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Abstract

The allergic diseases are complex phenotypes for which a strong genetic basis has been firmly 

established. Genome-wide association studies (GWAS) has been widely employed in the field of 

allergic disease, and to date significant associations have been published for nearly 100 asthma 

genes/loci, in addition to multiple genes/loci for AD, AR and IgE levels, for which the 

overwhelming number of candidates are novel and have given a new appreciation for the role of 

innate as well as adaptive immune-response genes in allergic disease. A major outcome of GWAS 

in allergic disease has been the formation of national and international collaborations leading to 

consortia meta-analyses, and an appreciation for the specificity of genetic associations to sub-

phenotypes of allergic disease. Molecular genetics has undergone a technological revolution, 

leading to next generation sequencing (NGS) strategies that are increasingly employed to hone in 

on the causal variants associated with allergic diseases. Unmet needs in the field include the 

inclusion of ethnically and racially diverse cohorts, and strategies for managing ‘big data’ that is 

an outcome of technological advances such as sequencing.
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INTRODUCTION

Coca and Cooke were the first to describe asthma, atopic dermatitis (AD), allergic rhinitis 

(AR), food allergy, and urticaria as ‘phenomena of hypersensitiveness’ at the annual 

meeting of the American Association of Immunologists in 19221. Just prior to and following 

this discourse, there was considerable focus on the relative influence of the environment 

versus hereditary factors on allergic diseases, with family-based twin and migration studies 

providing the earliest and most compelling evidence for genetic contributions2–6. Studies on 

the prevalence of allergic traits in relation to family history demonstrated incremental 
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increases in risk of developing asthma, AR, or AD with the presence of one or both parents 

with allergic disease, and greater than three times the risk if allergic disease occurred in 

more than one first degree relative7. To this date, and despite the dramatic technological 

advances that have led to the identification of hundreds of genetic variants in genes 

associated with asthma, AD, and to a lesser degree, food allergy and AR, a positive family 

history remains one of the most reliable tools for prognosis of allergic disease.

Approaches for disentangling the genetic basis for the allergic diseases have evolved as 

technological tools for the field of molecular genetics have progressed. With the 

introduction of the polymerase chain reaction (PCR) in the 1980s, DNA fragments in the 

human genome could be amplified and then studied for variable fragment lengths of repeats, 

or ‘genetic fingerprinting’. With a catalog of microsatellite markers spanning the human 

genome, genome-wide linkage studies emerged as a robust approach for identifying genetic 

hot spots associated with complex traits. Nearly a dozen genome-wide linkage screens were 

performed on asthma and its associated phenotypes8–18, for which multiple chromosomal 

regions provided significant evidence for linkage. From several of these family-based 

linkage genome-wide screens, six novel asthma genes were identified by positional 

cloning18–23. Similarly, multiple linkage studies were performed for AD (summarized in 

Ref. 24) and AR25–29. It was frequently observed that loci overlapped across associated 

traits; for example, Daniels and colleagues observed overlapping linkage peaks with 

quantitative traits associated with asthma including total serum IgE, skin test index, and 

eosinophil counts, as well as atopy as a qualitative trait8. Alternatively, the multiethnic 

Collaborative Study on the Genetics of Asthma reported linkage peaks that were specific to 

different racial ethnic groups9.

With the publication of initial efforts in sequencing the human genome30,31, the opportunity 

to genotype markers directly in genes of interest was greatly expanded as polymorphisms 

were identified in the approximately 20,000 to 25,000 genes across the 3 billion chemical 

base pairs that make up human DNA. Relying upon one of the simplest of these 

polymorphisms, single nucleotide polymorphisms (SNPs), and relatively simple structural 

variants, such as insertions/deletions and repeats, this advancement allowed researchers to 

expand genetic studies beyond linkage toward the genetic association study design. For 

asthma alone, literally hundreds of candidate genes have been elucidated, and eloquently 

summarized elsewhere32–35, representing the relative success of this approach.

The GWAS Era

Following completion of the Human Genome Project, the International HapMap 

Project36–38 cataloged genomes representing four biogeographical groups (whites from the 

United States with northern and western European ancestry; Yorubans from Ibadan, Nigeria 

[YRI]; Han Chinese from Beijing, China [CHB]; and Japanese from Tokyo, Japan [JPT]) to 

advance the development of new analytic methods and investigating patterns of genetic 

variation. Simultaneously, the technological capacity to rapidly (and cheaply) genotype >1M 

common (>5%) SNPs on thousands of DNA samples from patients phenotyped for various 

complex clinical traits took the spotlight, and the genome-wide association studies (GWAS) 

era took off. The content of commercially available GWAS chips grew exponentially with 
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expansion of the human genome catalog through the Thousand Genomes Project (TGP)39, 

and the capacity for discovery of genetic associations has likewise increased with the 

development of SNP genotype imputation methodologies40,41, whereby genotyped content 

from the chip can be combined with the >35M sequenced variants cataloged in the TGP. In 

the span of only seven years, over 1,924 publications and 13,403 SNPs associated with 

various complex and quantitative traits42,43 have been generated by GWAS (Figure 1, Panel 
A).

