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Abstract

Objectives—To use a systems biology approach to integrate genotype and protein-protein 

interaction (PPI) data to identify disease network modules associated with chronic obstructive 

pulmonary disease (COPD) and to perform traditional pathway analysis.

Methods—We used a standard gene-set association approach (FORGE) using gene-based 

association analysis and gene-set definitions from the molecular signatures database (MSigDB). 

As a discovery step we analyzed GWAS results from two well-characterized COPD cohorts, 

COPDGene and GenKOLS. We used a third well-characterized COPD case-control cohort for 

replication, ECLIPSE. Next, we used dmGWAS, a method that integrates GWAS results with PPI, 

to identify COPD disease modules.

Results—No gene-sets reached experiment-wide significance in either discovery population. We 

identified a consensus network of 10 genes identified in modules by integrating GWAS results 

with PPI that replicated in COPDGene, GenKOLS, and ECLIPSE. Members of four gene-sets 

were enriched among these 10 genes: (i) lung adenocarcinoma tumor sequencing genes, (ii) IL7 

pathway genes, (iii) kidney cell response to arsenic, and (iv) CD4 T cell responses. Further, 

several genes have also been associated with pathophysiology relevant to COPD including 

+Corresponding Author: remrm@channing.harvard.edu.
*These authors contributed equally to this manuscript.

HHS Public Access
Author manuscript
Hum Hered. Author manuscript; available in PMC 2015 August 27.

Published in final edited form as:
Hum Hered. 2014 ; 78(0): 131–139. doi:10.1159/000365589.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KCNK3, NEDD4L and RIN3. In particular, KCNK3 has been associated with pulmonary arterial 

hypertension, a common complication in advanced COPD.

Conclusion—We report a set of new genes that may influence the etiology of COPD that would 

not have been identified using traditional GWAS and pathway analyses alone.
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Introduction

Genome-wide association studies (GWAS) have been extremely successful at identifying 

novel genomic regions associated with complex traits. In the past 7 years, the use of this 

approach has led to identification of approximately 2,000 genetic associations for 300 

complex traits[1]. However, in a typical GWAS, millions of genetic markers are tested and 

only a small number reach a genome-wide level of statistical significance (GWS). This is 

not surprising, since most of the genetic variants in the genome are likely not associated 

with disease, and for those that are associated, there is low power to detect valid genetic 

effects with the complex disease phenotype[2]. One strategy for overcoming this power 

limitation is to focus on investigating the joint effects of multiple functionally related genes, 

termed genesets or pathways. In addition to the potential for providing valuable biological 

insights into the etiology of complex disease[3], these methods may have increased power to 

detect disease-related genes. Further, recent developments have enabled the integration of 

data from GWAS with the protein-protein interaction (PPI) network. Using such approaches, 

genes and proteins involved in the same disease have been shown to cluster together when 

centrality is measured within the PPI[4]. These observations led to development of the term 

“disease module” to describe this phenomenon[4,5].

In this manuscript, we applied both gene-set association analysis and a method integrating 

GWAS results with PPI, called dmGWAS[6], in two GWAS of well-characterized Chronic 

Obstructive Pulmonary Disease (COPD) case-control studies. A third COPD case-control 

study was included for replication of our gene-set and network results. Several genetic loci 

have been associated with COPD susceptibility phenotypes using GWAS including 

FAM13A[7,8], HHIP[8], CHRNA3/CHRNA5/IREB2 locus on chromosome 15[9], a multi-

gene locus on chromosome 19[10] (harboring RAB4B, EGLN2, MIA and CYP2A6), 

TGFB2[11], MMP3/MMP12[11] and RIN3[11]. These results demonstrate the utility of 

GWAS data to discover novel genes involved in the etiology of COPD. In the most recent 

meta-analysis of four COPD case-control studies from our research group, applying gene-

based analysis to the meta-analysis results provided additional support for novel genomic 

regions associated with COPD[11]. We hypothesized that applying both pathway and 

network approaches to GWAS data would identify additional genes involved in COPD 

pathogenesis.
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Methods

Ethics Statement

Studies were approved by Institutional Review Boards at Partners Healthcare and all 

participating centers.

GWAS

Non-Hispanic White COPDGene participants (Ncases=2812, Ncontrols=2534) were genotyped 

on the Illumina Human OmniExpress chip. Norwegian GenKOLS participants (Ncases=863, 

Ncontrols=808) and ECLIPSE participants (Ncases=1764, Ncontrols=178) were genotyped on 

the Illumina HumanHap 550 array. GWAS data quality control, including both genotyped 

and imputed SNPs, was performed separately for COPDGene, GenKOLS and ECLIPSE 

participants adjusting for population substructure, smoking history and age of enrollment, as 

previously detailed[9,11].

