing functions has not been 

determined. The γ subunits of heterotrimeric G proteins are also modified by prenylation. 

Among the 11 known γ subunits, γ1, γ8, and γ11 are farnesylated, whereas the remaining 

subunits are modified by geranylgeranylation (53). When analyzed, no striking isoprenoid-

specific differences in γ subunit function has been found. Thus, to date, studies evaluating a 

role for specific isoprenoid modification in protein function have determined surprisingly 

subtle or no differences in isoprenoid regulation of protein function (29, 54, 55).

Our observations that RhoA transforming activity could be mediated by geranylgeranylation 

as well as farnesylation contrasts sharply with the observations made with RhoB. Whereas 

farnesylated RhoB was found to exhibit a growth-promoting activity that was required for 

Ras transformation, geranylgeranylated RhoB instead showed a proapoptotic function that 

antagonized Ras transformation (33, 34). These strikingly different consequences of 

different isoprenoid modifications on RhoA and RhoB function are unexpected in light of 

their strong structural (>85% amino acid sequence identity) and functional (e.g., promotion 

of actin stress fibers) similarities. However, RhoA and RhoB diverge significantly in their 

COOH-terminal sequences and consequently do localize to very distinct regions in the cell. 

This may account for the different consequences of isoprenoid modification on RhoA and 

RhoB biological activity.

Our observations with RhoA transformation are similar to previous observations that 

geranylgeranylated versions of oncogenic H-Ras proteins also retained the ability to cause 
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transformation (29). However, we also found that a geranylgeranylated mutant of WT H-Ras 

was growth inhibitory. This result suggests that specific isoprenoid modification is 

important for the normal function of H-Ras. Whether normal RhoA function is also 

dependent of specific isoprenoid modification remains to be determined. Finally, it will be 

important to determine whether the function of other Rho GTPases will be dependent (i.e., 

RhoB) or independent (i.e., RhoA) of specific isoprenoid modification.

RhoA function is mediated by interaction with a large number of functionally diverse 

effectors. The precise effector(s) important for mediating the ability of RhoA to cause 

growth transformation of NIH 3T3 cells, motility of T47D cells, and to block HIV-1 

function remain to be determined. However, our analyses of a panel of effector domain 

mutants of activated RhoA(63L),5 which are impaired differentially in effector interactions, 

indicate that these three RhoA functions are initiated through the use of different effectors. 

Our observation that nonprenylated RhoA(63L) was deficient in all three activities indicates 

that membrane association is essential for RhoA interaction with the effectors involved in 

these processes. Finally, we found that RhoA activation of SRF was also dependent on 

prenylation. This result contrasts with the observation that nonprenylated RhoB can still 

activate SRF and further suggests that the distinct subcellular locations of RhoA and RhoB 

must greatly influence their functions (31).

During the course of our studies, Allal et al. (56) published a study showing that the 

function of activated RhoA was also independent of the type of isoprenoid modification. 

They determined that farnesylated RhoA(14V) was unchanged in subcellular location, 

interaction with RhoGDI, actin reorganization, growth transformation of NIH 3T3 cells, 

suppression of p21CIP1 gene expression, and stimulation of SRF. Thus, our observations are 

in agreement with and extend their observations to other biological functions of RhoA. We 

showed additionally that farnesylation can support two other diverse RhoA-mediated 

functions, induction of breast tumor cell migration in vitro and RhoA inhibition of HIV-1 

function. Hence, it appears that the majority of RhoA effector function can be supported by 

either isoprenoid modification. Because a goal of our studies was to use farnesylated RhoA 

to evaluate the mechanism of GGTI-mediated growth inhibition, a complete evaluation of 

whether diverse functions of RhoA can be supported by alternative prenylation is critical. 

Additionally, because there are currently conflicting observations regarding whether RhoB 

function is dependent on a specific isoprenoid (33, 57), independent studies that show that 

RhoA function can be supported by modification by either isoprenoid is important.

Pharmacological inhibitors of GGTaseI have been developed as potential anticancer drugs 

(11) and have shown potent antitumor activity in cell culture and animal preclinical studies. 