GWAS has been widely employed in the field of allergic disease. While the precise number 

of GWAS are difficult to determine, approximately 40 asthma, three atopy, and three AD 

GWAS (plus a study of >30,000 AD patients genotyped on the Immunochip44) have been 

reported in the Catalog of Published Genome-Wide Association Studies42,43 (Figure 1, 

Panel B and summarized in Table 1). A major outcome of GWAS in allergic disease has 

been the formation of national and international collaborations leading to consortia meta-

analyses, which has greatly facilitated gene discovery owed to the increased power 

generated from larger sample sizes (which are necessary to detect true associations while 

adjusting for the multiple comparisons). For example, the first asthma GWAS only showed a 

significant association between childhood onset asthma and markers near the ORMDL3 gene 

on chromosome 17q21 (P<10−12) among European populations45. When the study was 

expanded to include >26,000 cases and unaffected controls (e.g., the European-based 

GABRIEL Consortium46), five additional genes plus the 17q locus were strongly associated 

with asthma47. Following completion of 8 U.S.-based, independent asthma GWAS, the 

NHLBI-supported EVE Consortium was established, comprising >12,000 European 

American, African American and Hispanic cohorts plus >12,000 independent samples for 

replication48. More recently, the Transnational Asthma Genetics Consortium (TAGC) was 

formed to perform a global meta-analysis for asthma, and to date TAGC includes 67 cohorts 

representing nearly 20 studies spanning the globe, representing data on over 100,000 asthma 

cases, controls and family members (Demenais, Nicolae, et al, unpublished data).

It can be argued that the huge research efforts and expense committed to GWAS on allergic 

disease have confirmed suspected genes and pathways, some of which were the focus 

following linkage study discoveries and a result of the many candidate gene studies 

undertaken. However, GWAS has, for the most part, generated novel candidate genes and a 

new appreciation for the role of innate as well as adaptive immune-response genes in 

allergic disease. In the European-based GABRIEL Consortium, six genes were strongly 

associated with asthma47, of which three (IL33, ST2, and the IKZF3-ZPBP2-GSDMB-

ORMDL3 region on chromosome 17q21) were replicated in the EVE Consortium49. 

Independent GWAS have provided further support for these same loci50,51,52. One of the 

strongest signals from the combined meta-analysis was for IL1RL1 (summarized in the 

Supplementary Figure 11 in Ref. 48), even though the peak SNP differed across ethnic 

groups. The association between IL1RL1 SNPs among African samples was marginal, and 

might have been overlooked, but in light of evidence for association in other cohorts, 

IL1RL1 showed the strongest association overall (P=1.4×10−8).

Lessons learned from candidate gene and positional cloning studies included the specificity 

of genetic associations to sub-phenotypes of allergic disease. For example, two null 
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mutations (R501X and 2282del4) in the gene encoding filaggrin (FLG) are arguably the 

most consistently associated polymorphisms with risk of AD, but numerous studies have 

also implicated a role for these mutations in the development of other atopic diseases, such 

as asthma and rhinitis, suggesting generalizability of FLG mutations to the allergic diathesis. 

However, it has been argued that the ‘atopic march’ (e.g., the tendency for AD to precede 

asthma, food allergy and AR) and the fact that ∼70% of severe AD patients also have 

asthma and AR later in life can account for this overlap53. Similar observations have come 

from GWAS of allergic diseases. For example, the associations with the ORMDL3 locus has 

been strongest with childhood asthma54, and associations between SNPs in IL1RL1 and IL33 

have been strongest for atopic asthma as opposed to non-atopic asthma50. From the GWAS 

performed total serum IgE levels, there has been relatively little overlap with genes 

contributing to risk of asthma (Table 1).

The Next Generation of Asthma Genetics

Despite its success, discoveries from GWAS to date have contributed relatively little to our 

understanding of the specific causal genetic mechanisms underlying allergic disease. For 

example, the cumulative genetic risk of the variants identified to date for asthma through 

GWAS (for which, among the allergic diseases, the most GWAS have been performed) is 

<15%35. This is thought to be due, at least in part, to the fact that the most strongly 

associated SNPs in GWAS are generally not ‘directly causal’, but most likely tag SNPs in 

linkage disequilibrium (LD) with the true unobserved disease-causing SNPs. Moreover, the 

vast proportion of GWAS associations (>85%) involve variants in intergenic or intronic 

regions55, which is likely a consequence of the array design; i.e., GWAS arrays are based on 

tag SNPs for common variants, and coding/exonic variation tends in general to be rare and 

therefore poorly tagged by a common variant, in contrast to intronic and intergenic regions 

that have a spectrum of variation that is common. Disappointment in GWAS is compounded 

by a paradigm shift away from the common disease—common variant hypothesis56 towards 

the role of rare variants (unlikely to be identified by GWAS57) in non-Mendelian diseases58, 

particularly with the appreciation that rare variation constitutes the majority of 

polymorphisms across human populations39,59.

Resequencing genes in individuals with well-characterized phenotypes is an alternative 

approach to assess the contribution that both rare and common variants make to disease and 

overcome the limitations of GWAS. Until recently, Sanger termination sequencing60 was 

the only option for interrogating rare variants, but this approach is costly and cannot be done 

on a large scale. The emergence of massively parallel, second-generation DNA sequencing 

in 200561 has made resequencing an affordable tool to study genetic variation, and in the 

past several years has been increasingly used either as a targeted approach to follow-up on 

specific genetic regions or as an unbiased approach towards gene discovery either by whole 

exome (WES; ∼30 Mb total) or whole genome sequencing (WGS)62. While rare coding 

variants may have a greater functional impact than common variants, their analysis must 

consider the low frequency of any variant since it will reduce the power to infer statistical 

associations (i.e., insufficient numbers of copies of the rare variant allele in a typical 

dataset). However, this can be overcome by evaluating the collective frequency of rare, 

nonsynonymous variants within one or more genes, or for a pathway(s), or the functional 

Ortiz and Barnes Page 4

Immunol Allergy Clin North Am. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impact of the discovered variations, such as nonsense substitutions, frameshifts, and splice-

site disruptions, that have important a priori evidence compared to other types of changes 

(reviewed in Ref. 62).