Briefly, COPDGene is an observational study which enrolled COPD cases and control 

smokers at 21 U.S. clinical centers[12]. Enrolled subjects were self-identified Non-Hispanic 

White or Non-Hispanic African-American aged 45–80 with at least 10 pack-years of 

lifetime smoking history. Subjects with other diagnosed lung diseases except asthma and 

subjects with a first or second-degree relative enrolled in the study were excluded. 

GenKOLS is a COPD case-control study of enrolled subjects from Bergen, Norway[13]. 

Subjects in GenKOLS had at least 2.5 pack-years of smoking history. COPD subjects and 

controls aged 45–75 years with a history of smoking ≥ 10 pack-years from 46 centers across 

12 countries were recruited as part of the ECLIPSE (Evaluation of COPD Longitudinally to 

Identify Predictive Surrogate Endpoints) study (SCO104960, NCT00292552, www.eclipse-

copd.com)[14].

Using FORGE for gene-based and gene-set association testing

Gene-based analysis of the three study populations (COPDGene, GenKOLS and ECLIPSE) 

was conducted separately using FORGE[15]. The analyses focused on genomic sequences 

that included both the genes themselves and a 20kb window on either side of the genes to 

account for important regulatory regions. Along with the summary statistics for the two 

studies, genotype data from the European HapMap 2 samples were used (CEU). Details 

about the program and the test statistic used to calculate the gene-based p-values (fixed-

effects Z score method) are provided elsewhere[16]. The gene level p-values for both studies 

were subsequently subjected to gene-set level analyses using the same software (FORGE). 

We used the molecular signatures database (MSigDB v4.0[17]) to retrieve information on 

gene-set collections. This included the pathways from BioCarta (217 gene-sets successfully 

analyzed), Chemical and Genomic Perturbations (3398 gene-sets), REACTOME (674 

genesets), MicroRNA Targets (221 gene-sets), Transcription Factor Targets (615 gene-sets), 

and immunologic signatures (1910 gene-sets). In addition, information was obtained for 

Gene Ontology (GO; 1454 GO terms) terms and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG, 186 KEGG pathways). A total of 8,675 pathways were included. More 

information on the procedure for gene-set analyses in FORGE can be found elsewhere[16]. 

The gene-set association analysis was run using the gene-based results from COPDGene for 
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discovery and GenKOLS for replication. Weighted meta-analysis p-values were generated 

using the R library SEQSTAR and using an effective sample size (2*Ncases*Ncontrols)/

(Ncases + Ncontrols) between COPDGene and GenKOLS[11,18,19]. Replication in the second 

replication population, ECLIPSE, was defined as P<0.05 for both gene and gene-set 

analyses.

Using dmGWAS to define disease modules by integrating GWAS and PPI data

We used the R library dmGWAS version 2.4 to integrate GWAS findings with PPI data [6]. 

We downloaded human PPI data from PINA[20], which encompasses collected and 

annotated data from 6 public databases: MINT, IntAct, DIP, BioGRID, HPRD and MIPS/

MPact, on March 25, 2013. Briefly, dmGWAS uses the PPI data from PINA to create a 

network search space. In our analysis, each node in the dmGWAS search space also 

corresponds to a FORGE permuted gene-based result. We used the gene-based results from 

FORGE as inputs to dmGWAS, as this method corrects for both the number of SNPs and the 

size of the genomic region being considered in addition to generating a permuted p-value. 

Version 2.4 of dmGWAS does not provide such a method within the library. The dmGWAS 

algorithm considers every gene in the GWAS results as an initial seed module. It then tests 

all PPI neighbors within a step size defined by d to expand the seed modules. A PPI 

neighbor is added to the seed module if its distance to any node in the module is equal to or 

less than d and it increases the module test statistic,  where k is number of 

genes in the module, by a factor of r. We used d=2 and r=0.1 as recommended by the 

dmGWAS developers[6]. In order to compare modules with different numbers of genes, 

dmGWAS generates a normalized module score, Zn, by standardizing the module’s Zm to a 

distribution of module test statistics generated by randomly selecting the same number of 

genes in the module from the entire network 100,000 times. This analysis was performed 

both in COPDGene and GenKOLS separately. We then used the dmGWAS function 

‘dualEval()’ with COPDGene as the discovery dataset and GenKOLS as the replication 

dataset in order to combine the results. This function calculates test statistics for the modules 

defined in the discovery dataset and then for the same modules in the replication dataset. If a 

module is in the top 5% of the discovery dataset dmGWAS modules and also in the top 5% 

of the replication dataset dmGWAS modules, the module is considered to have replicated. 