The mechanism of growth inhibition of GGTIs has been ascribed, in part, to inhibition of 

progression through G1 of the cell cycle (50). Because RhoA, a GGTaseI substrate, has been 

shown to be critical for G1 progression (51, 52), it represents a possible target for GGTI-

induced growth inhibition. In the present study, we established that farnesylated RhoA 

retained all signaling and biological functions of the authentic geranylgeranylated RhoA 

protein. This provided important validation that farnesylated RhoA will be a useful RhoA 

5P. A. Solski and C. J. Der, manuscript in preparation.
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variant to determine whether RhoA is indeed the critical target for GGTIs. However, we 

found that NIH 3T3 cells stably expressing farnesylated RhoA showed the same sensitivity 

to GGTI-induced growth inhibition. Although this result does not eliminate RhoA as a 

critical target, it does indicate that other GGTaseI substrates must also be involved in GGTI 

growth inhibition. Logical candidates include two other Rho GTPases, Rac1 and Cdc42, that 

are substrates for GGTaseI and have also been shown to be required for G1 progression. 

Because loss of function of RhoA, Rac1, or Cdc42 alone was sufficient to block G1 

progression, perhaps GGTI-mediated loss of function of all three Rho GTPases is 

responsible for GGTI growth inhibition. To evaluate this possibility, it must first be 

determined whether farnesylated versions of Rac1 and Cdc42 also retain the same functions 

as their authentic geranylgeranylated counterparts. If so, then it will be important to 

determine whether coexpression of farnesylated RhoA, Rac1, and Cdc42 can reduce the 

sensitivity of cells to GGTI-induced growth inhibition. If not, then other GGTaseI substrates 

must be targeted by GGTIs to cause growth inhibition. The identity of these 

geranylgeranylated targets will be important for the further development of GGTIs as 

anticancer drugs.

Materials and Methods

Molecular Constructs

To generate cDNA sequences encoding mutants of activated RhoA(63L) that undergo 

modification by a farnesyl isoprenoid [designated RhoA(63L)-CVLS] or is nonprenylated 

[designated RhoA(63L)-SLVL], we introduced missense mutations into the sequence that 

encodes the COOH-terminal CAAX motif. cDNA sequences encoding the CAAX mutations 

(CVLS and SLVL) were generated by using the QuikChange Site-Directed Mutagenesis kit 

(Stratagene) and the cDNA sequence for RhoA(63L) in the pBS(HA)rhoA(63L) plasmid as 

a template for mutagenesis. RhoA(63L)-CVLS terminates with the CAAX tetrapeptide 

sequence of the farnesylated H-Ras protein. RhoA(63L)-SLVL contains a cysteine-to-serine 

substitution in the RhoA CAAX motif to remove the site of prenylation addition. The 

template pBS(HA)rhoA(63L) was constructed first by inserting a DNA linker that encoded 

the HA epitope (YPYDVPDYA) into the BamHI site of pBluescript II(KS) (Stratagene), 

resulting in pBS(HA). The linker also contained an internal NdeI site in-frame and 3’ of the 

HA epitope tag. The NdeI-EcoRI fragment from pcDNA3rhoA(63L) (Ref. 43; which also 

contains a BamHI site 3’ of the coding sequence) was inserted into the NdeI-EcoRI sites of 

pBS(HA). All constructs were then confirmed by sequencing. The BamHI fragment from 

each of the mutated pBS(HA)rhoA(63L) constructs was inserted into the BamHI site of the 

pZIP-NeoSV(x)1 retrovirus mammalian expression vector (58) and the pcDNA3 

mammalian expression vector (Invitrogen). The pZIP-raf(340D) plasmid encodes a weakly 

activated mutant of human Raf-1 and has been described previously (44). Mammalian 

expression vectors encoding GFP-tagged fusion proteins of RhoA(63L)-WT, RhoA(63L)-

CVLS, and RhoA(63L)-SLVL were generated by insertion of the BamHI fragment from the 

pBS(HA)rhoA(63L) constructs into the BamHI site of pEGFP-C1 (Clontech).
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Cell Culture, Transfection, and Transformation Assays

NIH 3T3 mouse fibroblasts were maintained in DMEM supplemented with 10% calf serum 

(Hyclone). Human embryonic kidney 293T cells and the HeLa-MAGI human cervical 

carcinoma cells were maintained in DMEM supplemented with 10% FCS (Life 

Technologies, Inc.). T47D human breast epithelial cells were grown in RPMI supplemented 

with 10% FCS and 0.2 units/ml insulin. For cooperation focus formation assays with 

Raf(340D), NIH 3T3 cells were transfected by the calcium phosphate precipitation along 

with a glycerol shock as described previously (47). For these transfections, 1 μg of the pZIP-

rhoA and 1 μg of pZIP-raf(340D) plasmid DNA were cotransfected into NIH 3T3 cells. 