To date, there are limited examples of the application of NGS technology to identify variants 

associated with risk of allergic disease, although efforts are underway. A recent example of 

success combined targeted array-based and in-solution enrichment with the SOLiD 

sequencing platform to accurately and simultaneously detect 161/170 mutations and 

deletions associated with primary immunodeficiency (PID) disorders 63. NGS has also been 

applied to the study of airway inflammation, including asthma. A study by Leung et al 

utilized the next-generation sequencing technique called Roche 454 pyrosequencing on peak 

asthma association signals found in a large consortium-based study in European white 

subjects and a small group of Chinese children, and found substantial variation in haplotype 

structures across the populations, thus supporting the notion of potential sequence variations 

of asthma loci across different ethnic populations 64. WES has been applied to a small 

family-based study65 as well as asthmatics selected at both ends of a phenotype distribution 

(those with extreme severity phenotypes) 66 with limited success, and a large WGS (>1,000 

genomes) on asthma is currently underway67.

Measuring the Transcriptome in Allergic Disease and its Application to 

Genetic Studies

Whole genome gene expression profiling, or transcriptomics, is a robust approach towards 

the quantitative and qualitative characterization of RNA expressed in a biological system. 

Since the development of synthetic oligonucleotide microarray platforms in 200368, 

transcriptomic profiling has been widely applied in allergic disease. For asthma and its 

associated traits alone, dozens of studies focusing on whole blood and target cells of the 

immune system and tissue from the upper and lower airways have been performed using 

these conventional platforms (reviewed in Ref. 69).

The same robust NGS technology that has recently advanced genetics has similarly 

transformed transcriptomics. RNA-Sequencing (RNA-Seq) is a more powerful approach to 

interrogate the transcriptome compared to older microarray technology because of its 

smaller technical variation70 and higher correlation with protein expression71. RNA-Seq has 

virtually unlimited dynamic range and permits digital quantification of transcript abundance, 

assessment of transcript isoforms and alternative splicing72–74, and it allows for unbiased 

assembly of transcripts without relying on previous annotation (including non-coding 

RNAs). To date there are limited examples of applying RNA-Seq technology to allergic 

disease, but successes include the identification of transcriptomic changes in human airway 

smooth muscle (ASM) in asthmatics compared to non-asthmatics75 and the identification of 

genes differentially expressed in response to glucocorticosteroid exposure (CRISPLD276, 

FAM129A and SYNPO277).

While it is ideal to measure the transcriptome of a primary cell specific to the disease of 

interest (i.e., cells from lung tissue in asthma), this is challenging when considering the large 

number of samples required given the demands of power. Recently, however, studies have 

Ortiz and Barnes Page 5

Immunol Allergy Clin North Am. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated the value of focusing on surrogate target tissues/cells in predicting gene 

expression in tissues/cells that are challenging to access in large numbers (i.e., lung tissue), 

which have the potential to significantly move the field forward. For example, Poole and 

colleagues used whole-transcriptome sequencing (RNA-Seq) to demonstrate that the nasal 

airway epithelium mirrors the bronchial airway, and subsequent RNA sequencing of 

candidate airway biomarkers confirmed that children with asthma have an altered nasal 

airway transcriptome compared to healthy controls, and these changes are reflected by 

differential expression in the bronchial airway 78.

Differential gene expression in humans is heritable79,80 and GWAS of gene expression is an 

innovative approach for mapping functional non-coding variation. Referred to as expression 

quantitative trait locus (eQTL) mapping, this approach is predicated on the notion that 

abundance of a gene transcript (a quantitative trait) is directly modified by genetic 

polymorphisms in regulatory elements. The added value of eQTL is the ability to identify 

disease markers identified in GWAS that are also associated with gene transcripts, and 

several studies have integrated findings from asthma GWAS with cataloged genome-wide 

gene expression data81,82, which can result in a ‘gain in power’83. Because of limited access 

to human primary cell types from large populations, many of the human eQTL studies have 

focused on convenient and immortalized Epstein-Barr virus transformed lymphoblastoid cell 

lines (LCLs)84–86, but this approach has had limited success in mapping eQTLs for more 

than a few of the known asthma genes. In one of the first asthma eQTL studies, SNPs 

associated with asthma in a subset of the GABRIEL sample were consistently and strongly 

associated (P<10−22) with transcript levels of ORMDL345. Hao and colleagues performed an 

eQTL analysis using lung samples from transplant patients to identify variants affecting 

gene expression in human lung tissue, then integrated their lung eQTLs with GWAS data 

from GABRIEL to determine that one of their strongest eQTLs was, similar to the eQTL in 

LCLs study, a SNP in the chr. 17q21 region82. Murphy et al87 identified common genetic 

variants influencing expression of 1,585 genes in peripheral blood CD4+ T cells from 200 

asthmatics using conventional microarrays, but they acknowledged power was a major 

limitation. In mining a catalog of 285 published GWAS, however, they identified significant 

associations with variants in the ORMDL3 region. When performing tests for association on 

6,706 cis-acting expression-associated variants (eSNPs) from a genome-wide eQTL survey 

of CD4+ T cells from asthmatics, the ORMDL3/GSDMB locus held up (P = 2.9 × 10−8)88.