We then assessed whether these modules replicated nominally (P<0.05) in a second 

replication population: ECLIPSE. To further assess the effect of network topology, we 

shuffled the FORGE gene-based p-values 10 times in both COPDGene and GenKOLS to 

assess the influence of network topology on dmGWAS. We then ran dmGWAS 10 times on 

COPDGene and GenKOLS with COPDGene as the discovery population and GenKOLS as 

the replication population. In order to further characterize the network modules that were 

obtained by usage of dmGWAS, we used GSEA[17] (http://www.broadinstitute.org/gsea) 

selecting the same MSigDB gene-sets as detailed in the FORGE analysis above to search for 

gene-set enrichment.
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Results

FORGE Gene-Based Results

In order to perform pathway and network-based analyses using gene-based p-values for 

association with COPD, FORGE was used to generate gene-based association results for 

COPD affection status separately in COPDGene and GenKOLS. The top ten FORGE gene-

based COPDGene results are listed in Table 1. In COPDGene, there were four genes that 

met gene-based genome-wide levels of statistical significance (p<2.65×10−6). All four of 

these genes (IREB2, FAM13A, CHRNB4 and RIN3) are located within previously reported 

regions of genome-wide significant associations to COPD. In the GenKOLS gene-based 

analysis, six of the top ten genes replicated nominally (P<0.05). In the combined results 

between COPDGene and GenKOLS, IREB2, FAM13A, CHRNA3 and CHRNB4 withstood 

correction for multiple testing. Only IREB2 also replicated nominally in ECLIPSE. In 

addition to previously identified COPD genes, one novel gene nearly met gene-based 

genome-wide significance in the analysis of the combined COPDGene and GenKOLS 

results (EEFSEC, P=5.4×10−6) but did not replicate nominally in ECLIPSE.

Gene-Set Association Results

None of the 8,675 tested pathways were associated with COPD case-control status at a level 

that reached statistical significance in COPDGene as the discovery population. Out of 616 

(5.77%) nominally significant gene-sets from the COPDGene analysis, 42 (6.82%) also 

reached nominal significance in the GenKOLS analysis. A list of all 42 of these replicated 

gene-sets is provided in Supplementary Table 1. The top COPDGene gene-set that also was 

significant using a level of nominal significance in GenKOLS is called REACTOME 

PRESYNAPTIC NICOTINIC ACETYLCHOLINE RECEPTORS (PCOPDGene=3.2×10−4, 

PGENKOLS=0.0066, Pcombined=2.8×10−5). This gene-set is comprised of 12 genes 

(Supplementary Table 2) including CHRNA3, CHRNA5, and CHRNB4 which have been 

previously associated with COPD in case-control GWAS. We also ran the gene-set 

association analysis for all gene-sets listed in Supplementary Table 1 excluding genes 

known to be associated with COPD (CHRNA3, CHRNA5, CHRNB4, IREB2, FAM13A and 

HHIP). Results excluding genes known to be associated with COPD were no longer as 

significant when the known COPD genes were removed. Along with the separate p-values 

for all three cohorts, p-values are also provided for the combined analyses between 

COPDGene and GenKOLS (Supplementary Table 1). None of the 42 gene-sets showed an 

experiment-wide significant p-value after correcting for multiple statistical testing 

(Bonferonni P<5.8×10−6).

Integrating COPD GWAS results with PPI data using dmGWAS

Using the FORGE gene-based results, disease modules were generated from COPDGene 

and GenKOLS data using dmGWAS. A total of 12,378 modules were generated for 

COPDGene and 12,385 modules were generated for GenKOLS. The normalized module 

score ranged from 6.0 (P=9.7×10−10) to 8.0 (P=6.7×10−16) for the COPDGene analysis and 

from 0.56 (P=2.9×10−1) to 6.8 (P=6.7×10−12) for the GenKOLS analysis. There was a much 

wider range in module scores for the GenKOLS analysis due to three modules with P>0.23. 