Twenty-one days after transfection, the dishes were stained with crystal violet, and the 

appearance of foci of transformed cells was quantitated by visual inspection.

To establish cell lines stably expressing WT or mutant RhoA(63L) protein, NIH 3T3 were 

transfected by calcium phosphate precipitation as above with 500 ng of the pZIP-NeoSV(x)1 

retrovirus expression vector constructs. Three days after transfection, the transfected 

cultures were subcultured at a 1:5 split ratio into growth medium supplemented with 400 

μg/ml of G418. Mass populations of G418-resistant colonies were pooled together to 

establish cell lines that were then used for GGTI sensitivity experiments, growth 

transformation assays, and immunofluorescence analysis for determination of protein 

location. Western blot analyses with anti-HA antibody (Covance) were done to verify that 

there was comparable expression of each RhoA(63L) protein in the established cell lines.

To evaluate the ability of each cell line to proliferate in growth medium supplemented with 

low serum, three dishes were plated with 103 cells/60-mm dish and were allowed to attach in 

growth medium. After 16 h, the growth medium was replaced with DMEM supplemented 

with 0.5, 2, or 10% calf serum. The dishes were cultured for 21 days, and the appearance of 

colonies of proliferating cells was visualized by staining with 0.4% crystal violet.

To evaluate the ability of each cell line to proliferate in growth medium supplemented with 

GGTI-2166 GGTI (FTI-277, FTI-2153, GGTI-298, and GGTI-2166 provided by Said Sebti 

and Andrew Hamilton; Ref. 59), NIH 3T3 cells stably expressing the WT and CVLS 

versions of RhoA(63L) proteins were plated at 103 cells/35-mm dishes in growth medium. 

After 18 h, normal growth medium was replaced with growth medium supplemented with 

either vehicle (DMSO), 3, or 10 μm GGTI-2166. Every 24 h, the medium was replaced with 

fresh vehicle/GGTI-containing medium. On days 3, 5, 6, 8, 10, and 12, the cells from two 

dishes were trypsinized and were counted on a hemacytometer for each condition.

Transient Expression Reporter Gene Assays

For the transcriptional activation assay, 293T cells were transfected by calcium phosphate 

coprecipitation as described above except that the glycerol shock was excluded. Five 

hundred ng of the pcDNA-rhoA plasmid DNA or pcDNA3 empty vector were cotransfected 

together with 2 μg of the luciferase gene reporter plasmids, where expression is controlled 

by a minimal promoter from the c-fos gene that contains multiple SRF (43) or NF-κB (60) 

responsive DNA elements. The cyclin D1-Luc plasmid contains the luciferase gene under 

the control of the human cyclin D1 promoter (61). Twenty-four h after transfection, the 
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growth medium was replaced with DMEM supplemented with 0.5% FCS. After 16–20 h, 

the cells were lysed and then analyzed for luciferase activity using enhanced 

chemiluminescence and a Monolight 2010 luminometer (Analytical Luminescence).

Cell Migration Assays

Migration assays were performed as described previously (48). T47D cells were stably 

transfected with pZIP-NeoSV(x)1 plasmid DNA encoding the parental RhoA(63L) protein 

and the two CAAX mutants and selected in growth medium supplemented with 300 μg/ml 

G418. For the migration assay, transwell dishes (12-well cluster, 12 mm diameter, 12 μm 

pore size; Costar) were coated from the underside with 3 μg/ml collagen I in water 

(Collaborative Biomedical Products), and serum-free RPMI was placed in the lower 

chamber. Motility was assessed by adding 104 cells in the upper chamber of the transwell in 

RPMI supplemented with 5 mg/ml BSA. The transwells were incubated in a humidified CO2 

incubator (10%) at 37°C for 16 h. The nonmotile cells were then removed from the upper 

chamber, and the transwell filter was fixed and stained with Wright-Giemsa stain 

(Diffquick; Baxter) and then removed and mounted on a microscope slide with Cytoseal 

(Baxter) solution and a coverslip. The number of remaining cells, which represent the motile 

cells, were counted on a Nikon microscope.