Common Genes in Common Diseases

Several reports have found that allergic diseases such as asthma, rhinitis, conjunctivitis and 

dermatitis as well as allergic reactions to drugs and foods, are more common in patients with 

the autoimmune disease systemic lupus erythematosus (SLE)89–92. Furthermore, bronchial 

asthma was found to be the most common cause of cough in a small cohort of SLE patients 

from Bangladesh93 and Taiwan94. In addition, the inflammatory gene tumor necrosis factor 

α (TNFα) was found to be a common genetic risk factor for asthma, and autoimmune 

diseases juvenile rheumatoid arthritis and SLE95. In a more recent study, PCR-based 

genotyping identified four FCRL3 single nucleotide polymorphisms associated with 

protection in either juvenile rheumatoid arthritis (JRA) or asthma, but no association was 

observed with childhood-onset SLE in male Mexican patients. The gene NRF2 has also been 
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associated with various immunological pathologies including RA, acute lung injury, asthma, 

and emphysema96, among others. There is a long-standing observation of common genetic 

determinants for both asthma and chronic obstructive pulmonary disease (COPD) identified 

both through candidate gene studies as well as GWAS97,98. Recently, Hardin and colleagues 

performed a GWAS focusing specifically on patients from the COPD Gene Study with both 

asthma and COPD, referred to as the COPD-asthma overlap syndrome, and identified 

associations with variants in genes (i.e., GPR65) unique to this sub-phenotype99. Finally, 

there is a large body of research associated with the ‘hygiene hypothesis’100 addressing the 

potential beneficial role of microbial exposures for later development of asthma and 

allergies. Specifically, the underlying immunological mechanisms and the type of infectious/

microbial stimuli relevant to helminth infection (i.e., schistosomiasis) are the same 

mechanisms that promote the Th2-mediated response in allergic disease101,102, and common 

genetic mechanisms underlie both schistosomiasis and asthma have been reported from 

linkage and candidate gene studies102.

Other Omics and Allergic Disease

“Omics” refers to an experimental design in which large-scale datasets are acquired from a 

complete class of biomolecules with the aim of identifying the functional or pathological 

mechanisms of disease103. Such data-dense technologies include: (1) DNA in the context of 

complete genomics; (2) gene regulation technologies (epigenomics); (3) global protein 

and/or post-transcriptional modifications (proteomics); and (4) all cellular metabolites 

(metabolomics) 104.

Transcriptomics extended to microRNA is another burgeoning field. Several miRNAs have 

been identified as distinct profiles for the development and status of asthma, as well as other 

allergic phenotypes105,106. Approximately 200 miRNAs are known to be altered in steroid 

naïve asthmatics, establishing a link between abnormal miRNA expression in asthmatic 

patients and inflammation107–109. High-throughput data combined with sequence-based 

miRNA predictions have been successfully applied110–114, and more recently, a 

transcriptome study on miRNA-long non coding RNA interactions suggests better 

understanding of lung disease regulation and progression115. NGS has been utilized to study 

microRNA expression and interactions with the phosphoinositide 3-kinase (PI3K) pathway 

in primary human airway smooth muscle (HASM) cells116.

Concordance rates for asthma and allergies of only ∼50% among monozygotic twins 

suggest differences in exposure to environmental triggers are critical in disease 

expression2,117,118, and it has been demonstrated that genes and environmental factors 

contribute equally to asthma and its associated traits such as tIgE3. Similar to the other 

allergic diseases, the prevalence of asthma has increased dramatically within the 2–3 

decades in relation to the deterioration of the environment, favoring a significant 

contribution of environmental factors119. Added to this complexity is the observation that 

associations with alleles at candidate genes and interactions between these genes might only 

be observed among certain subpopulations despite nearly identical environmental exposures 

and similar genetic backgrounds. For example, the CD14(-260)C>T variant was associated 

with low tIgE in school children living in urban/suburban Tucson, AZ120, but the opposite 
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association was reported in a farming community121. Alternatively, it has been shown that 

this same variant depends on the dose of endotoxin from household dust among African-

ancestry asthmatics living in the tropics122, suggesting the role of endotoxin in allergic 

disease may be due to the combination of susceptibility genes and exposure. A large body of 

evidence implicates in utero and early life environmental tobacco smoke (ETS) exposure 

leads to impaired lung function and increased risk of asthma123–126, and ETS exposure 

increases strength of the association between markers in candidate genes and atopic 

asthma127–129. Indeed, environmental exposures such as smoking, air pollution and stress 

have been shown to cause changes in epigenetic modifications of genes as well as altered 

microRNA expression 130.

Immune responses in allergic disease are dominantly initiated by the release of cytokines 

such as interleukin-4 (IL4), IL5 and IL13, which activate type 2 helper T cells (TH2) 

resulting in a decrease of TH1 cytokines and impaired regulatory T cell function, and up or 

down regulation of DNA methylation on Th-1/Th-2 cytokine genes may affect the 

sensitization of experimental asthma131. In addition, epigenetic changes in immune cells 

such as T cells, B cells, mast cells and dendritic cells exposed to environmental factors have 

also been shown to be associated with asthma132. A recent study found that DNA 

methylation in the β-2 adrenergic receptor (ADRB2) gene is associated with decreased 

asthma severity133. In addition, an asthma mouse model found that microRNAs targeted 

genes involved in inflammatory responses and tissue remodeling, and demethylation status 

in the promoter of the IFN-γ changed in response to chronic antigen sensitization134.

Environmental stimuli have been shown to directly influence epigenetic modifications, and 

thus epigenetic regulation may play a role in immune-mediated lung diseases like asthma. 

Epigenetic regulation maintains tolerance to self-antigens. Thus, abnormal epigenetic 

activity may lead to a deregulated immune response and thus an immune disorder135. 

Epigenomics allows for the study of gene regulation at the chromosomal level using DNA 

methylation and CHIP technologies. As an example, 870 genes are differentially methylated 

in idiopathic pulmonary fibrosis (IPF) tissues136, and changes in miRNAs and fibroblast 

signature for genes are known to regulate the extracellular matrix in IPF137,138. While 

methylation decreases gene expression, acetylation of histones relaxes chromatin facilitating 

gene transcription and increasing expression. A recent study has implicated histone 

modifications in the decrease of Fas expression as well as resistance to apoptosis in fibrotic 

lung fibroblasts139.