These three modules contained the same set of 5 genes where only one gene had a nominally 
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significant result and the rest of the genes had P>0.17. The average module size was 13.4 +/

− 2.1 genes for COPDGene and 12.3 +/− 1.9 genes for GenKOLS. By default, dmGWAS 

only reports modules containing at least 5 genes. The smallest module generated for 

COPDGene had 8 genes whereas the smallest module generated for GenKOLS had 5 genes. 

A total of 15 modules were significant in both COPDGene and GenKOLS dmGWAS 

analyses when COPDGene was used as the discovery dataset. These 15 modules are 

comprised of 55 non-redundant genes (Supplementary Figure 1a). A total of 12 of these 15 

modules reached nominal statistical significance in ECLIPSE (Figure 1a; Table 2), 

comprising 50 non-redundant genes. In Figure 1a, the consensus module highlights UBC, 

which has an extremely high degree of connectivity (degree 7,872). To determine whether 

these results highlighting UBC might be biased due to its extreme connectivity, despite the 

permutation implemented in dmGWAS, we performed node-based permutation by shuffling 

the FORGE gene p-values in both COPDGene and GenKOLS. We then repeated the 

analyses using COPDGene and GenKOLS to generate consensus networks. In every 

permutation, UBC was a hub in the consensus modules (Supplementary Figure 2).

In order to address the concern that the top dmGWAS modules were driven by the high 

degree of UBC, we repeated the dmGWAS analysis detailed above, including replication in 

ECLIPSE, without UBC (Figure 1b, Supplementary Figure 1b). We found that several of the 

same genes were present in this consensus module generated with COPDGene as the 

discovery population that replicated with GenKOLS. Ten of the 50 genes in the original 

consensus network (Figure 1a) were also in the new consensus network (Figure 1b). These 

genes are listed in Table 3. The degree of connectivity of the 10 genes in the consensus 

modules ranged from 5 to 298.

Probing the Overlap of dmGWAS and Gene-Set Association Results

For additional comparison purposes with the gene-set association analysis, we performed 

gene-set enrichment analysis (GSEA) of the 10 genes in common between the two 

consensus dmGWAS networks (Table 3). We used the same MSigDB pathways as the gene-

set association analysis. Enrichment was found for gene-sets comprising lung 

adenocarcinoma tumor sequencing project genes (P=2.25×10−6, FDR q-value=1.69×10−2), 

the Biocarta IL-7 signal transduction pathway (P=4.63×10−6, FDR q-value=1.69×10−2), 

kidney cell response to sodium arsenite (P=5.21×10−6, FDR q-value=1.69×10−2), and genes 

up-regulated in CD4 T cells versus untreated CD8 T cells (P=6.69×10−6, FDR q-

value=1.69×10−2).

Discussion

In this manuscript, we report pathway and network-based association analysis of COPD in 

two large, well-characterized COPD case-control populations, and identify 10 genes of 

interest for COPD pathogenesis by integrating GWAS and PPI data. These 10 genes include 

both genes previously known to be associated with COPD and also novel candidates for 

further investigation. Our gene-set analysis did not identify any significant gene-sets; the top 

gene-set identified in COPDGene, that replicated nominally in GenKOLS, contained a 

number of nicotinic receptor genes that have been associated with COPD in other studies. In 
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contrast, when we used GSEA to examine the list of genes generated as a network 

incorporating GWAS and PPI, lung cancer, IL-7 signaling pathway, response to arsenic, and 

CD4 T cell regulatory genes were enriched in the networks in addition to several other genes 

that have been associated with disease processes relevant to COPD such as KCNK3, 

NEDD4L and RIN3. The majority of the genes highlighted through our network approach 

would not have been identified using a traditional GWAS approach. Thus, these results shed 

light on other genes that we would have not considered had the analysis been restricted to a 

standard GWAS.

Our gene-based association analysis with FORGE revealed a potential new candidate gene 

for COPD, EEFSEC. When we previously performed a gene-based analysis on the meta-

analysis results from several COPD case-control GWAS[11], EEFSEC had a gene-based 

result near genome-wide significance of P=1.6×10−5 (result not published). As the goal of 

the current manuscript was to investigate genetic pathways and networks influencing the 

etiology of COPD, we performed gene-wise analyses within each study and then searched 

for significant genetic pathways and networks using COPDGene for discovery and 

GenKOLS for replication. In the current analysis, EEFSEC showed suggestive evidence for 

association for the meta-analysis of COPDGene and GenKOLS samples (P=5.4×10−6), as 

well as in COPDGene (P=1×10−5) but did not withstand correction for multiple testing 