Localization Analyses

The subcellular locations of CAAX mutants of RhoA were determined in both live and fixed 

cells. For live cell analyses, NIH 3T3 cells plated on coverslips in 6-well dishes were 

transiently transfected (Lipofectamine-Plus; Life Technologies, Inc.) with expression 

vectors encoding GFP-tagged RhoA(63L) proteins. Twenty-four h after transfection, the 

coverslips were washed twice with PBS and inverted onto microscope slides. Live cells 

were examined with a Axioskop 2 fluorescence microscope (Zeiss) and Openlab digital 

imaging software (Improvision). To evaluate the sensitivity of prenylation-dependent 

subcellular localization, cells expressing RhoA(63L)-WT and RhoA(63L)-CVLS proteins 

were treated with FTase and GG-Tase inhibitors. For these analyses, cells transiently 

expressing the GFP-tagged proteins were incubated for 24 h with growth medium 

supplemented with either vehicle (DMSO), 10 μM FTI-2153, or 10 μm GGTI-2166.

For our second approach to evaluate subcellular location of the RhoA mutant proteins, NIH 

3T3 cells stably expressing HA epitope-tagged WT and mutated RhoA(63L) proteins were 

plated onto coverslips and incubated overnight in growth medium. The cells were then fixed 

in 3.7% formaldehyde in PBS for 10 min and incubated for 30 min in PBS supplemented 

with 0.1% Triton X-100 and 5 mg/ml BSA. The HA epitope-tagged RhoA(63L) proteins 

were visualized by indirect immunofluorescence using an anti-HA antibody, followed by a 

FITC-conjugated goat antimouse secondary antibody (Jackson Immunoresearch 

Laboratories).

Analysis of HIV-1 Replication and Gene Expression

Inhibition of HIV-1 replication was assessed by cotransfection of the HIV-1 proviral 

genome pNL4–3 with each pcDNA-rhoA plasmid DNA into 293T cells using Effectene 

(Qiagen) as reported previously (18). Infectious units and virion-associated reverse 
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transcriptase activity in culture supernatant were determined by titering on HeLa-MAGI 

cells at 48 h after transfection as described previously (62). A pAX142-lacZ reporter 

plasmid, where the lacZ gene is expressed constitutively from the EF1 α promoter, was also 

cotransfected, and β-galactosidase activity was measured to confirm similar transfection 

efficiency. Inhibition of the HIV-1 gene expression in human T cells (Jurkat) was analyzed 

by cotransfecting (Superfect; Qiagen) pcDNA-rhoA plasmid DNA together with pNL4-Luc 

(49), where the luciferase gene was under control of the HIV-1 long terminal repeat 

promoter. Forty-eight h after transfection, cells were lysed, and luciferase activity was 

determined as described (18).
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Fig. 1. 
Substitution of the CAAX motif of RhoA(63L) with the CVLS motif from farnesylated H-

Ras results in a protein that is not altered in subcellular location but is sensitive to FTase, but 

not GGTaseI, inhibitor treatment. A, lysates from NIH 3T3 cells stably or transiently 

expressing HA epitope-tagged RhoA(63L) proteins were normalized for total protein. The 

proteins were resolved by SDS-PAGE, and expression was determined by Western blot 

analysis using anti-HA epitope antibody. B, NIH 3T3 cells transiently expressing the 

indicated GFP-tagged RhoA(63L) proteins were cultured in growth medium supplemented 

with vehicle (DMSO), FTI-2153, or GGTI-2166 were analyzed as live cells. Cells were then 
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visualized using a Axioskop 2 microscope and Openlab digital imaging software. C, 

alternatively prenylated, but not unprenylated, shows a similar subcellular location as 

geranylgeranylated RhoA(63L). NIH 3T3 cells stably expressing HA epitope-tagged 

RhoA(63L)-WT, RhoA(63L)-CVLS, and RhoA(63L)-SLVL were fixed, and the proteins 

were visualized by indirect immunofluorescence analyses using anti-HA epitope antibody 

and a FITC-conjugated antimouse secondary antibody. Data shown are representative of 

three independent experiments.
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Fig. 2. 
Farnesylated, but not unprenylated, RhoA(63L) retains the ability to stimulate 

transcriptional activation of SRF and NF-κB and the cyclin D1 promoter. 293T cells were 

transiently cotransfected with pcDNA3 expression plasmids encoding the indicated proteins 

(500 ng/30-mm dish) together with reporter plasmids, where the luciferase gene is under 

control of the fos minimal promoter containing either SRF (A)- or NF-κB (B)-responsive 

elements or the human cyclin D1 promoter (C). Forty-eight h after transfection, stimulation 

of transcriptional activity was determined by measuring luciferase activity of cell lysates. 