A novel example of this technology is a study in which methylated DNA 

immunoprecipitation-next generation sequencing (MeDIP-seq) on lung tissue DNA from 

saline and house dust mite (HDM)-exposed mice was performed and researchers found that 

chronic exposure to HDM increased airway reactivity and inflammation, as interpreted 

through increases in IL-4, IL-5 and serum IgE levels, resulting in structural remodeling and 

hyperresponsiveness consistent with allergic disease. In addition, mice that received HDM 

exposure had global changes in methylation and hydroxymethylation of approximately 213 

genes, with TGFβ2 and SMAD3 having the most connected network140. These findings 

demonstrate how allergen exposure could trigger epigenetic changes in the lung genome.
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Clinical Implications & Personalized Medicine

Arguably the ultimate goal of genetic studies of allergic disease is to better match 

individualized treatments to specific genotypes to improve therapeutic outcomes and 

minimize side effects. For example, despite the relative success of conventional asthma 

therapies such as inhaled beta agonists and glucocorticoids, most cause adverse side 

effects141–143 and a subset of asthmatics are refractory to anti-asthma therapies resulting in 

significant morbidity as well as a significant financial burden144–146. Genetic variation 

determines drug response through various mechanisms including pharmacodynamics 

mechanisms, which determine drug metabolism147.

Recent GWAS and studies of candidate genes related to the β2-adrenergic receptor pathway 

have attempted to identify specific variants associated with the response to inhaled beta 

agonists148–150. The Arg16 allele in ADRB2 has been associated with greater post-

bronchodilator FEV1 response to SABA asthma therapy in asthmatic children151,152, while 

the Gly16 variant has been associated with changes in peak flow rate (PEFR)153–155. In 

contrast, the Arg16 allele has been associated with worsening asthma symptom scores with 

LABA therapy compared to Gly16 homozygotes 156. Other studies show no difference 

between the ADRB2 alleles and asthma symptoms after LABA therapy 157,158. Further 

pharmacogenetic studies may achieve a more definitive characterization of the role of 

Gly16Arg after beta agonist exposure and determine whether receptor kinetics or pro 

inflammatory effects play a role in the contrasting effects of the genotypes. Additional 

candidate genes found to be associated with altered beta agonist response in asthmatic 

children include ADCY9 150 and ARG1 159 with FEV1 change, and CRH2 148 and SPATS2L
149 with bronchodilator response. Additional candidate gene studies have also demonstrated 

altered asthma phenotypes in response to glucocorticoid therapies including CRH1 160, 

STIP1 161, TBX21 162,163, ADCY9150 164, and ORDML3 165.

Future Considerations/Summary

While GWAS has yielded promising results in the field of allergic disease, association does 

not imply biological functionality, and follow-up studies are needed to translate initial 

findings into the biological insights that ultimately will advance prognostics, diagnostics and 

therapeutics. While the vast amount of genomic data that is now available for a plethora of 

complex diseases, including allergic disease, has certainly facilitated follow-up association 

analyses to explore new hypotheses, meta-analyses, and replication of novel findings166, the 

scientific community is facing a ‘big data’ crisis167, as the size of genomic data sets today 

has begun to overwhelm the existing infrastructure and resources that allow researchers to 

share or use these data. For the genetics of allergic diseases specifically, there is increasing 

awareness of the need to design studies that are more inclusive of racially and ethnically 

diverse study participants168. Consider that, in the field of pharmacogenetics, it has been 

clearly demonstrated that, as an example, African American asthmatics have an increased 

likelihood for treatment failures and overall differential response to treatment that may be 

caused by genetic variants specific to their ancestry 169,170. Each of these needs will 

undoubtedly be addressed as clinicians and scientists in the field continue to move in a 

direction of collaboration and an appreciation for a multi-disciplinary approach, attributes 
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that have already pushed the genetics of allergic disease into the genomic revolution, with 

promises of improved outcome for the patient.
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Appendix A

A summary of genome-wide association studies (GWAS) performed on allergic diseases (p-

values on the discovery sample p<10-5).

Population Location Reported
gene

Adjacent gene (L,R) References

Asthma

European 1p13.1 IGSF3 CD58, MIR320B1 Ding et al 2013 1

European 1q25.3 XPR1 ACBD6, KIAA1614 Ding et al 20131

European 1q44 C1orf100 CEP170, HNRNPU Forno et al 20122

European 1q21.3 IL6R SHE, LOC101928101 Ferreira et al 20113

Mixed Ethnicities 1q23.1 PYHIN1 IFI16, LOC646377 Torgerson et al 
20114

Mixed Ethnicities 1q21.3 CRCT1 LCE5A, LCE3E Torgerson et al 
20114

European 1q31.3 DENND1B CRB1, C10rf53 Sleiman et al 20105
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Population Location Reported
gene