(P<2.65×10−6). For EEFSEC, there was also nominal evidence for replication in GenKOLS 

(P<0.05) and a trend for association in ECLIPSE (P=0.13). EEFSEC (MIM 60795), which 

codes for Eukaryotic Elongation Factor for Selenocysteine-tRNA-specific, is necessary for 

the incorporation of selenocysteine in proteins. As there is an increased oxidant burden in 

smokers who develop COPD[21], the antioxidant enzymes that require trace elements such 

as selenium may be involved in COPD pathogenesis. Our gene-based analysis also 

highlighted several genes that are known to be associated with COPD including 

FAM13A[7,8], IREB2[9], and CHRNA3[9]. We also found an association with CHRNB4, 

which resides in the CHRNA3/CHRNA5/IREB2 locus on chromosome 15[9] and has also 

been associated with age of onset of daily smoking and habitual smoking[22].

The list of 10 genes that was generated from the genes common to the dmGWAS networks 

with and without UBC indicated that several gene-sets were enriched including genes 

associated with lung adenocarcinoma, IL-7 signaling pathway, kidney cell response to 

arsenic, and CD4 T cell responses. Smoking is a risk factor for both lung cancer and COPD. 

The prevalence of COPD is higher in lung cancer cases than the general population 

independent of age, sex and smoking history[23]. Thus, enrichment of genes (FYN and 

ACVR1B) known to be enriched with mutations in lung cancer cases in the consensus 

network associated with COPD case-control status is intriguing. IL-7 is an important 

cytokine for B and T cell development and as such has a role in the inflammatory response. 

Thymic stromal lymphopoietin (TSLP), an IL-7 orthologue that is expressed in airway 

biopsies, has been shown to mediate the effects of cigarette smoke-induced airway smooth 

muscle contractility in COPD cases [24,25]. Further, variants near TSLP have been 

associated with asthma, which is also characterized by airflow obstruction and has been 

suggested to share overlapping genetic determinants with COPD[26]. Additional genes from 

the consensus list that were annotated to the IL-7 pathway were FYN and Bcl-2; however, 
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IL-7 and IL-7RA were not found in our consensus list. Of interest, TSLP has been shown to 

induce the expression of Bcl-2 in Th2 cells [27]. Moreover, PIK3R1 has been suggested as a 

drug target for COPD [26,28]. Arsenic is found in cigarette smoke[29] and as such it is 

intriguing that we identified genes (Bcl-2 and KCNK3) associated with kidney cell response 

to arsenic in the consensus network. Further, several of the consensus network genes (FYN, 

ACVR1B and Bcl-2) are known to be upregulated in comparison of untreated CD4 with 

untreated CD8 cells[30]. Lung CD4+ T cells are known to accumulate in the lungs of COPD 

cases and recently distinct polarization profiles of CD4+ T cells were correlated with degree 

of emphysema and reduction in spirometry[31]. It was only by taking a network approach 

that these pathways were highlighted in our results.

Within the list of 10 genes common to the dmGWAS networks with and without UBC are 

other genes of interest, such as KCNK3, NEDD4L and RIN3. The KCNK3 gene, which codes 

for potassium channel subfamily K member 3, has been recently associated with pulmonary 

arterial hypertension [32]; secondary pulmonary arterial hypertension is a known 

complication in advanced COPD. Knockout of NEDD4L in lung epithelia causes a cystic 

fibrosis-like disease [33], and low expression of the gene has been implicated as a 

prognostic marker for non-small cell lung cancer[34]. Recently, our group has demonstrated 

genetic association of variants near RIN3 with COPD and also that RIN3 gene expression in 

lung tissue is reduced in COPD cases compared to controls[11]. Thus, we have highlighted a 

panel of genes involved in the etiology of COPD using a systems biology approach; some of 

these genes would have been overlooked using traditional approaches.

Although gene-set association methods have been successfully used to highlight important 

pathways and gene-sets in other diseases, there are some limitations to consider when 

discussing our results. None of the tested gene-sets in our analyses were significantly 

associated with COPD case-control status using a Bonferonni corrected level of statistical 

significance. The top gene-set results, as listed in Supplementary Table 1, include many 

genes already known to be associated with COPD, and thus it is difficult to conclude that 

these gene-set results contribute additional insights. When we ran the gene-set association 

analysis for all gene-sets listed excluding genes known to be associated with COPD, the 

results were no longer as significant. Gene-set association analyses, although less 

demanding in terms of power requirements compared to GWAS, are still dependent on 

adequate sample size in the analyses. Although our discovery population, COPDGene, is the 

largest COPD case-control genetic study performed to date, it may have not been large 

enough to detect all gene-sets annotated in MSigDB that are associated with COPD. Further, 

gene-set definitions tend to be incomplete and rely on established biological hypotheses. For 

this reason, we elected to use dmGWAS to search for modules without a priori definitions 

of gene-sets.