Fold activation was determined by the number of relative luciferase units relative to the 

number of units seen with the empty vector control. Data points are the means of three 

independent measurements; bars, SE. Data are representative of three independent assays.
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Fig. 3. 
Farnesylated, but not unprenylated, RhoA(63L) retains potent focus-forming activity. NIH 

3T3 cells were cotransfected with pZIP-NeoSV(x)1 expression plasmids encoding the 

indicated RhoA(63L) proteins, either together with the empty pZIP-NeoSV(x)1 vector (–) or 

with pZIP-raf(340D) (1 μg/60-mm dish). Seventeen to 21 days after transfection, the 

number of foci of transformed cells was quantified. Data points are the means of three 

independent measurements; bars, SE. Data are representative of three independent assays.
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Fig. 4. 
Farnesylated, but not unprenylated, RhoA(63L) retains the ability to promote growth in low 

serum. NIH 3T3 cells stably expressing RhoA(63L)-WT, RhoA(63L)- CVLS, or 

RhoA(63L)-SLVL were plated at 103 cells/dish and allowed to adhere in DMEM 

supplemented with 10% calf serum. Untransformed cells stably transfected with the empty 

pZIP-NeoSV(x)1 plasmid (Vector) were included as a control. After 24 h, the medium was 

replaced with DMEM supplemented with 0.5% calf serum. Twenty-one days after plating, 

the cells were fixed and stained with 0.4% crystal violet (A) to better visualize the cells. On 

day 20, the cells were photographed (B) to demonstrate the different morphology of the 

cells.
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Fig. 5. 
RhoA(63L)-induced migration of T47D human breast carcinoma cells is dependent on 

prenylation, but not specific prenylation. T47D cells stably expressing the indicated protein 

were analyzed for their ability to migrate through the pores of a transwell to the underside. 

Fold activation was determined by the number of migrating cells relative to the number of 

migrating vector-transfected cells. Western blot analyses with anti-HA epitope antibody was 

done to verify equivalent expression of RhoA(63L) protein in each cell population; although 

WT and CVLS versions of RhoA(63L) showed comparable levels of expression, the SLVL 

mutant consistently showed slightly higher levels of expression in this and other analyses 

(not shown). Data points are the means of two independent measurements; bars, SE. Data 

shown are representative of three independent assays.
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Fig. 6. 
Farnesylated, but not unprenylated, RhoA(63L) retains the ability to antagonize HIV-1 

replication and gene expression. A, the ability of the RhoA(63L) protein to block the 

transient replication of HIV-1 was assessed by cotransfecting the HIV-1 provirus pNL4–3 

with pcDNA3 expression plasmids encoding the indicated proteins in 293T cells. At 40–50 

h after transfection, HIV-1 virions in the culture supernatant were measured by reverse 

transcriptase activity (□) or by quantification of infectious units (■). The relative HIV-1 

replication is presented as a percentage of vector controls (100%). B, the ability of 

RhoA(63L) protein to inhibit gene expression was assessed by cotransfecting pNL4–3-

Luciferase plasmid with pcDNA3 expression plasmids encoding the RhoA proteins in Jurkat 

T cells. The level of luciferase expression (relative light units) was measured 48 h after 

transfection. Data points are the means of three independent measurements; bars, SE. Data 

shown are representative of two independent experiments.
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Fig. 7. 
Cells expressing farnesylated RhoA are still sensitive to growth inhibition by inhibition of 

GGTaseI. Cultures of NIH 3T3 cells stably expressing RhoA(63L)-WT or RhoA(63L)-

CVLS were incubated with growth medium supplemented with 3 or 10 μm GGTI-2166. Cell 

number was determined on days 3, 5, 6, 8, 10, and 12, with data shown for day 12, are the 

average of duplicate dishes and are representative of three independent experiments; bars, 

SE.
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