Adjacent gene (L,R) References

Korean 2p22.2 CRIM1 LOC10028911, FEZ2 Kim et al 20136

Korean 2q36.2 DOCK10 CUL3, MIR4439 Kim et al 20136

European 2p22.1 Intergenic THUMPD2, SLC8A1-AS1 Ding et al 20131

European 2q34 CPS1 LOC102724820, ERBB4 Melen et al 20137

European 2p23.3 ADCY3 NCOA1, DNAJC27-AS1 Melen et al 20137

European 2p23.3 ADCY3 PTRHD1, DNAJC27 Melen et al 20137

European 2p23.3 EFR3B DNAJC27, DNMT3A Melen et al 20137

European 2p23.3 Intergenic ADCY3, DNAJC27 Melen et al 20137

European 2q12.1 IL1RL1 IL1R1, IL18RAP Ramasamy et al 
20128

European 2q33.1 SPATS2L TYW5, SGOL2 Himes et al 20129

European 2q12.1 IL1RL1, IL18R1 IL1R2, IL18RAP Wan et al 201210

Mixed Ethnicities 2q12.1 IL1RL1 IL1R1, IL18RAP Torgerson et al 
20114

European 2q12.1 IL18R1 IL1RL1, IL18RAP Moffatt et al 201011

European 3q13.2 ATG3 BTLA, SLC3A5 Ding et al 20131

European 3p22.3 Intergenic LOC101928135, ARPP21 Ding et al 20131

European 3q26.32 Intergenic LOC102724550, KCNB2 Ding et al 20131

European 3q12.2 ABI3BP TFG, IMPG2 Ding et al 20131

European 3p26.2 IL5RA CNTN4, LRRN1 Forno et al 20122

Korean 4q26 SYNPO2 SEC24D, MYOZ2 Kim JH et al 20136

European 4q12 Intergenic IGFBP7, LPHN3 Ding et al 20131

European 4p14 KLHL5 TMEM156, WDR19 Ding et al 20131

European 4p15.1 Intergenic PCDH7, ARAP2 Melen et al 20137

Japanese 4q31.21 LOC729675 INPP4B, USP38 Hirota et al 201112

Japanese 4q31.21 GAB1 USP38, SMARCA5 Hirota et al 201112

European 5q31.1 C5orf56 SLC22A5, IRF1 Wan et al 201210

European 5q31.3 NDFIP1 GNPDA1, NDFIP1 Wan et al 201210

Japanese 5q22.1 TSLP SLC25A46, WDR36 Hirota et al 201112

Mixed Ethnicities 5q22.1 TSLP SLC25A46, WDR36 Torgerson et al 
20114

European 5q31.1 SLC22A5 LOC553103, C5orf56 Moffatt et al 201011

European 5q31.1 IL13 RAD50, IL4 Moffatt et al 201011

European 5q31.1 RAD50 IL5, IL13 Li et al 201013

European 5q12.1 PDE4D RAB3C, PART1 Himes et al 200914

European 6p21.1 Intergenic CDC5L, SUPT3H Ding et al 20131

European 6q21 Intergenic RFPL4B, LINC01268 Ding et al 20131

European 6p12.3 AL139097.1 TFA2B, PKHD1 Melen et al 20137

European 6p21.32 HLA-DQA1 HLA-DRB1, HLA-DQB1 Lasky-Su et al 
201215

Korean 6p21.32 HLA-DPB1 HLA-DPA1, HLA-DPB2 Park et al 201316

European 6p21.32 BTNL2 HCG23, HLA-DRA Ramasamy et al 
20128
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Population Location Reported
gene

Adjacent gene (L,R) References

European 6q27 T LINC00602, PRR18 Tantisira et al 
201217

Japanese 6p21.32 PBX2 AGER, GPSM3 Hirota et al 201112

Japanese 6p21.32 NOTCH4 GPSM2, C6orf10 Hirota et al 201112

Japanese 6p21.32 C6orf10 NOTCH4, HCG23 Hirota et al 201112

Japanese 6p21.32 BTNL2 HCG23, HLA-DRA Hirota et al 201112

Japanese 6p21.32 HLA-DRA BTNL2, HLA-DRB5 Hirota et al 201112

Japanese 6p21.32 HLA-DQB1 HLA-DQA1, HLA-DQA2 Hirota et al 201112

Japanese 6p21.32 HLA-DQA2 HLA-DQB1, HLA-DQB2 Hirota et al 201112

Japanese 6p21.32 HLA-DOA BRD2, HLA-DPA1 Hirota et al 201112

Japanese 6p21.32 HLA-DPB1 HLA-DPA1, HLA-DPB2 Noguchi et al 
201118

European 6p21.32 HLA-DQB1 HLA-DQA1, HLA-DQA2 Moffatt et al 201011

European 7p15.3 Intergenic NPY, STK31 Ding et al 20131

European 7q32.3 MKLN1 LINC-PINT, PODXL Ding et al 20131

Korean 8q11.23 OPRK1 NPBWR1, ATP6V1H Kim et al 20136

European 8p12 Intergenic DUSP26, UNC5D Ding et al 20131

European 8q24.23 COL22A1 FAM135B, KCNK9 Duan et al 201419

Japanese 8q24.11 SLC30A8 AARD, MED30 Noguchi et al 
201118

Korean 9p13.3 TLN1 TPM2, MIR6852 Kim JH et al 20136

European 9p23 Intergenic PTPRD-AS2, TYRP1 Ding et al 20131

European 9q21.33 Intergenic ZCCHC6, GAS1 Ding et al 20131

European 9p22.1 SLC24A2 ACER2, MLLT3 Melen et al 20137

European 9q33.3 DENND1A CRB2, LHX2 Melen et al 20137

European 9p21.1 ACO1 LINX01242, DDX58 Wan et al 201210

Mixed Ethnicities 9p24.1 IL33 RANBP6, TPD52L3 Torgerson et al 
20114

European 9p24.1 IL33 RANBP6, TPD52L3 Moffatt et al 201011

Mexican 9q21.31 TLE4, CHCHD9 LOC101927450, LOC101927477 Hancock et al 
200920

Korean 9p21.3 Intergenic SLC24A2, MLLT3 Kim SH et al 
200921

European 10q24.2 HPSE2 HPS1, CNNM1 Ding et al 20131

European 10q22.1 PSAP CDH23, CHST3 Ding et al 20131

European 10p15.1 PRKCQ LOC399715, PRKCQ-AS1 Melen et al 20137

European 10q26.11 EMX2 PDZD8, RAB11FIP2 Li et al 201322

European 10p15.1 PRKCQ LOC101927964, LINC00702 Duan et al 201419

European 10q21.1 PRKG1 A1CF, PRKG1-AS1 Ferreira et al 20113

Japanese 10p14 LOC338591 LINC00708, LOC101928272 Hirota et al 201112

Korean 10q21.3 CTNNA3 LOC101928913, Kim SH et al 
200921

Korean 11q24.1 OR6X1 ZNF202, OR6M1 Kim JH et al 20136

European 11q13.4 P2RY2 FCHSD2, P2RY2 Melen et al 20137
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Population Location Reported
gene