One of the main disadvantages of using PPI information generated from yeast-two-hybrid 

and affinity-tag purification experiments is that the laboratory conditions may not correctly 

model biologically relevant conditions or states[35]. Further, much of the interactome has 

not been characterized, and efforts are continuing to be directed at remedying this 

limitation[25,36,37]. A specific limitation of approaches such as dmGWAS is that there are 

currently no methods for calculating power to assess if our study was large enough for the 
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analysis. However, using this method is likely be more powerful than traditional GWAS as 

it provides a means for incorporating information from GWAS (i.e., results with P > 

5×10−8) that may have been overlooked and also other sources of biological 

information[38]. It is important to note that many network analyses involving the 

interactome generate a network that is pejoratively termed a “hairball” due to its 

complexity[39]. In contrast, Figure 1a presents a somewhat simple network centered on a 

hub gene, UBC. This gene codes for ubiquitin C, a polyubiquitin precursor, and a key 

component of the ubiquitin-mediated protein degradation pathway controlling almost every 

process in cells[40]. By permuting P-value assignments, we demonstrated that UBC was 

present as a hub gene in every consensus network—suggesting that the high connectivity of 

this gene led to its inclusion in our COPD network. This motivated our group to run 

dmGWAS without UBC in an attempt to gain insight into how the topology of the PPI 

network may be influencing the results. This led to the compilation of a list of 10 genes that 

were present in both networks that are enriched with genes involved in lung cancer, IL-7 

signaling, response to arsenic, and CD4 T cell response. Other than UBC, the three most 

connected nodes in the PPI network used to run dmGWAS were ELAVL1 (degree=1416), 

SUMO2 (degree=1142) and CUL3 (degree=1009). These three genes were not present in the 

list of 10 genes, giving some indication that this list of genes may be robust to the influence 

of hubs in the network topology we initially observed with UBC.

It has been suggested by network science investigators that hub genes are less likely to carry 

highly detrimental mutations due to their vital role in the viability of a cell [41]. Peripheral 

nodes are more likely to contain genetic variants influencing a complex disease, and these 

genetic variants may be of modest effect size. One of the most attractive features of 

dmGWAS is that even results that do not reach GWS are incorporated in the analysis, 

thereby maximizing the utility of the data. It is a versatile R library that only requires a PPI 

network as input and results formatted as a gene name and a test statistic. Given the 

flexibility in input framework, the algorithm could be applied to any set of experiments that 

produces a test statistic for each gene such as gene expression. Recently, Han et al used 

dmGWAS to define modules associated with alcohol dependence[42]. In contrast to our 

present report, they used the smallest p-value per gene as input to dmGWAS. It has been 

reported that using a gene-wise p-value as input to dmGWAS may be more robust to biases 

generated by gene length, SNP density, and/or linkage disequilibrium [42,43]. However, 

some SNPs are located in non-coding regulatory regions that may not act on the nearest 

gene[44,45,46,47]. As such, these situations would not be adequately addressed by assigning 

SNPs to genes based on distance alone. Thus, there is much room to develop algorithms 

such as dmGWAS to address issues such as accounting for the influence of gene size, the 

influence of non-coding regulatory regions on distant genes, the cell specificity of gene 

regulation, and the impact of network topology on consensus modules.

In sum, we have presented the application of gene-set association analysis and the 

integration of GWAS data with PPI in two well-characterized COPD cohorts. We have 

probed the landscape between these methods in performing GSEA on results generated from 

the integration of GWAS findings with a PPI network using the same gene-sets as our gene-

set association. Methods integrating GWAS data and PPI networks, such as dmGWAS, are 
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the first steps towards maximizing the use of genomic, transcriptomic and proteomic data to 

gain insight into human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. dmGWAS consensus module generated using the COPDGene results that replicated in 

GenKOLS and ECLIPSE. Node color is proportional to p-value significance where the 

lighter the node shading the smaller the p-value from the gene-based analysis in FORGE. b. 
dmGWAS analysis repeated excluding UBC.
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