Adjacent gene (L,R) References

European 11q24.2 NR LOC101929497, ETS1 Forno et al 20122

European 11q13.5 LRRC32 C11orf30, GUCY2EP Ferreira et al 20113

Mixed ethnicities 11q23.2 C11orf71 LOC101928940, RBM7 Torgerson et al 
20114

Japanese 12q13.2 CDK2 PMEL, RAB5B Hirota et al 201112

Japanese 12q13.2 IKZF4 SUOX, RPS26 Hirota et al 201112

European 13q13.1 STARD13, RP11-81F11.3 KL, RFC3 Melen et al 20137

European 13q13.3 NR MIR548F5, DCLK1 Forno et al 20122

European 13q21.31 PCDH20 MIR3169, LINC00358 Ferreira et al 20113

Korean 13q12.13 Intergenic GPR12, USP12 Kim SH et al 
200921

Korean 14q32.2 LOC730217 C14orf64, C14orf177 Kim JH et al 20136

European 15q22.33 SMAD3 SMAD6, AAGAB Moffatt et al 201011

European 15q22.2 RORA LOC101928784, VPS13C Moffatt et al 201011

European 15q21.2 SCG3 DMXL2, LYSMD2 Li et al 201013

Korean 16q23.3 CDH13 MPH0SPH6, MLYCD Kim JH et al 20136

European 17q21.32 Intergenic MIR196A1, PRAC1 Melen et al 20137

European 17q21.32 Intergenic MIR196A1, PRAC1 Melen et al 20137

European 17q12 ORMDL3 GSDMB, LRRC3C Wan et al 201210

European 17p12 NR HS3ST3A1, COX10-AS1 Forno et al 20122

Mixed ethnicities 17q12 GSDMB ZPBP2, ORMDL3 Torgerson et al 
20114

European 17q12 ORMDL3 GSDMB, LRRC3C Ferreira et al 201123

European 17q12 GSDMB ZPBP2, ORMDL3 Moffatt et al 201011

European 17q21.1 GSDMA LRRC3C, PSMD3 Moffatt et al 201011

European 17q12 ORMDL3 GSDMB, LRRC3C Moffatt et al 201011

European 18p11.31 LPIN2 EMILIN2, MYOM1 Melen et al 20137

European 18p11.32 YES1 ENOSF1, ADCYAP1 Li et al 201322

Korean 19q13.43 ZNF71 ZNF470, SMIM17 Kim JH et al 20136

European 19p13.11 IL12RB1 AARDC2, MAST3 Li et al 201322

European 19q13.42 ZNF665 ZNF347, ZNF818P Wan et al 201210

European 20p12.3 Intergenic MIR8062, HA01 Ding et al 20131

European 20q13.2 Intergenic LOC101927700, TSHZ2 Melen et al 20137

European 20p13 KIAA1271 AP5S1, MAVS Li et al 201013

European 22q13.31 UPK3A NUP50, FAM118A Li et al 201322

European 22q12.3 IL2RB TMPRSS6, C1QTNF6 Moffatt et al 201011

European NR Intergenic Wan et al 201210

Atopic Dermatitis

European 1q21.3 FLG HRNR, FLG2 Weidinger et al 
201324

Chinese 1q21.3 FLG HRNR, FLG2 Sun et al 201125

Japanese 2q12.1 IL1RL1, IL18R1, IL18RAP IL1R1, IL18RAP, IL1R2 Hirota et al 201226

Japanese 2q13 LOC100505634 BCL2L11, MIR4435-1 Hirota et al 201226

Ortiz and Barnes Page 21

Immunol Allergy Clin North Am. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Population Location Reported
gene

Adjacent gene (L,R) References

Japanese 3p22.3 GLB1 CCR4, SUSD5 Hirota et al 201226

Japanese 3q13.2 CCDC80 LINC01279, LOC101929694 Hirota et al 201226

European 5q31.1 IL13 RAD50, IL4 Weidinger et al 
201324

Japanese 5q31.1 IL13 RAD50, IL4 Hirota et al 201226

European 5q31.1 IL13 RAD50, IL4 Paternoster et al 
201227

European 6p21.33 TNXB CYP21A2, ATF6B Weidinger et al 
201324

Japanese 6p21.33 HLA-C HCG27, HLA-B Hirota et al 201226

Japanese 6p21.32 GPSM3 PBX2, NOTCH4 Hirota et al 201226

Japanese 6p21.32 C6orf10 NOTCH4, HCG23 Hirota et al 201226

European 6p21.33 BAT1 MCCD1, DDX39B Paternoster et al 
201227

Japanese 7p22.2 CARD11 GNA12, SDK1 Hirota et al 201226

Japanese 8q24.21 MIR1208 PVT1, LINC00977 Hirota et al 201226

European 8q21.13 ZBTB10 MIR5708, ZNF704 Paternoster et al 
201227

Japanese 10q21.2 ZNF365 LOC283045, EGR2 Hirota et al 201226

Japanese 10q21.3 ADO, EGR2 ZNF365, NRBF2 Hirota et al 201226

European 11q13.5 C11orf30 LOC100506127, LRRC32 Weidinger et al 
201324

Japanese 11p15.4 OR10A3, NLRP10 OR10A3, NLRP10 Hirota et al 201226

Japanese 11q13.5 C11orf30 LOC100506127, LRRC32 Hirota et al 201226

Japanese 11q13.1 OVOL1 AP5B1, SNX32 Hirota et al 201226

European 11q13.1 OVOL1 AP5B1, SNX32 Paternoster et al 
201227

European 11q13.5 C11orf30 LOC100506127, LRRC32 200928

Japanese 16p13.13 CLEC16A DEXI, SOCS1 Hirota et al 201226

European 19p13.2 ACTL9 ADAMTS10, OR2Z1 Paternoster et al 
201227

Japanese 20q13.2 CYP24A1, PFDN4 CYP24A1, PFDN4 Hirota et al 201226

European 22q12.3 NCF4 PVALB, CSF2RB Paternoster et al 
201227

Atopy

European 2p21 SGK493 C2orf91, PKDCC Castro-Giner et al 
200929

Allergic Rhinitis

European 1p36.13 CROCC MIR3675, MFAP2 Ramasamy et al 
201130

European 5q22.1 TMEM232, SLCA25A46 LOC100289673, TSLP Ramasamy et al 
201130

European 5q22.1 5q23.1TSLP SLC25A46, WDR36 LOC101927190, Ramasamy et al 
201130

European SEMA6A LOC102467223 Ramasamy et al 
201130
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Population Location Reported
gene

Adjacent gene (L,R) References

European 7p14.1 GLI3 INHBA-AS1, LINC01448 Ramasamy et al 
201130

11q13.5 C11orf30, LOC100506127,

European LRRC32 GUCY2EP Ramasamy et al 
201130

European 14q23.1 PPM1A, DHRS7 PCNXL4, C14orf39 Ramasamy et al 
201130

European 16p13.13 CLEC16A DEXI, SOCS1 Ramasamy et al 
201130

European 20p11.21 ENTPD6 LOC101926889, PYGB Ramasamy et al 
201130

Total & Specific 
IgE

European 1p32.3 EPS15 TTC39A, OSBPL9 Ramasamy et al 
201130

European 1q23.2 DARC CADM3-AS1, ACKR1 Granada et al 
201231

European 1q23.2 FCER1A ACKR1, OR10J3 Weidinger et al 
200832

European 1q23.2 FCER1A Mus Olfr418-ps1, Granada et al 
201231

European 1q23.2 OR10J3 FCER1A, OR10J1 Granada et al 
201231

European 1q25.2 ABL2 TOR3A, SOAT1 Ramasamy et al 
201130

Korean 2p22.2 CRIM1 LOC100288911, FEZ2 Kim et al 20136

European 2p25.1 ID2 LOC100506299, MBOAT2 Granada et al 
201231

Korean 2q36.2 DOCK10 CUL3, NYAP2 Kim et al 20136

Mixed ethnicities 3p14.1 SUCLG2 MIR4272, SUCLG2-AS1 Levin et al 201333

European 3q22.1 TMEM108 NPHP3-AS1, BFSP2 Ramasamy et al 
201130

European 3q28 LPP BCL6, TPRG1-AS1 Granada et al 
201231

Korean 4q26 SYNPO2 SEC240, MYOZ2 Kim et al 20136

European 4q27 IL2 ADAD1, IL21 Ramasamy et al 
201130

European 5p15.2 DNAH5 TMEM232, LINC01194, TRIO Ramasamy et al 
201130

European 5q22.1 SLCA25A46 LOC100289673, TSLP Ramasamy et al 
201130

European 5q31.1 IL13 BC042122, IL4 Granada et al 
201231

European 5q31.1 RAD50 IL5, IL13 Weidinger et al 
200832

European 6p21.32 HLA region HLA-DQB1, HLADQA2 Ramasamy et al 
201130

European 6p21.32 HLA-DQA2 HLA-DQB1, HLA-DQB2 G ranada et al 
201231

Mixed ethnicities 6p21.32 HLA-DQA2 HLA-DQB1, HLA-DQB2 Levin et al 201333
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Population Location Reported
gene

Adjacent gene (L,R) References

Mixed ethnicities 6p21.32 HLA-DQB1 HLA-DQA1, HLADQA2 Levin et al 201333

European 6p22.1 HLA-G LOC554223, HLA-H Granada et al 
201231

European 6p22.1 HLA-A HCG4B, HCG9 Granada et al 
201231

Korean 8q11.23 OPRK1 NPBWR1, ATP6V1H Kim et al 20136

Korean 9p13.3 TLN1 TPM2, CREB3 Kim et al 20136

Korean 11q24.1 OR6X1 ZNF202, ORM1 Kim et al 20136

European 12q13.3 STAT6, NAB2 TMEM194A, LRP1 Granada et al 
201231

Korean 14q32.2 LOC730217 C14orf64, C14orf177 Kim et al 20136

European 16p12.1 IL4R FLJ21408, IL21R Granada et al 
201231

European 16p13.2 Intergenic MIR548X, MIR7641-2 Ramasamy et al 
201130

Mixed ethnicities 16q22.1 WWP2 NOB1, PDXDC2P Levin et al 201333

Korean 16q23.3 CDH13 MPHOSPH 6, LOC102724163 Kim et al 20136

Korean 19q13.43 ZNF71 ZNF470, SMIM17 Kim et al 20136

Airway hyperresponsiveness

European 2q36.3 AGFG1 TM4SF20, C2orf83 Himes et al 201334

Mixed ethnicities = African American/African Caribbean, Latino, European ancestry
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KEY POINTS

• Nearly 100 asthma genes/loci in addition to multiple genes/loci for AD, AR and 

IgE have been identified by genome-wide association studies (GWAS)

• Next generation sequencing (NGS) strategies are increasingly being used to 

hone in on the causal variants associated with allergic diseases

• A goal of the genetics of allergic disease is to better match individualized 

treatments to specific genotypes to improve therapeutic outcomes and minimize 

side effects
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Figure 1. 
Published genome-wide association studies (GWAS) to date according to ethnicity and race 

for all catalogued GWAS (Panel A) and asthma GWAS (Panel B). Data generated from the 

National Human Genome Research Institute’s GWAS catalog website (http://

www.genome.gov/gwastudies/).
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